Reveal of Internal, Early-Load Interfacial Debonding on Cement Textile-Reinforced Sandwich Insulated Panels

Tsangouri, Eleni and Ismail, Hasan and De Munck, Matthias and Aggelis, Dimitrios G. and Tysmans, Tine (2021) Reveal of Internal, Early-Load Interfacial Debonding on Cement Textile-Reinforced Sandwich Insulated Panels. Applied Sciences, 11 (2). p. 879. ISSN 2076-3417

[thumbnail of applsci-11-00879-v2.pdf] Text
applsci-11-00879-v2.pdf - Published Version

Download (4MB)

Abstract

Internal interfacial debonding (IID) phenomena on sandwich façade insulated panels are detected and tracked by acoustic emission (AE). The panels are made of a thin and lightweight cementitious composite skin. In the lab, the panels are tested under incremental bending simulating service loads (i.e., wind). Local (up to 150 mm wide) skin-core detachments are reported in the early loading stage (at 5% of ultimate load) and are extensively investigated in this study, since IID can detrimentally affect the long-term durability of the structural element. A sudden rise in the AE hits rate and a shift in the wave features (i.e., absolute energy, amplitude, rise time) trends indicate the debonding onset. AE source localization, validated by digital image correlation (DIC) principal strains and out-of-plane full-field displacement mapping, proves that early debonding occurs instantly and leads to the onset of cracks in the cementitious skin. At higher load levels, cracking is accompanied by local debonding phenomena, as proven by RA value increases and average frequency drops, a result that extends the state-of-the-art in the fracture assessment of concrete structures (Rilem Technical Committee 212-ACD). Point (LVDT) and full-field (AE/DIC) measurements highlight the need for a continuous and full-field monitoring methodology in order to pinpoint the debonded zones, with the DIC technique accurately reporting surface phenomena while AE offers in-volume damage tracking.

Item Type: Article
Subjects: Institute Archives > Engineering
Depositing User: Managing Editor
Date Deposited: 01 Feb 2023 06:06
Last Modified: 02 Apr 2024 03:55
URI: http://eprint.subtopublish.com/id/eprint/1085

Actions (login required)

View Item
View Item