Cacopardo, Ludovica and Ahluwalia, Arti (2021) Engineering and Monitoring 3D Cell Constructs with Time-Evolving Viscoelasticity for the Study of Liver Fibrosis In Vitro. Bioengineering, 8 (8). p. 106. ISSN 2306-5354
bioengineering-08-00106-v2.pdf - Published Version
Download (3MB)
Abstract
Liver fibrosis is generally associated with an over-production and crosslinking of extracellular matrix proteins, causing a progressive increase in both the elastic and viscous properties of the hepatic tissue. We describe a strategy for mimicking and monitoring the mechano-dynamics of the 3D microenvironment associated with liver fibrosis. Cell-laden gelatin hydrogels were crosslinked with microbial transglutaminase using a purpose-designed cytocompatible two-step protocol, which allows for the exposure of cells to a mechanically changing environment during culturing. A bioreactor was re-engineered to monitor the mechanical properties of cell constructs over time. The results showed a shift towards a more elastic (i.e., solid-like) behaviour, which is likely related to an increase in cell stress. The method effectively mimics the time-evolving mechanical microenvironment associated with liver fibrosis and could provide novel insights into pathophysiological processes in which both elastic and viscous properties of tissues change over time.
Item Type: | Article |
---|---|
Subjects: | Institute Archives > Engineering |
Depositing User: | Managing Editor |
Date Deposited: | 15 Feb 2023 04:40 |
Last Modified: | 17 Jul 2024 07:17 |
URI: | http://eprint.subtopublish.com/id/eprint/955 |