On the Design of Optimal Feedback Control for Systems of Second Order

Formalskii, Аlexander М. (2010) On the Design of Optimal Feedback Control for Systems of Second Order. Applied Mathematics, 01 (04). pp. 301-306. ISSN 2152-7385

[thumbnail of AM20100400008_30594254.pdf] Text
AM20100400008_30594254.pdf - Published Version

Download (585kB)

Abstract

A difficult but important problem in optimal control theory is the design of an optimal feedback control, i.e., the design of an optimal control as function of the phase (state) coordinates [1,2]. This problem can be solved not often. We study here the autonomous nonlinear system of second order in general form. The constraints imposed on the control input can depend on the phase (state) coordinates of the system. The goal of the control is to maximize or minimize one phase coordinate of the considered system while other takes a prescribed in advance value. In the literature, optimal control problems for the systems of second order are most frequently associated with driving both phase coordinates to a prescribed in advance state. In this statement of the problem, the optimal control feedback can be designed only for special kind of systems. In our statement of the problem, an optimal control can be designed as function of the state coordinates for more general kind of the systems. The problem of maximization or minimization of the swing amplitude is considered explicitly as an example. Simulation results are presented.

Item Type: Article
Subjects: Institute Archives > Mathematical Science
Depositing User: Managing Editor
Date Deposited: 09 Jun 2023 04:03
Last Modified: 01 Nov 2023 03:39
URI: http://eprint.subtopublish.com/id/eprint/2402

Actions (login required)

View Item
View Item