Prabhakar fractional derivative model of sodium alginate (C6H9NaO7) for accelerated plate motions

Khan, Ilyas (2022) Prabhakar fractional derivative model of sodium alginate (C6H9NaO7) for accelerated plate motions. Frontiers in Energy Research, 10. ISSN 2296-598X

[thumbnail of pubmed-zip/versions/1/package-entries/fenrg-10-1013829/fenrg-10-1013829.pdf] Text
pubmed-zip/versions/1/package-entries/fenrg-10-1013829/fenrg-10-1013829.pdf - Published Version

Download (1MB)

Abstract

The Prabhakar fractional derivative model is not studied in the open literature for the Casson fluid model when the vertical plate exhibits linear and quadratic translations with constant heating. Therefore, this study deals with the thermal transport of sodium alginate (C6H9NaO7) over a vertical plate with a constant temperature. Since the classical PDEs are incapable of analyzing and investigating the physical impact of flow variables with memory effects, a fractional derivative model is developed using the Prabhakar fractional derivative approach. Two different types of plate translations (linear and quadratic) are considered. The non-dimensional governing equations are transformed into a fractional model and solved using the Laplace transformation (L.T) technique. The effects and behavior of significant physical parameters and fractional order parameters are studied graphically and discussed. As a consequence, it is found that as fractional limitations are increased, the thermal and momentum profiles drop. In addition, the momentum profile in the case of quadratic translation (variable acceleration) shows a higher magnitude than the case of linear translation (constantly accelerated plate).

Item Type: Article
Subjects: Institute Archives > Energy
Depositing User: Managing Editor
Date Deposited: 09 May 2023 04:17
Last Modified: 25 Jan 2024 03:48
URI: http://eprint.subtopublish.com/id/eprint/2219

Actions (login required)

View Item
View Item