
RESEARCH ARTICLE

Preserved central cholinergic functioning to

transcranial magnetic stimulation in de novo

patients with celiac disease

Giuseppe LanzaID
1,2☯*, Francesco Fisicaro3☯, Carmela Cinzia D’Agate4, Raffaele FerriID

2,

Mariagiovanna CantoneID
5, Luca Falzone6, Giovanni Pennisi1, Rita Bella7,

Marios Hadjivassiliou8, Manuela Pennisi3

1 Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy, 2 Clinical

Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy, 3 Department of Biomedical

and Biotechnological Sciences, University of Catania, Catania, Italy, 4 Gastroenterology and Endoscopy

Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy, 5 Department of Neurology,

Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy, 6 Epidemiology and Biostatistics Unit, Instituto

Nazionale Tumori-IRCCS “Fondazione G. Pascale, Napoli, Italy, 7 Department of Medical and Surgical

Sciences and Advanced Technologies, University of Catania, Catania, Italy, 8 Academic Department of

Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield,

United Kingdom

☯ These authors contributed equally to this work.

* giuseppe.lanza1@unict.it

Abstract

Background

Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifes-

tations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms

are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In par-

ticular, it is well known that some adults with CD may complain of cognitive symptoms, that

improve when the gluten-free diet (GFD) is started, although they may re-appear after inci-

dental gluten intake. Among the neurophysiological techniques, motor evoked potentials

(MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the

excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil

preclinical impairment in several neurological and psychiatric disorders, as well as in some

systemic diseases affecting the central nervous system (CNS), such as CD. We previously

demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in

newly diagnosed patients. However, no data are available on the central cholinergic func-

tioning indexed by specific TMS measures, such as the short-latency afferent inhibition

(SAI), which might represent the neurophysiological correlate of cognitive changes in CD

patients, also at the preclinical level.

Methods

Cognitive and depressive symptoms were screened by means of the Montreal Cognitive

Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respec-

tively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on
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normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in

all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the

percentage amplitude ratio between the conditioned and the unconditioned MEP response.

Resting motor threshold, MEP amplitude and latency, and central motor conduction time

were also measured.

Results

The two groups were comparable for age, sex, anthropometric features, and educational

level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all

patients. Scores at MoCA and HDRS were significantly worse in patients than in controls.

The comparison of TMS data between the two groups revealed no statistically significant dif-

ference for all measures, including SAI at both interstimulus intervals.

Conclusions

Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not

affected in these de novo CD patients compared to age-matched healthy controls. Although

the statistically significant difference in MoCA, an overt cognitive impairment was not clini-

cally evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic

techniques has shown any involvement of the central acetylcholine or the cholinergic fibers

within the CNS in CD. This finding might add support to the vascular inflammation hypothe-

sis underlying the so-called “gluten encephalopathy”, which seems to be due to an aetiology

different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical,

TMS, and neuroimaging data, both before and after GFD, are needed.

Introduction

Within the wide spectrum of gluten-related disorders [1], it is now established that the classical

celiac disease (CD) represents only the tip of the “CD iceberg” [2], since for each typical patient

5-to-6 additional subjects exhibit non-typical phenotypes [3]. As such, CD is currently viewed

as a systemic disease with multifaceted clinical manifestations.

Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a

diagnostic challenge, given that they can precede or follow the diagnosis of CD [1, 4–6]. In a

recent prospective study of newly diagnosed CD patients [7], neurological deficits were com-

mon and a significant volume decrease in some cerebral regions was observed in those with

positive transglutaminase-6 antibodies. It has been also demonstrated that most of confirmed

CD subjects referred for neurological consultation may already show changes at brain mag-

netic resonance imaging (MRI) [8]. Therefore, a reliable diagnostic tool, allowing an early

detection, progression monitoring, and assessment of complications underlying the disease

is needed.

Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial

magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical

motor areas [9, 10], the conduction along the cortico-spinal tract [11], and the functional con-

nectivity across hemispheres [12]. Clinically introduced as a diagnostic tool to study the central

motor pathway, today TMS goes well beyond the mere assessment of the cortico-spinal tract,

being also employed to map motor and cognitive functions, to explore neural networks, and to

modulate brain activity with a potential therapeutic aim [13]. Although not always clinically
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evident, the involvement of motor areas in cognitive disorders has been shown by clinical,

neuropathological, and neuroimaging studies. Namely, changes in the motor areas may be sec-

ondary to direct structural alterations caused by the disease process itself but, more often, they

are the consequence of indirect remodeling mechanisms [14]. In this context, increasing evi-

dence supports the hypothesis that the phenomena of brain plasticity are involved in different

types of dementia, related to functional and structural components, each entailing a number of

cellular mechanisms operating at different time scales, synaptic loci, and developmental

phases, within an extremely complex framework [9, 15].

More recently, TMS-derived parameters have allowed to support the concept of a wider

cortical motor network, with the output also influenced by non-primary motor areas, includ-

ing the ventral and dorsal premotor cortex, supplementary motor area, and cingulate cortex

[16]. In particular, it is known that the cingulate cortex, together with the dorsolateral prefron-

tal cortex, is crucial for cognition and mood regulation [17]. Accordingly, TMS is able to

unveil preclinical motor impairment in several neurological and psychiatric disorders, as well

as in some systemic diseases affecting the central nervous system (CNS), also providing clues

on prognosis [18] and treatment [19].

Finally, the so-called “pharmaco-TMS” may distinctively explore transmission pathways

within the CNS, such as those mediated by gamma-aminobutyric acid (GABA), glutamate,

acetylcholine, and monoamines, through the administration of selective drug agonists or

antagonists [20–24]. Indeed, the application of a single dose of a CNS active drug with a

defined mode of action is useful to explore and characterize the pharmaco-physiological prop-

erties of TMS measures of motor cortical and cortico-spinal excitability in humans. With this

approach, it has been demonstrated that different TMS measures reflect not only axon excit-

ability but also specific inhibitory or excitatory synaptic excitation state of distinct neuronal

elements within the CNS [21, 25]. As such, pharmaco-TMS has opened an exciting window

into human cortical physiology and pathophysiology.

To date, however, no data are available on the central cholinergic functioning in CD

indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI). Briefly,

by coupling peripheral nerve stimulation with TMS of the contralateral primary motor cortex

(M1), it is possible to recruit specific neuronal circuits within the human brain. In particular, it

has been demonstrated that the median nerve stimulation at the wrist is able to suppress the

MEP, evoked by TMS 18–21 ms later, in relaxed hand muscles. This effect, called SAI, is pro-

duced by some inhibitory interactions within the brain [26]. Namely, SAI has been related to

the central cholinergic activity, given that in normal subjects it can be reduced or abolished by

the muscarinic antagonist scopolamine, it is abnormal in cholinergic forms of dementia and,

in these patients, it can be restored by cholinergic drug intake [27]. Therefore, SAI represents a

non-invasive way of probing the functioning of central cholinergic cortical circuits [28].

Indeed, SAI abnormalities have been found in Alzheimer’s disease (AD) [29], and the fact that

these changes have been observed also in early AD stages [29] and even in amnestic mild cog-

nitive impairment (MCI) [30] has recently raised relevant diagnostic and therapeutic implica-

tions. Nevertheless, recent pharmaco-TMS evidence on the effects of lorazepam (a GABA-A

agonist) and baclofen (a GABA-B agonist) on both SAI and long-latency afferent inhibition

(LAI) reveals also a GABAergic modulation of SAI, thus advancing our understanding of the

electrophysiological mechanisms and neurochemistry underlying afferent inhibition [31].

In this context, it is well known that some adults with CD may complain of cognitive symp-

toms, usually in terms of a “brain fog”, that improve when the gluten-free-diet (GFD) is

started, although they may re-appear after incidental gluten intake [32, 33]. Difficulties in

attention and concentration, lapses in episodic memory and word-retrieval, decreased mental

acuity, and episodes of disorientation or “confusion” are also commonly reported complaints
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[34]. In some severely affected cases, an overt dementia can develop [34–37]. Nevertheless,

most of the previous studies usually included heterogeneous cohorts, at different disease

phases, or without controls.

In this cross-sectional study, we aimed to evaluate SAI to TMS in de novo CD patients com-

pared to age-matched healthy controls. We hypothesized that these subjects might exhibit

changes in SAI, even preclinically.

Materials and methods

Subjects and assessment

Fifteen consecutive de novo patients with CD (13 women; mean age ± standard deviation

(SD): 34.07 ± 12.03 years), diagnosed according to the European Society for Pediatric Gastro-

enterology Hepatology and Nutrition guidelines [38], were enrolled from the Regional Center

for Celiac Disease of the Azienda Ospedaliero-Universitaria “Policlinico G. Rodolico-San
Marco” of Catania (Italy). Fifteen age-matched healthy individuals (13 women; 33.80 ± 9.29

years) served as a control group. All patients were right-handed and on normal diet at the

time of the enrolment. Their disease duration prior to the diagnosis was 3.64 ± 1.78 years

(mean ± SD).

Exclusion criteria were: age < 18 years; any CNS (i.e., Parkinson’s disease, stroke, demen-

tia, traumatic brain injury, multiple sclerosis, epilepsy, etc.) or psychiatric disease (major

depressive disorder, bipolar disorders, schizophrenia, obsessive–compulsive disorder, etc.);

chronic, acute, or severe medical conditions (i.e., heart failure, coronary heart disease, liver

or kidney failure, etc.); illicit drug abuse or alcohol dependency; intake of drugs influencing

mood or M1 excitability (i.e., antidepressants, benzodiazepines, mood stabilizers, antipsy-

chotics); pacemaker, pregnancy, or any other condition precluding MEP recording, accord-

ing to the latest guidelines of the International Federation of Clinical Neurophysiology

(IFCN) on TMS safety [39].

The clinical and demographic assessment included: age, sex, educational level, handedness,

general and neurological exams, comorbidities. A screening test of the global cognitive status

by means of the Montreal Cognitive Assessment (MoCA), adjusted for age and educational

level for each individual [40], and an estimation of depressive symptoms through the 17-item

Hamilton Depression Rating Scale (HDRS) [41] were performed by an operator (F.F.) blind

to the participant status as patient or control. A brain computed tomography (CT) was also

acquired in all patients with a helical 64-slice General Electric scanner (2.5 mm slice thickness)

to detect intracranial calcifications (that can be found in CD) and to exclude clear neuroradio-

logical lesions.

The Ethics Committee of the Azienda Ospedaliero-Universitaria “Policlinico G. Rodolico-
San Marco” of Catania (Italy) approved the study (approval code: Prot. n.103/694). Informed

consent was signed by each individual prior to the participation in accordance with the Decla-

ration of Helsinki in 1964 and subsequent amendments. Every procedure was carried out in a

dedicated laboratory by experienced operators.

TMS procedure

TMS was carried out by means of a high-power, Magstim 200 stimulator (Magstim Co., Whit-

land, Dyfed, UK). A 70 mm figure-of-eight coil was positioned with the handle pointing posi-

tioned backwards and laterally, at an angle of 45˚ to the sagittal plane, and on the optimum site

of stimulation within the M1 of the left hemisphere at the best position of the scalp to evoke

MEPs in the First Dorsal Interosseous (FDI) muscle of the contralateral side, according to the

Edinburgh Handedness Inventory (EHI) [42]. A biphasic pulse system configuration was
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used, which is thought to be more powerful than monophasic stimulation, in particular in pro-

ducing MEPs [43].

Electromyography (EMG) was performed with silver/silver-chloride disposable self-con-

ductive and self-adhesive surface electrodes. The active electrode was positioned on the belly

of the target muscle (FDI), the reference at the metacarpal–phalangeal joint of the index finger,

whereas the ground on the dorsal surface of the wrist. For the conduction study of motor

nerves, i.e., compound motor action potential (CMAP) and F-waves of the ulnar nerve, a bipo-

lar nerve stimulation electrode, with an interelectrode separation of 25 mm and 6-mm diame-

ter felt pads, was used while recording from the FDI muscle.

The resting motor threshold (rMT) was defined as the minimum intensity of stimulation

capable to induce, at rest, a MEP amplitude >50 μV in 5 of 10 trials, as recommended by the

IFCN guidelines [44]. The central motor conduction time (CMCT) was estimated by subtract-

ing the time of conduction along the peripheral nerve, calculated with the F-wave technique,

from the MEP latency recorded during moderate muscular contraction, with an intensity of

stimulation of 130% with respect of the rMT. F-waves and peripheral CMAP were evoked with

electrical supramaximal stimulations of the right ulnar nerve at wrist. The MEP size was mea-

sured as a percentage of supramaximal CMAP size (i.e., the amplitude ratio), which provides

a more reliable estimation than the peak-to-peak MEP size [44]. Supramaximal CMAP also

refers to the maximum massed action potential (M-wave), which is the electrical equivalent of

the recruitment of all motor units within the motor neuron pool [45]. Fig 1 shows examples of

the CMAP and F-waves recorded in this study, including the F-wave persistence.

SAI was studied using the technique described by Tokimura and colleagues [26]. For this

purpose, a high-voltage Digitimer Stimulator, model DS7A (Digitimer Ltd, Welwyn Garden

City, UK), was used. Conditioning peripheral stimuli consisted of single pulses of electrical

stimulation (200 μs duration) applied through bipolar electrodes to the median nerve at the

wrist (cathode proximal). Paired stimulation was obtained with a 70-mm figure-of-eight coil

through a BiStim module (The Magstim Company, Whitland, Dyfed) connected to a CED

Micro 1401 interface (Cambridge Electronic Design, Cambridge, UK) allowing stimulus gen-

eration and data capture.

According to the IFCN guidelines [44], the intensity of the conditioning peripheral nerve

stimulation was set just above the motor threshold necessary to evoke a visible twitch of the

thenar muscles. The afferent inhibition induced by the peripheral conditioning stimulus was

tested at different ISIs. ISIs were based on the latency of the N20 component of the somatosen-

sory evoked potentials (SEPs) obtained from the left hemisphere after stimulation of the

Fig 1. Examples of the compound motor action potential (CMAP) (right panel) and F-waves recorded in this

study, including the F-wave persistence (left panel). (in alphabetical order): Amp. F = F-wave amplitude; Amp. F/

M = amplitude ratio between F-wave and M-wave amplitudes; Amp. M = M-wave amplitude; Amp.

massima = maximum amplitude; D ULNAR FDI = ulnar nerve recorded from the right first dorsal interosseous

muscle; Dur. = duration; F Lat. = F-wave latency; Latenza = latency; MAX. = maximum value; MEDIA = mean value;

MIN. = minimum value; % F = F-wave persistence.

https://doi.org/10.1371/journal.pone.0261373.g001
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median nerve of the dominant hand. To record SEPs, the active electrode was placed 3 cm pos-

terior to C3 (according to the 10–20 International EEG system) and the reference electrode on

the forehead. A total of five hundred responses were obtained and averaged from two different

trials (250 each) to identify the optimal latency of the N20 peak. An example of the averaged

SEP recorded is shown in Fig 2.

ISIs at the latency of N20 plus 2 ms (N20+2) and N20 plus 8 ms (N20+8) were investigated,

given that at these intervals it is known to occur a clear inhibition of MEPs and cortical–spinal

volleys evoked by TMS [26, 46]. Ten repeats were delivered for cortical stimulation alone,

without electrical peripheral stimulation (ISI = 0 ms; unconditioned MEP) and for condi-

tioned stimulation at each ISI, in a pseudorandomized order and with an inter-trial interval of

10 s, as recommended [44]. An algorithm, whose properties approximate the sequence of ran-

dom numbers (pseudorandom number generator), was used [47]. SAI was measured as the

amplitude ratio between conditioned (N20+2; N20+8) and unconditioned MEP response,

expressed in percentage (N20+2 ratio, %; N20+8 ratio, %).

A standardized safety checklist was used to screen all individuals before TMS execution

[39] and to exclude any condition or medication possibly affecting the CNS excitation state.

All procedures were performed with participants seated in a dedicated armchair with constant

EMG monitoring to guarantee a desirable level of tonic EMG activity during contraction or a

total muscle relaxation. Once collected, data were stored on a dedicated PC by means of an ad
hoc software that allows to acquire, process, and analyze data [48]. To reduce the interindivid-

ual variability, TMS recordings were performed in the same lab and experimental conditions,

at the same time of the day (~ 11:30 a.m.), and by the same trained operators (G.L. and F.F.).

Statistical analysis

Given the non-normal distribution of most data, non-parametric statistics were adopted. The

Mann–Whitney test for independent datasets was used for between group comparisons. In

order to avoid missing significant differences due to the relatively low number of individuals

recruited, we also calculated the effect size of all differences between patients and controls with

the rank-biserial correlation by Wendt (r = 1−(2U)/(n1 n2)) [49]. With this approach, an r of

0.1 is considered as “small”, 0.3 “medium”, and 0.5 “large”. The Freedman ANOVA for within

group comparisons was also used and frequencies were analyzed by means of the chi-square

test. A p<0.05 was set as a statistically significant value.

Fig 2. Example of the traces of the averaged SEP recorded in the present study. D MEDIAN = right median nerve.

https://doi.org/10.1371/journal.pone.0261373.g002
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Results

Table 1 summarizes all clinical and serological features, as well as data from the main diagnos-

tic exams. The right-handedness of all participants was confirmed by the EHI. General exami-

nations were basically unremarkable in all participants. Apart from a patient with isolated

symmetric brisk tendon reflexes at the upper limbs (without any pathological reflex), neuro-

logical exams were all normal. Three CD patients had comorbidities: autoimmune thyroiditis

(one), Raynaud phenomenon (one), and fibromyalgia and psoriasis (one). All subjects were

drug-free, except for one patient taking L-thyroxine, with normal levels of thyroid hormones.

Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all

patients. As shown in Table 2, the two groups were comparable for age, sex, anthropometric

features (height, weight, and body mass index), and educational level. Scores at MoCA and

HDRS were significantly worse in patients than in controls.

Table 2 also shows the comparison of TMS data between the two groups; no statistically sig-

nificant difference was observed for all measures, including SAI at both ISIs. Namely, among

CD patients, 9 exhibited inhibition of the MEP responses (amplitude ratio between

Table 1. Main clinical, laboratory, and instrumental findings in patients with celiac disease.

No. Age,

years

Sex Family

history

Disease

duration (years)

Clinical features Comorbidities Antibodies Endoscopy Histopathology

1 55 F + 3.5 Tiredness, dyspepsia, weight loss, iron

deficiency anemia

- tTG, EMA Scalloped

duodenal folds

3c

2 18 F + 1.5 Asthenia, iron deficiency anemia - tTG, EMA Scalloped

duodenal folds

3c

3 25 F + 5.5 Tiredness, iron deficiency anemia,

dermatological manifestations

- tTG, EMA Scalloped

duodenal folds

3c

4 18 F - 5.0 Headache, tiredness, belly pain, iron

deficiency anemia

- tTG, EMA Scalloped

duodenal folds

3c

5 29 M + - (familial

screening)

- (familial screening) - tTG, EMA Scalloped

duodenal folds

3c

6 45 M - 3.5 Tiredness, weight loss, headache, iron

deficiency anemia, abdominal pain

- tTG Scalloped

duodenal folds

3c

7 36 F - 1.5 Headache, tiredness, iron deficiency

anemia, vitamin D deficiency weight loss

Autoimmune

thyroiditis

tTG, EMA Scalloped

duodenal folds

3c

8 27 F - 6.0 Abdominal pain, diarrhea, tiredness,

unsteadiness, weight loss, iron deficiency

anemia

- tTG, EMA Scalloped

duodenal folds

3c

9 35 F - 3.5 Abdominal pain, diarrhea, nausea, iron

deficiency anemia, tiredness

- tTG, EMA Scalloped

duodenal folds

3c

10 44 F + 6.0 Iron deficiency anemia, stypsis and

diarrhea, headache, tiredness

Fibromyalgia,

psoriasis

tTG Scalloped

duodenal folds

3c

11 45 F - 1.5 Diarrhea, abdominal discomfort, tiredness Raynaud

phenomenon

tTG Moderate

atrophic villi

3b

12 41 F - 1.0 Dyspepsia, iron-deficiency anemia,

diarrhea, weight loss, tiredness, diffuse pain

- tTG, EMA Scalloped

duodenal folds

3c

13 49 F - 5.5 Alternate alvus, dyspepsia, asthenia,

tiredness

- tTG Scalloped

duodenal folds

3c

14 24 F - 4.0 Tiredness, dyspepsia, weight loss, iron

deficiency anemia

- tTG, EMA Scalloped

duodenal folds

3c

15 20 F - 3.0 Tiredness, iron deficiency anemia - tTG, EMA Scalloped

duodenal folds

3c

EMA = endomysial antibodies; F = female; M = male; tTG = tissue transglutaminase antibodies; Classification of histopathology according to the Marsh–Oberhuber

grading system: 3a = mild villous flattening; 3b = severe villous flattening; 3c = complete villous flattening; + = positive/present; − = negative/absent.

https://doi.org/10.1371/journal.pone.0261373.t001
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conditioned and unconditioned MEP<1) and 6 facilitation (amplitude ratio between condi-

tioned and unconditioned MEP>1) at ISI 2 ms, whereas 7 patients inhibited and 8 facilitated

at ISI 8 ms (chi-square = 0.14, p = 0.712). Among healthy controls, 7 exhibited inhibition and

8 facilitation of the MEP responses at ISI 2 ms, whereas 4 patients inhibited and 11 facilitated

at ISI 8 ms (chi-square = 1.29, p = 0.256). Within-group ANOVA comparison between uncon-

ditioned and conditioned MEP responses for the two groups resulted to be significant for both

patients (chi-square = 13.733, p = 0.001) and controls (chi-square = 16.533, p = 0.00026), thus

confirming the significant variation of SAI in each group.

Discussion

Main findings

This is the first study that explores SAI to TMS in newly diagnosed CD patients. The main

finding is that the central cholinergic functioning, as explored by the SAI of the motor cortex,

does not seem to be affected in this de novo CD sample with respect to age-matched healthy

Table 2. Comparison of demographic features and TMS data of both patients and controls.

Variable Healthy controls Celiac disease Mann-Whitney Effect size

(n = 15) (n = 15)

Mean SD Mean SD p Wendt’s r
Age, years 33.80 9.29 34.07 12.03 0.852 -0.025

Height, cm 1.68 0.09 1.62 0.08 0.075 0.613

Weight, Kg 60.07 8.19 57.87 17.38 0.135 0.162

BMI, Kg/m2 21.32 2.24 21.85 5.99 0.384 -0.116

Education, years 15.87 4.44 14.60 3.44 0.106 0.319

MoCA 28.00 1.00 25.80 2.40 0.0062 1.198

HDRS 2.87 2.20 8.27 6.30 0.0079 -1.145

rMT, % 36.80 6.41 37.13 5.58 0.917 -0.055

MEP latency, ms 20.33 1.56 19.96 1.24 0.575 0.265

CMCT, ms 6.43 0.89 6.15 0.85 0.395 0.314

MEP amplitude, mV 5.50 1.79 4.47 1.22 0.089 0.674

CMAP amplitude, mV 21.34 6.59 19.84 4.19 0.724 0.272

CMAP distal latency, ms 3.90 0.76 3.41 0.37 0.071 0.828

Amplitude ratio (MEP/CMAP) 0.27 0.11 0.24 0.09 0.184 0.357

F-wave latency, ms 27.79 2.83 27.05 2.07 0.787 0.299

F-wave amplitude, mV 0.13 0.06 0.10 0.04 0.245 0.464

CMCT-F, ms 4.99 0.89 5.23 1.01 0.576 -0.256

N20 latency, ms 18.87 1.36 18.53 1.46 0.547 0.237

Unconditioned MEP amplitude, mV 1.84 0.71 1.53 0.68 0.281 0.438

N20+2 amplitude, mV 1.04 0.64 0.99 0.57 0.884 0.080

N20+8 amplitude, mV 1.75 1.00 1.38 0.68 0.431 0.421

N20+2 ratio, % 56.03 27.09 70.45 37.82 0.340 -0.438

N20+8 ratio, % 95.35 33.11 99.17 55.36 0.431 -0.084

BMI = body mass index; CMAP = compound motor action potential; CMCT = central motor conduction time; CMCT-F = central motor conduction time estimated by

means of the F-waves; HDRS = 17-item Hamilton Depression Rating Scale; SD = standard deviation; MEP = motor evoked potential; MoCA = Montreal Cognitive

Assessment; N20 = cortical component of the somatosensory evoked potential obtained after stimulation of the median nerve of the dominant hand; NS = not

significant; rMT = resting motor threshold; N20+2/+8 = short-latency afferent inhibition at the interstimuls interval of 2 and 8 ms, respectively; N20+2/+8 ratio, % =

amplitude ratio between the conditioned and the unconditioned MEP response, expressed in percentage, at the interstimuls interval of 2 and 8 ms, respectively;

TMS = transcranial magnetic stimulation; bold numbers = statistically significant p values.

https://doi.org/10.1371/journal.pone.0261373.t002
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controls. Both groups, indeed, exhibited a comparable level of SAI at two different ISIs, a find-

ing that paralleled the lack of a clear cognitive impairment. Coherently, although MoCA

scored significantly worse in patients, the mean value was still within normal limits. Overall,

the pathomechanisms underlying these results seem to be rather complex. To date, indeed, no

study based on TMS or other techniques has shown any involvement of the central acetylcho-

line or cholinergic fibers within the CNS in CD.

Only few investigations have applied MEPs in CD to specifically evaluate the TMS profile of

cortical excitability. In the first study on 20 de novo patients and 20 age-matched controls [50],

we showed a hyperfacilitation and a disinhibition of the M1 in patients, suggesting an impaired

glutamatergic and GABAergic circuitry, respectively. Unbalanced inhibitory and excitatory

transmissions within the M1 was hypothesized to correlate with a cross-interaction between

some neuronal antigens and gliadin antibodies. Similarly, the CNS-produced antibodies

against glutamic acid decarboxylase may have impaired GABAergic interneurons activity [50].

The same sample was re-assessed after a relatively short-term GFD (median 16 months) [51].

Gastrointestinal manifestations improved but, unexpectedly, the excitation state of M1 to TMS

enhanced further. This result was thought to be an index of an adaptive re-modeling of the

motor areas, probably not related to the GFD. It was also hypothesized that the duration of the

diet, or its adherence, was not optimal to produce a significant recovery [51]. In a further

study following a considerably longer gluten restriction (mean period 8.35 years), we revealed

that only a sustained GFD could restore the TMS-associated modifications in adults with CD.

However, some excitatory changes persisted, likely indicating a synaptic intracortical rear-

rangement of the “celiac brain”, mostly involving the glutamate-mediated interneurons [52].

Recently, the interhemispheric excitability by the transcallosal inhibition was evaluated, as

reflected by the duration and latency of the ipsilateral silent period (iSP) to TMS, in a sample

of newly diagnosed CD patients [53]. We found that iSP was significantly shorter in patients

than controls, with a positive correlation between MoCA score and iSP duration, suggesting

an interhemispheric motor disinhibition and supporting the involvement of GABA [53].

Taken together, these results support the interplay between GABAergic and glutamatergic

circuits previously explored by using the paired-pulse TMS paradigm [54].

In the sample studied here, although the statistically significant difference in MoCA score, a

clear cognitive impairment was not clinically evident in CD patients. However, an impairment

of SAI in the more advanced stages of CD, especially if the GFD is not promptly adopted, can-

not be excluded. Of note, although the pathogenesis of cognitive difficulties in CD remains

unclear, it has been shown that pathomechanisms may be more likely related to the model of

vascular dementia (VaD) than to the dysfunction of cholinergic pathways, as classically seen in

AD [55]. In particular, the so-called “gluten encephalopathy” seems to be mediated by a vascu-

lar inflammation with an aetiology different from that of the cholinergic dysfunction [55].

This might be a relevant factor to consider for explaining the lack of difference we observed

between the two groups regarding SAI, which is known to be reduced in AD (including the

early stage) and in amnestic MCI [56], but not in most patients with VaD [57] or in those mild

vascular cognitive impairment [58]. Additionally, the fact that central cholinergic fibers do not

seem to be affected at this stage does not prevent from the involvement of other neurotrans-

mission pathways, such as glutamate or GABA, that may be implicated in the occurrence of

cognitive and mood disorders in CD patients, as observed by previous studies both before and

after GFD [59, 60]. This is also in line with the fact that SAI can be influenced by other neuro-

transmitter systems (such as GABA) in addition to acetylcholine [31] and this finding should

be considered when interpreting the lack of change of SAI observed in patients at this stage.

It is worth to remind that SAI is obtained at relatively short ISIs (20–25 ms), but further

manipulating the latency between the two TMS stimuli alters the effect on cortico-spinal
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excitability. In particular, it is known that progressively increasing ISI results in afferent facili-

tation (at ISIs of 25–80 ms) and eventually (at ISIs of 100–1,000 ms) in long-latency afferent

inhibition (LAI) [26, 61, 62]. The magnitude of SAI and LAI is directly related to the amplitude

of the sensory afferent volley, such that greater inhibition is observed as a larger volume of sen-

sory afferents are recruited [63, 64], thus likely reflecting cortical rather than spinal inhibitory

mechanisms [26, 61, 65]. These TMS measures are frequently referred to as markers of sen-

sory-motor integration due to their nature of acquisition, such that ascending sensory input is

integrated within the sensory-motor cortex to alter descending motor output [66]. However,

unlike SAI, it is currently unknown whether LAI could be also modulated by acetylcholine

[66]. Moreover, although both measures have shown moderate intersession reliability [67],

LAI exhibited larger measurement error than SAI [68]. As such, to sufficiently reduce this

error, LAI assessment may require a sample size larger than that of the present study.

Regarding psychiatric comorbidities, anxiety and depression in particular, are frequently

associated with CD [69, 70]. In our patients, depressive symptoms were higher than in con-

trols, although the mean HDRS score was suggestive of a mild depression. Nevertheless,

depressive disturbances can substantially affect the quality of life of CD patients and are a

marker of poor adherence to the diet [71]. Screening and following up for depressive symp-

toms are therefore crucial to promptly suggest appropriate pharmacotherapy and/or psycho-

logical support. Of note, accumulating evidence has suggested that some inflammatory soluble

factors derived from the inflamed intestinal mucosa across the gut–epithelial barrier and the

blood–brain barrier are major factors for structural and functional alterations in the CNS. In

particular, neuroinflammation has been shown to exert detrimental effects on both cognition

and emotional behavior [72, 73], thus supporting the link between neuroinflammatory, neuro-

logical, and psychiatric manifestations in CD. Translationally, these findings highlight the

importance of a prompt diagnosis, clinical awareness, and compliance to an adherent GFD to

prevent, or at least limit, the neurological and neuropsychiatric involvement in CD and the

related disease progression [7].

Finally, although no specific neurochemical study has been performed in CD, some meta-

bolic changes seem to be present in these patients. Metabolomics studies, despite being very

limited and restricted to the use of nuclear magnetic resonance-based methods, suggest minor

but significant alterations in energy metabolism, lipid metabolism, and microbiome-derived

metabolites [74–80]. In particular, different concentrations of methionine, choline, and cho-

line-derived lipids in CD are described [74–76, 78, 79] and, as known, choline can also be

acetylated into acetylcholine by the choline acetyltransferase enzyme. However, targeted meta-

bolomic analysis investigating differences in the plasma choline/methionine metabolome of

CD subjects were not reported. Only one study [81] in 17 children with CD, treated with a

GFD, and 17 healthy control siblings has recently demonstrated the persistence of defects in

the trans-sulfuration pathway of CD, despite dietary treatment. Conversely, choline metabo-

lism seem to be preserved [81], a finding that might add further support to the results of the

present study.

Limitations

The main limitation, as usually occurs in TMS research, is the relatively small sample size,

although the patients were carefully screened and selected, they were homogenous for clinical-

serological features and histopathological findings, were all de novo and drug-free, and

matched for age, sex, and education with healthy subjects. Nevertheless, since SAI has been

shown to decrease with age [82], the age range of the participants enrolled here seems to be

large. Therefore, it cannot be excluded that a difference between CD and controls would have
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appeared if a group of older participants was tested. As such, this aspect deserves further repli-

cation in future studies.

Another caveat is that, since TMS provides a functional evaluation of the cortical activity

but not of structural changes, a detailed morphological assessment of the cerebral cortex and

the cortico-spinal tract were not performed, thus precluding correlations with neuroimaging

data. Although we have excluded clear neuroimaging abnormalities in all patients, brain CT

remains a gross radiological exam, able to properly detect intracranial calcifications better

than MRI, but with general low sensitivity and specificity. The same holds true for an extensive

neuropsychological battery of tests, which was limited to an only but comprehensive screening

tool (MoCA).

Third, based on the cross-sectional design of the study, it should be acknowledged that a

causal relationship between SAI and CD cannot be established beside, at this stage, an associa-

tion only between specific TMS parameters and gluten exposure.

Finally, although SAI is considered to be a rather reliable measure, there is ultimately a

degree of uncertainty on what is being precisely reflected when a difference is found or not

found (as in the present study). This feature, which is shared by other TMS indexes and, more

in general, by most of the neurophysiological tests, should be taken into account when inter-

preting these findings.

Conclusions

Central cholinergic pathways to TMS do not seem to be functionally involved in de novo CD

patients, who do not show an overt cognitive impairment or depressive disorder. Longitudinal

studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are

needed.
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