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Abstract 

 
The purpose of this note is to provide a simple proof of existence of stationary probability vectors (fixed 

points) for stochastic matrices using Farkas’ lemma. This result as well as the uniqueness of stationary 

probability vectors also holds for a certain subclass of quasi-stochastic matrices.  
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1 Introduction 

 
In this note we provide a new and simple proof of the existence of stationary probability vectors (fixed points) 

for stochastic matrices as defined for instance in section 6 of Chapter 5 of the book by Margalit and Rabinoff 

[1], using Farkas’ lemma-a very simple proof of the latter, using purely combinatorial arguments, is available in 
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topic 3 of Lahiri [2]. The usual approaches to the proof rely either on Brouwer’s fixed point theorem (for 

instance the first theorem in section 24.6 of https://python.quantecon.org/finite_markov.html), or the contraction 

mapping theorem- the latter being the proof in Lalley [3]. The proof that there exists a unique stationary 

probability vector for regular stochastic matrices is an easy consequence of our main result [4-6]. Both results 

hold for a subclass of quasi-stochastic matrices (i.e., non-negative matrices with row sums less than or equal to 

one) which satisfy the property that either there is a square submatrix in the upper left-hand corner with all row 

sums equal to one or there is a square submatrix in the lower right-hand corner with all row sums equal to one.     

 

We thus provide an alternative and considerably easier route to the proofs of theorems in section 7 of chapter 4 

in Kemeny, Snell and Thompson [7] concerning convergence results for stochastic matrices. 

 

2 The Model and the Main Existence Result 
 

An n-dimensional probability row vector is a row vector u in   
  such that    

 
    = 1. 

 

An nn matrix P (of real numbers) is said to be a non-negative matrix if all entries in P are non-negative, i.e., if 

pij denotes the (i,j)
th

 entry of P then for all i,j{1,…,n}, pij ≥ 0.  

 

An nn non-negative matrix P is said to be a stochastic matrix if all row sums of P are equal to one, i.e. for all 

i{1,…,n}:     
 
    =1. 

 

An n-dimensional probability row vector is said to be a stationary probability vector for an nn matrix P, if uP = 

u. 

 

Given a n nn matrix P and i,j{1,…,n}, let Pi denote the i
th

 row of P and P
(j)

 denote the j
th
 column of j. 

 

The simple proof of the following theorem uses Farkas’ lemma. 

 

Theorem 1: 
 

Let P be a nn stochastic matrix. Then there exists a stationary probability vector for P. 

 

Proof: 
 

Let A = P-I, where I is the nn identity matrix, and towards a contradiction suppose there does not exist any 

probability row vector u such that uA = 0. 

 

Then the system u[A|e(n)] = [0|1] has no non-negative solution, where  

 

(a) [A|e(n)] is the n(n+1) matrix whose first n columns are the columns of the matrix A and its (n+1)
st
 

column e(n) is the n-dimensional column vector all whose entries are 1; and 

(b) [0|1] is the (n+1)-dimensional row vector whose first ‘n’ entries are 0 and the last entry is 1. 

 

Thus, by Farkas’ Lemma there exists an n- dimensional column vector z and a real number  such that  

Az + e (n) ≥ 0 and  < 0. 

 

Thus, Pz-z = Az >> 0, i.e., Piz > zi for all i = 1,…,n, where Pi is the i
th

 row of P. 

 

Let zh = max{zi|i = 1,…,n}. 

 

Thus Phz > zh which implies that a convex combination of the set of real numbers {zi|i = 1,…,n} is greater than 

its maximum which is not possible. 

 

Thus, it must be the case that there exists a probability row vector u such that uP = u. Q.E.D.  
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An nn non-negative matrix P is said to be a quasi- stochastic matrix if all row sums of P are “positive” and 

“less” than or equal to one, i.e. for all i{1,…,n}: 0 <     
 
     1. 

 

Note: 
 

 Theorem 1 is not valid if we replace “stochastic matrix” by “quasi-stochastic matrix” as is apparent if we 

choose P =  

 

 
 

 
 

 

 . That however does not imply that it is never true for quasi-stochastic matrices. If we let P = 

 
 

 
 

  
 , then the probability vector (0,1) is a stationary probability vector  

 

 
 

  
 . In fact, quasi-stochastic 

matrices of the form  
   
   

 , where P1 and P2 are square sub-matrices where either all row sums of P1 are 

equal to one or all row sums of P2 are equal to one, will have at least one stationary probability vector. This 

follows easily by adapting the proof of Theorem 1 to this context. If all row sums of P1 are equal to one then Q 

has to be the zero matrix and if all row sums of P2 are equal to one then R has to be the zero matrix. 

 

3 Some Properties of Products of Quasi-Stochastic and Stochastic Matrices 
 

Given any quasi-stochastic matrix P and an n-dimensional probability row vector u, [uP = u] implies [ui = 0 

whenever     
 
    < 1]. The reason is as follows:  

 

If e(n) is the n-dimensional column vector all whose entries are 1, then uP = u implies uPe(n) = ue(n) = 1 and 

hence    
 
       

 
    = 1. Thus,    

 
        

 
     ) = 0, which given     

 
     1 for all i{1,…,n} implies 

ui = 0 if     
 
    < 1. 

 

Note that if P and Q are quasi-stochastic matrices of size nn then PQ is a non-negative matrix whose i
th

 row is 

PiQ and j
th

 entry in row i of PQ is PiQ
(j)

. 

 

Hence sum of terms in the i
th

 row of PQ is Pi       
   .  

 

Since Q is a quasi-stochastic matrix each coordinate of        
    is positive and less than or equal to one and 

since P quasi-stochastic matrix Pi       
    is positive and less than or equal to one. 

 

Thus, PQ is a quasi-stochastic matrix. 

 

In particular P
r
 (i.e. P multiplied by itself r times for some positive integer r) is a quasi-stochastic matrix for all 

r . Clearly, P
1
 = P. 

 

Note the difference between P
r
 and P

(j)
, where the latter denotes the j

th
 column of P. 

 

If x is a non-negative row vectors and Q is a quasi-stochastic matrix, then        
    =     

 
   

 
       = 

    
 
   

 
       =        

 
   

 
        

 
   . 

 

If P and Q are stochastic matrices of size nn then PQ is a non-negative matrix whose i
th

 row is PiQ and j
th

 entry 

in row i of PQ is PiQ
(j)

. 

Hence sum of terms in the i
th

 row of PQ is Pi       
   .  

 

Since Q is a stochastic matrix implies       
    = e(n) and since P stochastic matrix Pi       

    = Pie(n) = 1. 

Thus, PQ is a stochastic matrix. 

 

In particular P
r
 (i.e. P multiplied by itself r times for some positive integer r) is a stochastic matrix for all r . 

Clearly, P
1
 = P. 

 



 

 
 

 

Lahiri; Asian J. Prob. Stat., vol. 20, no. 4, pp. 94-99, 2022; Article no.AJPAS.94440 

 

 

 
97 

 

If x is a row vectors and Q is a stochastic matrix, then        
    =     

 
   

 
       =     

 
   

 
       = 

       
 
   

 
    =    

 
   . 

 

Note that if Q is a stochastic matrix, the above holds for all (and not just non-negative) row vectors which has as 

many co-ordinates as the number of rows in Q. 

 

Thus, the sum of the coordinates of xQ
r
, where Q

r
 is Q multiplied by itself r times, is equal to the sum of the 

coordinates of x for all positive integers r. 

 

Given x,y  , the Manhattan distance between x and y denoted ||x-y||MD is defined as         
 
   .  

 

If x and y are n-dimensional non-negative row vectors and P is a quasi-stochastic matrix, then ||xP-yP||MD = 

             
    =               

 
  

 
                 

 
   

 
    =             

 
   

 
    =      

 
   

  |j=1npij   =1 |  −  | = ||x-y||MD since 0 < j=1npij  1 for all iN. 

 

Thus, for all r  and n-dimensional non-negative row vectors x, y, ||x-y||MD ≥ ||xP
r
-yP

r
||MD ≥ ||xP

r+1
-yP

r+1
||MD. 

 

4 Regular Quasi-Stochastic Matrices 
 

Results in this section lead to the second theorem in section 24.6 of 

https://python.quantecon.org/finite_markov.html. 

 

A quasi-stochastic matrix P is said to be regular if for some positive integer r, all entries of P
r
 are positive. 

For i,j{1,…,n} and any positive integer r, let    
   

 denote the j
th
 entry in the i

th
 row of P

r
,   

  denote the i
th

 row 

of P
r
 and P

r(,j)
 denote the j

th
 column of P

r
. 

 

The proof of the following- intended to be a slight generalization of Lalley [3]- closely follows page 10 of 

Lalley’s notes on “Markov Chains: Basic Theory”  

Available: http://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf . 

 

Lemma 1: 
 

If P is a regular quasi-stochastic matrix with all entries of P
K
 strictly positive for some positive integer K, then 

there exists  > 0 with 0 < 1-n < 1 such that for x,y {u| u is an n-dimensional row vector satisfying    
 
    = 

1}, then ||xP
K
-yP

K
||MD  (1-n)||x-y||MD. Thus, for all positive integers m, ||xP

mK
-yP

mK
||MD  (1-n)

m
||x-y||MD.   

 

Proof: 
 

Suppose P is a regular quasi-stochastic matrix with all entries of P
K
 strictly positive for some positive integer K 

and let x,y {u| u is an n-dimensional row vector satisfying    
 
    = 1}. 

 

Since all entries of P
K
 are positive, there exists  > 0, such that    

   
 >  for all i,j {1,…,n}. 

 

Since P
K
 is also a quasi-stochastic matrix, it must be the case that 0 <     

    
     1. 

 

Thus, 1      
    

    > n for all j{1,…,n}. 

 

Thus, 1 > 1-n > 0. 

 

For i,j {1,…,n}, let qij = 
   
   

 

   
. Since    

   
 >  for all i,j {1,…,n} and 1-n > 0, it must be the case that qij > 0 

for all i,j {1,…,n}. Further, for all i{1,…,n}, 0 <     
 
    =  

   
   

 

   

 
      1. 

https://python.quantecon.org/finite_markov.html
http://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf
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    =              

    
     

    =                       
     

    =       
   

ni=1nxi−yiqij+i=1nxi−yi| = j=1n|1−ni=1nxi−yiqij|, since i=1nxi−yi = 0. 

Thus,                  
    =                    

 
   

 
     (1-n)               

 
   

 
    = (1-n) 

              
 
   

 
   , since qij > 0 for all i,j{1,…,n}. 

 

Hence                  
     (1-n)               

 
   

 
    = (1-n)               

 
   

 
     (1-

n)          
 
   , since 0 <     

 
     1 for all i{1,…,n}. 

 

Thus, ||xP
K
-yP

K
||MD  (1-n)||x-y||MD where 0 < 1-n < 1. 

 

Thus, for all positive integers m, ||xP
(m+1)K

-yP
(m+1)K

||MD  (1-n)||xP
mK

-yP
mK

||MD and hence ||xP
mK

-yP
mK

||MD  (1-

n)
m

||x-y||MD, where 0 < 1-n < 1. Q.E.D.  

 

The following result is an immediate consequence of Theorem 1 and Lemma 1. 

 

Theorem 2: 
 

If P is a regular stochastic matrix, then {u| u is an n-dimensional row vector satisfying    
 
    = 1 and uP = u} is 

a singleton with all coordinates strictly positive. 

 

Proof: 
 

Suppose P is a regular stochastic matrix with all entries of P
K
 being strictly positive for some positive integer K. 

By Theorem 1, {u| u is an n-dimensional row vector satisfying    
 
    = 1 and uP = u} is non-empty. 

 

Further uP = u implies uP
r
 = u for all positive integers r.  

 

Towards a contradiction suppose, u and v are any two distinct (i.e., u  v) n-dimensional row vectors satisfying 

uP = u, vP = v,    
 
    =    

 
    = 1. 

 

Thus uP
K
 = u and vP

K
 = v. 

 

By lemma 1, there exists  > 0 with 0 < 1-n < 1 such that ||uP
K
-vP

K
||MD  (1-n)||u-v||MD. 

 

Since 1 > 1-n > 0, u  v implies ||uP
K
-vP

K
||MD < ||u-v||MD, contradicting uP

K
 = u and vP

K
 = v. 

 

Thus, {u| u is an n-dimensional row vector satisfying    
 
    = 1 and uP = u} must be a singleton and by 

Theorem 1 it follows that there is a unique non-zero n-dimensional row vector u satisfying uP = u and this u is 

an n-dimensional probability row vector. 

Since all entries of P
K
 are strictly positive, uj = uP

K(j)
 > 0 for all j{1,…,n} and hence u is a strictly positive 

probability row vector. Q.E.D. 

 

Note: 

It is easy to see that the above result holds for quasi-stochastic matrices of the form  
   
   

 , where P1 and P2 

are square sub-matrices satisfying either all row sums of P1 are equal to one and P1 is regular or all row sums of 

P2 are equal to one and P2 is regular. 
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5 Conclusion 
 

The purpose of this short research communication on methodology is purely pedagogical. The generalizations of 

the results to quasi-stochastic matrices are immediate, and hence the originality of the paper is not in the results 

but in the proofs. This short note would allow teaching finite Markov chains in an undergraduate course or 

MBA course on mathematical economics or operations research or stochastic processes. Applications of results 

presented here are well known and already exist in Kemeny, Snell and Thompson [7]. Needless duplication of 

effort would lead one to miss the point that this paper- if referred to at all- needs to be read along with material 

similar to what is already there in Kemeny, Snell and Thompson [7].  

 

Acknowledgement 
 

Many thanks to Dr. Subhadip Chakraborty for comments and corrections and much gratitude to Prof. 

Manjunatha Prasada for valuable discussions at the expense of his “peace of mind”. I would also like to thank 

two anonymous referees of the journal, in particular the one whose brief comment was “bang on target” and 

hence worth quoting: “In the present study, although they do not prove new results for me personally (it) was of 

interest.” That is the kind of observation I eagerly expect from the readers of this paper. None, except the author 

is responsible for errors that may remain. 

 

Competing Interests 
 

Author has declared that no competing interests exist. 

 

References 

 
[1] Margalit D, Rabinoff J. Interactive Linear Algebra. Georgia Institute of Technology; 2017. 

Available: https://textbooks.math.gatech.edu/ila/ila.pdf 

 

[2] Lahiri S. The essential Appendix on Linear Programming; 2020.  

Available: https://www.academia.edu/44541645/The_essential_appendix_on_Linear_Programming 

 

[3] Lalley S. (undated): “Markov Chains: Basic Theory”  

Available: http://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf 

 

[4] Marek I, Mayer P. Convergence analysis of an iterative aggregation/disaggregation method for 

computing stationary probability vectors of stochastic matrices. Numerical linear algebra with 

applications. 1998;5(4):253-74. 

 

[5] Golub GH, Seneta E. Computation of the stationary distribution of an infinite stochastic matrix of special 

form. Bulletin of the Australian Mathematical Society. 1974;10(2):255-61. 

 

[6] Saburov M, Yusof NA. On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex. 

Methods of Functional Analysis and Topology. 2018;24(03):255-64. 

 

[7] Kemeny JG, Snell JL, Thompson GL. Introduction to Finite Mathematics (Third Edition). Prentice-Hall, 

Inc., Englewood Cliffs, N.J; 1974. 

_________________________________________________________________________________________ 
© 2022 Lahiri; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
 

 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/94440 

https://textbooks.math.gatech.edu/ila/ila.pdf
https://www.academia.edu/44541645/The_essential_appendix_on_Linear_Programming
http://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf
http://creativecommons.org/licenses/by/3.0

