Investigating the Surrogate Modeling Capabilities of Continuous Time Echo State Networks

Bhatnagar, Saakaar (2024) Investigating the Surrogate Modeling Capabilities of Continuous Time Echo State Networks. Mathematical and Computational Applications, 29 (1). p. 9. ISSN 2297-8747

[thumbnail of mca-29-00009.pdf] Text
mca-29-00009.pdf - Published Version

Download (1MB)

Abstract

Continuous Time Echo State Networks (CTESNs) are a promising yet under-explored surrogate modeling technique for dynamical systems, particularly those governed by stiff Ordinary Differential Equations (ODEs). A key determinant of the generalization accuracy of a CTESN surrogate is the method of projecting the reservoir state to the output. This paper shows that of the two common projection methods (linear and nonlinear), the surrogates developed via the nonlinear projection consistently outperform those developed via the linear method. CTESN surrogates are developed for several challenging benchmark cases governed by stiff ODEs, and for each case, the performance of the linear and nonlinear projections is compared. The results of this paper demonstrate the applicability of CTESNs to a variety of problems while serving as a reference for important algorithmic and hyper-parameter choices for CTESNs.

Item Type: Article
Subjects: Institute Archives > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 25 Jan 2024 04:46
Last Modified: 25 Jan 2024 04:46
URI: http://eprint.subtopublish.com/id/eprint/4033

Actions (login required)

View Item
View Item