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Abstract 
In this paper, before the implementation of ecological laboratory experiments, 
the population interaction dynamics of an algae-fish system were studied 
mathematically and numerically. The purpose of this study was to explore 
how filter-feeding fish population affects the growth dynamics of the algae 
population. Mathematically theoretical works have been pursuing the inves-
tigation of some key conditions for stability of the equilibrium and existence 
of Hopf bifurcation. Numerical simulation works have been parsing the dis-
covery of the growth dynamics of the algae population in view of population 
interaction dynamics, which in turn could prove the feasibility of the theoret-
ical derivation and reveal the relationship between filter-feeding fish abun-
dance and algal biomass in fish-drift algae communiyua. Furthermore, it was 
successful to show that the filter-feeding fish population may be a crucial fac-
tor in controlling the proliferation of the algae population, which could also 
directly grasp the evolution of community dynamics. All these results were 
expected to be useful in the study of community dynamics and laboratory 
elimination experiment of the algae population. 
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1. Introduction 

Eutrophication of lake and reservoir has been widely and intensively investigated 
for decades, which also has been regarded as the concentration of natural evolu-
tion process caused by the influence of human social activities [1]. The essence 
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of eutrophication was that the input and output of nutrients were out of balance, 
which could lead to the imbalance of species distribution in water ecosystem and 
the rapid growth of single species, and then the flow of material and energy in 
the system was destroyed, which could make the whole water ecosystem gradu-
ally perish [2]. Algal bloom was the result of eutrophication and specific condi-
tions, which could seriously affect the water environment, human health and 
environmentally sustainable development [3]. 

Fish species have always used an effective measure to control algal bloom be-
cause fishes could eat and digest some algae populations, which have been wide-
ly applied in controlling harmful algal blooms in the lake ecosystem [4]. Many 
scholars have tried to reduce or inhibit algal blooms using filter-feeding fish, 
such as silver carp and bighead carp, which have been shown to be effective in 
controlling algal blooms in China and other countries. Xie and Liu [5] have in-
vestigated how to control cyanobacteria blooms using filter-feeding fish, they be-
lieved that an increased stocking of the lake with carp played a decisive role in 
the elimination of cyanobacteria blooms and both silver and bighead carp could 
eliminate cyanobacteria blooms directly by grazing, these results were significant 
for biotic control of harmful algal blooms. Starling [6] has conducted a meso-
cosm experiment to assess the impact of moderate silver carp (Hypophthal-
michthys molitrix) biomass on the plankton community and water quality of 
eutrophic Parano Reservoir (Brasilia, Brazil), the results suggested that stocking 
silver carp in Parano Reservoir to control blue-green algae was a promising bio-
manipulation practice, but this result was very meaningful. Kulczycki et al. [7] 
have indicated that significant relationships exist between the abundances of both 
the fish (code goby Gobiosoma robustum) and drift algae biomass, but it was 
still of interest. Judit et al. [8] have implied that the presence of these filter-feeding 
fish (asian carps and bighead carp) could alter the phytoplankton species com-
position and promote the dominance of taxa that are able to resist digestion. 
Shen et al. [9] have experimentally studied the effect of combining two native 
filter feeders, bighead carp (Aristichthys nobilis) and Asian clam (Corbicula 
fluminea), to control nuisance cyanobacterial blooms, they suggested that the 
combination of filter-feeding fish and clams may enhance water clarity and it 
may therefore potentially be a useful restoration tool, and these results have 
played an important role in the control of algal blooms. Based on the above 
analysis, it was worth affirming that the filter-feeding fish could control or inhi-
bit algal blooms. 

Population interaction dynamics was the dynamic relationship between pop-
ulation and population, which can regulate and control the evolution process and 
development trend of population, such as Hopf bifurcation and stability, which 
referred to the dynamic switching between the stable equilibrium point (Popula-
tion biomass tends to be a quantitative one) and the stable limit cycle (Popula-
tion biomass oscillates between two constant values). Deka et al. [10] have inves-
tigated stability and Hopf bifurcation in a two-prey and one-predator system, 
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they observed that intra-specific interference factor was an important parameter 
in governing stability and Hopf bifurcation, which has certain novelty. Liu et al. 
[11] have studied Hopf bifurcation of a diffusive predator-prey model, they 
found that the diffusion and delay could induce spatially bifurcating period solu-
tion, the result was good. Datta et al. [12] have inquired into bifurcation and 
bio-economic of a prey-generalist predator model with nonlinear age-selective 
prey harvesting, they suggested that the age-selective prey harvesting system 
could go a Hopf bifurcation with respect to the maturation delay, the research 
ideas were innovative. Wei [13] has found that prey switching may stabilize the 
population dynamics and has a synergistic effect on enhancing coexistence and 
stabilizing population dynamics under predator interference, these results were 
excellent. Ivanov and Dimitrova [14] have looked into global stability of a pre-
dator-prey model with generic birth and death rates for predator. Hajnová and 
Pribylová [15] have dissected bifurcation manifolds in predator-prey models, 
their method provided formulas for bifurcation manifolds in commonly studied 
cases in applied research for the fold, transcritical, cusp, Hopf and Bogda-
nov-Takens bifurcation, these research results were also excellent. Gao et al. [16] 
have parsed bifurcation in a diffusive ratio-dependent predator-prey model with 
predator harvesting, they derived some condition for determining the direction 
of Hopf bifurcation and the stability of the bifurcating periodic solution, its con-
tent was relatively new. Lv et al. [17] have discussed bifurcations and simulations 
of two predator-prey model with nonlinear harvesting, they proclaimed that 
nonlinear harvesting could make the dynamics of the model more complicated, 
including bistability, transcritical bifurcation and Hopf bifurcation, these results 
were quite important. Bulai and Venturino [18] have pointed out that the stable 
solution was independent of the shape of the herb for competition, its influence 
was immeasurable. Sahoo and Poria [19] have proposed that the predator-prey 
system with fading memory has rich dynamic behaviors, such as supercritical 
and subcritical Hopf bifurcation, these results were still important. Pal et al. [20] 
have raised that an increase in the hunting cooperation induced fear may desta-
bilize the system and produce periodic solution via Hopf bifurcation and limit 
cycles may be supercritical and subcritical, these results were crucial. Falconi et 
al. [21] have characterized the existence of Hopf bifurcation and proved that this 
model exhibited either one, two or three small amplitude periodic solution, these 
results were quite subtle. In conclusion, as far as we know, these authors have 
made some important results in population interaction dynamics, which can 
greatly promoted the development of ecological population dynamics. 

Based on the above analysis, we can see that the filter-feeding fish have been 
thought to be suited to control algal blooms directly in the subtropical lake re-
servoir, some similar research results can be seen in the paper [22] [23] [24] [25]. 
Taking it as an incentive, the main aim of the paper is to inquire into the rela-
tionship between filter-feeding fish abundance and algal biomass with the help 
of mathematical ecological model and explore filter-feeding fish population how 
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to affect the growth dynamics of the algae population by means of population 
interaction dynamics, which can support a theoretical basis for the algal-fish 
ecological control experiment and provide a different insight to understand the 
ecological control mechanism of algal blooms.  

2. Biological Modeling 

Based on the physical and biological processes in the aquatic ecosystem, with the 
help of differential ecological modeling theory, some modeling assumptions 
were given as follows: 

1) The laboratory experiment of the interaction dynamics between algae pop-
ulation and filter-feeding fish population is a closed water ecosystem, species 
concentration is always evenly distributed in space and changed instantaneously 
with time, ( )x t , ( )y t  and ( )z t  represent respectively the density of cyano-
bacteria, green algae and filter-feeding fish. 

2) The filter-feeding fish z will feed on algae population and zooplankton, 
which suggests that the growth of filter-feeding fish mainly depends on the ab-
undance of algae and zooplankton, the function of zooplankton affecting the  

abundance of filter-feeding fish is 3
3

1 zr z
K

 
− 

 
 with intrinsic growth rate 3r . 

3) The algae population includes cyanobacteria x and green algae y, the cya-
nobacteria and green algae have a competitive relationship, the competitiveness 
of cyanobacteria is greater than that of green algae in the same water area 
( 1 2b b> ). 

4) The growth kinetics of cyanobacteria x and green algae y are logistic man-

ner 1
1

1 xr x
K

 
− 

 
 and 2

2

1 yr y
K

 
− 

 
 with intrinsic growth rate 1r  and 2r . 

5) According to the competition between populations and within populations, 
it can been assumed that competition among populations is less than that within 
populations, thus  

 1 2
1 2

2 1

, .
r rb b

K K
< <                           (2.1) 

6) In view of the previous algae growth simulation experiments, in order to 
maintain the operability of simulation test and the recyclability of aquatic eco-
system, the sum of the maximum regeneration biomass must be greater than the 
minimum regeneration critical threshold 4 (the routine basic data of laboratory 
simulation test). Thus, we will assume that the key parameters of population 
growth can satisfy the following conditions:  

 1 1 1 2 2 2 3 3 4.r K e r K e r K+ + >                      (2.2) 

Based on the above assumptions and modelling is playing an increasing role 
in helping to investigate the relationship between filter-feeding fish abundance 
and algal biomass, the paper will consider an algae-fish ecological model, which 
can be described by the following differential equations: 
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( ) ( )

( ) ( )

( ) ( )

1
1 1 1

1 1

2
2 2 2

2 2

1 1 2 2
3 3

1 2 3

d 1 , , ,
d

d 1 , , ,
d

d 1 , , ,
d

a xzx xr x b xy xf x y z
t K c x

a yzy yr y b xy yf x y z
t K c y

e a xz e a yzz zdz r z zf x y z
t c x c y K

  
= − − − =   + 

   = − − − =   + 
   = + − + − =  + +  

      (2.3) 

with the initial conditions:  

 ( ) ( ) ( )0 0 00 0, 0 0, 0 0.x x y y z z= > = > = >             (2.4) 

Here  

( ) ( )

( ) ( )

( ) ( )

1
1 11

1 1

2
2 22

2 2

1 1 2 2
33

1 2 3

, , 1 ,

, , 1 ,

, , 1 .

a zxf x y z r b y
K c x

a zyf x y z r b x
K c y

e a x e a y zf x y z d r
c x c y K

 
= − − −  + 

 
= − − −  + 

 
= + − + − + +  

 

and 
 

 

3. Mathematical Analysis 

As we all know, the essence of algal bloom outbreak is the essential change of the 
internal operation state of the water ecosystem, in which the critical threshold 
phenomenon is particularly obvious. And, the critical threshold phenomenon 
can refer to the situation that a process suddenly can enter another state when 
the influence factors or environmental conditions reach a certain degree (thre-
shold), its essence is a process from quantitative change to qualitative change, 
from one state to another completely different state. Hence, we will explore crit-
ical threshold phenomena based on mathematical analysis and dynamic beha-
viors. 

Lemma 3.1 [26]. If , 0a b >  and 
( ) ( ) ( ) ( )

d
d
x t

x t a bx t
t

≤ ≥ −    with ( )0 0x > , 

then ( )lim supt
ax t
b→+∞ ≤  ( ( )lim inft

ax t
b→+∞ ≥ ). 

In fact, the above lemma is quantitatively equivalent to the following lemma. 

Lemma 3.2 [27]. If , 0a b >  and 
( ) ( ) ( )

d
d
x t

x t a bx t
t

≤ −    with ( )0 0x > , 
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then for all 0t ≥ , ( )
e at

ax t
b c −≤
−

, with 
( )0
ac b

x
= − . In particular,  

( ) ( )max 0 , ax t x
b

 ≤  
 

, for all 0t ≥ . 

Now, we prove the positivity and boundedness of solutions as well as the 
permanence of the system (2.3). 

3.1. Positivity and Boundedness of Solutions 

Proposition 3.1. 1) All solutions ( ) ( ) ( )( ), ,x t y t z t  of the system (2.3) with 
the initial conditions (2.4) are positive for all 0t ≥ . 

2) All solutions ( ) ( ) ( )( ), ,x t y t z t  of the system (2.3) with the initial condi-
tions (2.4) are bounded for all 0t ≥ . 

Proof. 1) From the cyanobacteria equation of the system (2.3), it follows that 
0x =  is an invariant set. This implies that ( ) 0x t > , for all t if ( )0 0x > . A 

similar argument, using the green algae equation of the system (2.3), shows that 
0y =  is also an invariant set, so ( ) 0y t > , for all t if ( )0 0y > . Using fil-

ter-feeding fish equation of the system (2.3), shows that 0z =  is also an inva-
riant set, so ( ) 0z t > , for all t if ( )0 0z > . Thus, any trajectory starting in 3R+  
cannot cross the coordinate axes. Hence the theorem follows. 

2) Using the positivity of variables x, y and z, from the system (2.3), we can 
write  

 1 1
1 1 1

1 1 1

d 1 .
d

a z rx xx r b y x r x
t K c x K

    
= − − − ≤ −    +     

           (3.1) 

From Lemma 3.2, we have ( ) ( ){ }1 1max 0 ,x t x K M≤ ≡ , for all 0t ≥ . Further, 
from the system (2.3) we have  

 2 2
2 2 2

2 2 2

d 1 .
d

a z ry yy r b x y r y
t K c y K

    
= − − − ≤ −    +     

         (3.2) 

Again from the same Lemma 3.2, we have ( ) ( ){ }2 2max 0 ,y t y K M≤ ≡ , for all 
0t ≥ . For the same reason, from the system (2.3) we have  

 

1 1 2 2
3

1 2 3

31 1 1 2 2 2
3

1 1 2 2 3

d 1
d

.

e a x e a yz zz d r
t c x c y K

re a M e a Mz r z
c M c M K

  
= + − + −  + +   

 
≤ + + − + + 

              (3.3) 

Again from the same Lemma 3.2, we have  

( ) ( ) ( ) ( )
1 1 1 2 2 2

3
3 1 1 3 2 2

max 0 , 1
e a M e a Mz t z K

r c M r c M
   ≤ + +   + +   

, for all 0t ≥ . 

This completes the proof of the boundedness of solutions and hence the sys-
tem under consideration is dissipative. 

3.2. Permanence of the System (2.3) 

We recall here the definition of permanence: 
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Definition 3.1 [28] The system (2.3) is said to be permanent if there exist 
positive constants 1ξ  and 2ξ  ( 1 20 ξ ξ< < ) such that each positive solution 

( ) ( ) ( )( )0 0 0 0 0 0 0 0 0, , , , , , , , , , ,x t x y z y t x y z z t x y z  of the system (2.3) with initial 
condition ( ) ( )3

0 0 0, ,x y z Int R+∈  satisfies  

( ) ( ){
( )}

0 0 0 0 0 0

0 0 0 1

min lim inf , , , , lim inf , , , ,

lim inf , , , ,
t t

t

x t x y z y t x y z

z t x y z ξ
→+∞ →+∞

→+∞ ≥
 

( ) ( ){
( )}

0 0 0 0 0 0

0 0 0 2

max lim sup , , , , lim sup , , , ,

lim sup , , , .
t t

t

x t x y z y t x y z

z t x y z ξ
→+∞ →+∞

→+∞ ≥
 

Proposition 3.2. The system (2.3) with the initial condition (2.4) is perma-
nent if the following inequalities hold:  

 
( ) ( )

1 3 1 1 1 2 2 2
1 1 2

1 3 1 1 3 2 2

1 ,
a K e a M e a Mr b K

c r c M r c M
 

> + + + 
+ +  

         (3.4) 

( ) ( )
2 3 1 1 1 2 2 2

2 2 1
2 3 1 1 3 2 2

1 ,
a K e a M e a Mr b K

c r c M r c M
 

> + + + 
+ +  

         (3.5) 

3 .r d>                             (3.6) 

Proof. From Equation (3.1) and Lemma 3.1, it is clear that ( ) 10 x t K< <  for 
sufficiently large t. Also from Equation (3.2) and Lemma 3.1, we get ( ) 20 y t K< < , 
for sufficiently large t. From Equation (3.3) and Lemma 3.1, we get  

( ) ( ) ( )
1 1 1 2 2 2

3
3 1 1 3 2 2

0 1
e a M e a Mz t K

r c M r c M
 

< < + +  + + 
, for sufficiently large t. 

Hence from the cyanobacteria equation of the system (2.3), we can write:  

( ) ( )

1
1 1

1 1

1 31 1 1 1 2 2 2
1 1 2

1 1 3 1 1 3 2 2

1
1

1

d 1
d

1

a zx xx r b y
t K c x

a Kr e a M e a Mx r x b K
K c r c M r c M

rx x
K

ω

  
= − − −   +   

  
≥ − − − + +   + +   

 
= − 

 

, for sufficiently 

large t. If 1 0ω >  (i.e. 
( ) ( )

1 3 1 1 1 2 2 2
1 1 2

1 3 1 1 3 2 2

1
a K e a M e a Mr b K

c r c M r c M
 

> + + + 
+ +  

), then 

from Lemma 3.1, we have ( ) 1 1

1

lim inft
Kx t
r

ω
→+∞ ≥ . For the same reason,  

( ) 2 2

2

lim inft
Ky t

r
ω

→+∞ ≥ , where  

( ) ( )
2 3 1 1 1 2 2 2

2 2 2 1
2 3 1 1 3 2 2

1
a K e a M e a Mr b K

c r c M r c M
ω

 
= − − + + 

+ +  
 

Now using positivity of x, y, from the filter-feeding fish equation of the system 
(2.3), we can write:  

3 31 1 2 2
3 3 3

1 2 3 3 3

d 1
d

r re a x e a yz zz d r z d r z z z
t c x c y K K K

ω
      

= + − + − ≥ − + − = −      + +       
, for 
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sufficiently large t. If 3 0ω >  (i.e. 3r d> ), then from Lemma 3.1, we have  

( ) ( )3 3

3

lim inft

r d K
z t

r→+∞

−
≥ . Also from inequalities (3.1)-(3.3), together with 

Lemma 3.1, we have ( ) 1lim supt x t K→+∞ ≤ , ( ) 2lim supt y t K→+∞ ≤ ,  

( ) ( ) ( )
1 1 1 2 2 2

3
3 1 1 3 2 2

lim sup 1t
e a M e a Mz t K

r c M r c M→+∞

 
≤ + +  + + 

. 

Now choosing  

( )

( ) ( )

3 31 1 2 2
1

1 2 3

1 1 1 2 2 2
2 1 2 3

3 1 1 3 2 2

min , , ,

max , , 1 .

r d KK K
r r r

e a M e a MK K K
r c M r c M

ω ω
ξ

ξ

 − =  
  
   = + +   + +   

 

Thus, we get the permanence of the system (2.3). 

3.3. Existence of Equilibria 

The following equilibrium points exist for the system (2.3). 
Theorem 3.1. 1) The equilibrium point ( )1 , ,0E x y  always exists. 
2) The equilibrium point ( )2 0,0,E z  exists if inequality (3.7) holds. 
3) The equilibrium point ( ), ,E x y z∗ ∗ ∗ ∗  exists if the sufficient condition (3.9) 

and (3.10) hold. 
Proof. 1) The equilibrium point ( )1 , ,0E x y   

1 2 1 2 1 1 2

1 2 1 2 1 2

1 2 2 1 2 1 2

1 2 1 2 1 2

,

.

K K b r K r rx
K K b b r r

K K b r K r ry
K K b b r r

−
=

−
−

=
−

 

From inequality (2.1), we have 0x > , 0y > . So, the equilibrium point  
( )1 , ,0E x y  always exists. 

2) The equilibrium point ( )2 0,0,E z , where 3
3

1 dz K
r

 
= − 

 
. Because of the 

positive properly of z , if and only if inequality (3.7) holds: 

3 .r d>                          (3.7) 

3) The equilibrium point ( ), ,E x y z∗ ∗ ∗ ∗  exists if and only if the following 
algebraic equations have positive solutions.  

 

1
1 1

1 1

2
2 2

2 2

1 1 2 2
3

3 1 2

1 0,

1 0,

1 0.

a xzxr x b xy
K c x

a yzyr y b xy
K c y

e a xz e a yzzr z dz
K c x c y

  
− − − =   + 

   − − − =   + 
   − + + − =  + + 

           (3.8) 

The algebraic Equations (3.8) can be taken in the form of  
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( )

22 2
31 2

1 2 3

1 1 2 2 3

1 1 1 2 2 2 3 3
1 1 2 2

22 2 1

4
.

4

KK K zx y

K K K
r e r e r

r e K r e K r K
e b e b xy dz

     −− −     
     + + −

+ + −
= − + − +

 

Further, we have:  

22 2
31 2

1 2 3

1 1 2 2 3

1 1 1 2 2 2 3 31 1 2 2

22 2 1,

4
.

4

KK K zx y

K K K
r e r e r

r e K r e K r Ke b e bz xy
d d

      −− −     
      + + =



 + + −+
 = − +


 

Let ( )1 2 3 1 1 1 2 2 2 3 3, , 4r r r r e K r e K r Kϕ = + + − . 
The algebraic equations have positive solutions if  

 3 3

3

0,
2

K K
z

r
= − ≥                      (3.9) 

and  

 ( ) ( )1 2 3 3 1 1 2 2 1 2, , 2r r r dK e b e b K Kϕ ≥ + +           (3.10) 

hold. 

3.4. Stability Analysis 

The stability of the equilibrium state is determined by the nature of the eigenva-
lue of the Jacobian matrix around the equilibrium point. 

Theorem 3.2. 1) The equilibrium point ( )1 , ,0E x y  is locally asymptotically 
stable if  

 1 1 2 2
3

1 2

.
e a x e a y d r
c x c y

+ < −
+ +

                  (3.11) 

2) The equilibrium point ( )2 0,0,E z  is locally asymptotically stable if  

 

( )

( )

1 3 3
1

1 3

2 3 3
2

2 3

3

,

,

.

a K r d
r

c r

a K r d
r

c r
d r

−
<

−
<

<

                   (3.12) 

3) The equilibrium point ( ), ,E x y z∗ ∗ ∗ ∗  is locally asymptotically stable if  

 1 3 1 2 30, 0 and .A A A A A> > >               (3.13) 

Proof. To obtain the local stability results, we use the Jacobian matrix asso-
ciated to the system (2.3)  

https://doi.org/10.4236/am.2022.136035


Z. Y. Zhuang et al. 
 

 

DOI: 10.4236/am.2022.136035 553 Applied Mathematics 
 

 ( )

( )

( )

( ) ( )

1 1 1 1
1 1 12

1 11

2 2 2 2
2 2 2 2

2 22

31 1 1 2 2 2 1 1 2 2
32 2

1 2 31 2

2

2
, , .

2

r x a c z a xr b y b x
K c xc x

r y a c z a yJ x y z b y r b x
K c yc y

r ze a c z e a c z e a x e a y d r
c x c y Kc x c y

 
 − − − − −

+ +
 
 = − − − − − ++ 
 

+ − + −  + ++ + 

 

1) The Jacobian matrix of the equilibrium point ( )1 , ,0E x y  is  

( )

1 1
1

1 1

2 2
2

2 2

1 1 2 2
3

1 2

, ,0 = .

0 0

r x a xb x
K c x

r y a yJ x y b y
K c y

e a x e a y d r
c x c y

 
− − − + 
 
− − − 

+ 
 
 + − + + + 

 

The characteristic equation is  

21 1 2 2 1 2 1 2
3 1 2

1 2 1 2 1 2

0.
e a x e a y r x r y r rd r b b x y
c x c y K K K K

λ λ λ
        

− + − + + + + − =        + +           
 

Then we get:  

1 1 2 2
1 3

1 2

1 2
2 3

1 2

1 2
2 3 1 2

1 2

,

0,

0.

e a x e a y d r
c x c y

r x r y
K K

r r b b x y
K K

λ

λ λ

λ λ

= + − +
+ +

 
+ = − + < 

 
 

= − > 
 

 

If the condition (3.11) holds, then the equilibrium point ( )1 , ,0E x y  is locally 
asymptotically stable. 

2) The Jacobian matrix of the equilibrium point ( )2 0,0,E z  is  

( )

( )

( )

( ) ( )

1 3 3
1

1 3

2 3 3
2

2 3

1 1 3 3 2 2 3 3
3

1 3 2 3

0 0

0,0, 0 0 .

a K r d
r

c r
a K r d

J z r
c r

e a K r d e a K r d
d r

c r c r

 −
− 

 
 − = −
 
 

− − − 
 

 

The characteristic roots are  

( )

( )

1 3 3
1 1

1 3

2 3 3
2 2

2 3

3 3

,

,

.

a K r d
r

c r
a K r d

r
c r

d r

λ

λ

λ

−
= −

−
= −

= −

 

If the condition (3.12) holds, then the equilibrium point ( )2 0,0,E z  is locally 
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asymptotically stable. 
3) The Jacobian matrix of the equilibrium point ( ), ,E x y z∗ ∗ ∗ ∗  is  

( )

( ) ( )

1
1 1

1

2
2 2

2

31 1 1 2 2 2
2 2

31 2

, , .

a xH b x
c x

a yJ x y z b y H
c y

r ze a c z e a c z
Kc x c y

∗
∗ ∗

∗

∗
∗ ∗ ∗ ∗ ∗

∗

∗∗ ∗

∗ ∗

 
 − − +
 
 

= − − + 
 
 −
 + + 

 

The characteristic equation is  
3 2

1 2 3 0.A A Aλ λ λ+ + + =  

We first write the following notations:  

( )

( )

( )

( )
( ) ( )

( ) ( )

1 1
1 2

11

2 2
2 2

22

3
1 1 2

3

2 2
3 1 2 1 1 1 2 2 2

2 1 2 1 23 3
3 1 2

2 2
3 1 2 1 1 1 2 2 2 2 1

3 3 3
3 1 2

,

,

,

,

a x z r xH
Kc x

a y z r yH
Kc y

r z
A H H

K

r z H H e c a x z e c a y zA H H b b x y
K c x c y

r H H e c a x H e c a y HA z
K c x c y

a

∗ ∗ ∗
∗

∗

∗ ∗ ∗
∗

∗

∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗

= −
+

= −
+

= − +

+
= − + + −

+ +

 
 = − −
 + +  

−
( )( ) ( ) ( )

1 2 31 2 2 2 2 2 1 1 1 1
2 2

31 2 1 2

.
b b re a c b a e a c b x y z

Kc x c y c x c y
∗ ∗ ∗

∗ ∗ ∗ ∗

 
 + +
 + + + +  

 

Applying the Routh-Hurwitz criteria, if the inequalities (3.13) holds, then  

( ), ,E x y z∗ ∗ ∗ ∗  is locally asymptotically stable. 
Theorem 3.3. If condition (3.15) and (3.16) hold, then the equilibrium point 

( ), ,E x y z∗ ∗ ∗ ∗  is globally asymptotically stable. 
Proof. Let  

( ) ( ) ( )( ) 1

2

, , log log

log ,

x yV x t y t z t x x x l y y y
x y

zl z z z
z

∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗

    = − − + − −         
  + − −     

 

where 1 2,l l  are positive constants to be chosen suitably in the subsequent steps. 
It can be easily verified that the function V is zero at the equilibrium point 

( ), ,E x y z∗ ∗ ∗ ∗  and is positive for all other positive values of , ,x y z . 
The time derivative of V along the trajectories of the system (2.3) is given by  
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( )

( )

( )

1 2

1
1 1

1 1

2
1 2 2

2 2

1 1 2 2
2 3

1 2 3

d d d
d d d

1

1

1 .

x x x y y y z z zV l l
x t y t z t

a zxx x r b y
K c x

a zyl y y r b x
K c y

e a x e a y zl z z d r
c x c y K

∗ ∗ ∗

∗

∗

∗

− − −
= + +

  
= − − − −   +   

  
+ − − − −   +   

  
+ − + − + −  + +   

�

        (3.14) 

Also we have the set of equilibrium equations corresponding to the steady state 

( ), ,E x y z∗ ∗ ∗ ∗ :  

1
1 1

1 1

2
2 2

2 2

1 1 2 2
3

31 2

1 0,

1 0,

1 0.

a zxr b y
K c x

a zyr b x
K c y

e a x e a y zd r
Kc x c y

∗∗
∗

∗

∗∗
∗

∗

∗ ∗ ∗

∗ ∗

 
− − − =  + 

 
− − − =  + 

 
+ − + − = 

+ +  

 

Thus, we can write Equation (3.14) together with the above two equations in the 
form:  

( )

( )

( )

1 1 1 1
1 1

1 1 1 1

2 2 2 2
1 2 2

2 2 2 2

3 31 1 2 2 1 1 2 2
2

1 2 3 31 2

r x a z r x a zV x x b y b y
K c x K c x

r y a z r y a zl y y b x b x
K c y K c y

r z r ze a x e a y e a x e a yl z z
c x c y K Kc x c y

∗ ∗
∗ ∗

∗

∗ ∗
∗ ∗

∗

∗∗ ∗
∗

∗ ∗

 
= − − − − + + + + + 

 
+ − − − − + + + + + 

 
+ − + − − − + + + + + 

�

 

( ) ( ) ( ) ( )

( ) ( )( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )( )

2 21 1 1 2 1 2

1 21 1 2 2

22 3
1 2 1

3

2 1 1 1 2 2 2 2 1

1 21 2

2 2 2

11 22 33 12

13

a z r l a z l rx x y y
K Kc c x c c y

l r
z z b b l x x y y

K

l e a a l e a a lx x z z y y z z
c cc x c y

m x x m y y m z z m x x y y

m x

∗ ∗
∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗

   
   ≤ − − + − −
   + +   

− − − + − −

   
+ − − − + − − −   + +   

= − + − + − + − −

+ ( )( ) ( )( )23 ,x z z m y y z z∗ ∗ ∗ ∗− − + − −   

 

where  

( )

( )

1 1
11

11 1

1 2 1 2
22

22 2

,

,

a z rm
Kc c x

l a z l rm
Kc c y

∗

∗

∗

∗

= −
+

= −
+
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( )

2 3
33

3

12 1 2 1

2 1 1 1
13

11

2 2 2 2 1
23

22

,

,

,

.

l r
m

K
m b b l

l e a am
cc x

l e a a lm
cc y

∗

∗

= −

= − +

= −
+

= −
+

 

By choosing 
( )
( )

2 2 1
1

1 1 2

e c c x
l

e c c y

∗

∗

+
=

+
, 1

2
1 1

c xl
e c

∗+
= , which can imply that 13 23 0m m= = . 

Sufficient conditions for V�  to be negative definite are that the following in-
equalities hold  

 
( )

1 1
11

11 1

0, . . ,
a z rm i e

Kc c x

∗

∗
< <

+
               (3.15) 

( )
2 2

22
22 2

0, . . ,
a z rm i e

Kc c y

∗

∗
< <

+
               (3.16) 

( )3 1
33

3 1 1

0.
r c x

m
K e c

∗+
= − <                   (3.17) 

The condition (3.17) is obvious. 
Hence we can obtain results: the equilibrium point ( ), ,E x y z∗ ∗ ∗ ∗  is globally 

asymptotically stable if condition (3.15) and (3.16) hold. 

3.5. Hopf Bifurcation 

Choosing d as the bifurcation parameter, then for some d d ∗=  (critical value), 
The necessary and sufficient conditions for Hopf bifurcation to occur are  

 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3

1 2 3

(1) 0, 0 and 0.

(2) 0.

d
(3) 0, 1, 2,3.

d
j

d d

A d A d A d

f d A d A d A d

Re j
d
λ

∗

∗ ∗ ∗

∗ ∗ ∗ ∗

=

> > >

≡ − =

 
≠ = 

 

          (3.18) 

Theorem 3.4. There is a simple Hopf bifurcation at equilibrium point  

( ), ,E x y z∗ ∗ ∗ ∗  under conditions (3.18), some critical values of the parameter d 
are given by the equation ( ) 0f d ∗ = . 

Proof. From the condition 1 2 3 0f A A A≡ − = , we can get an equation in d, 
which has at least one root d ∗ (say). Let for some 0ε > , there exists an interval 
containing d ∗ , ( ),d dε ε∗ ∗− +  for which 0d ε∗ − > , so that 2 0A >  for  

( ),d d dε ε∗ ∗∈ − + . Therefore, the characteristic equation of E∗  cannot have 
any real positive roots for ( ),d d dε ε∗ ∗∈ − + . 

So, for d d ∗= , we get ( )( )2
2 1 0A Aλ λ+ + = . This has three roots  

1,2 2i Aλ = ± , 3 1Aλ = − . For ( ),d d dε ε∗ ∗∈ − + , the roots can be taken in the 
form of  
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( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 3 1, , .d i d d i d A dλ β γ λ β γ λ= + = − = −  

Now, we have to verify the third condition of (3.18). 
For this we substitute ( ) ( )1 1 1d i dλ β γ= +  into (3.18) and take its derivative, 

then we can write in the following form  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1 1

0,

0,

K d d L d d M d

L d d K d d N d

β γ

β γ

′ ′− + =

′ ′+ + =
 

where  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 1 1 2

1 1 1 1

2 2
1 1 1 1 1 2 3

1 1 1 1 2

3 3 2 ,

6 2 ,

,

2 .

K d d d A d d A d

L d d d A d d

M d d A d d A d d A d A d

N d d d A d d A d

β γ β

β γ γ

β γ β

β γ γ

= − + +

= +

′ ′ ′ ′= − + +

′ ′= +

 

Hence, ( ) 1
1

d
0

d d d

d d

M L
N K

d Re
K Ld
L K

λ
β

∗

∗

=

=

−

 ′ = = ≠  − 
. 

Similarly, we substitute ( ) ( )2 2 2d i dλ β γ= −  into (3.18) and get the same re-

sults, ( ) 2
2

d
0

d d d

d Re
d
λ

β
∗=

 ′ = ≠  
. Since, ( ) ( ) ( ) ( ) 0M d K d L d N d∗ ∗ ∗ ∗+ ≠  and 

( ) ( )3 1 0d A dλ ∗ ∗= − ≠ . Thus, we can write the above theorem. 

On the basis of the mathematical analysis, it is obvious to know that the mor-
tality rate d of filter-feeding fish can be regarded as the key parameter of the 
critical threshold phenomenon; this is because the system (2.3) has different dy-
namic behavior with different parameter values of the mortality rate of fil-
ter-feeding fish, such as stability and Hopf bifurcation. Furthermore, the thre-
shold expression of critical parameter d under the condition of stability of equi-
librium point, all species permanence and occurrence of Hopf bifurcation have 
be obtained, which can in turn provide a theoretical basic for numerical simula-
tion about population interaction dynamics. 

4. Simulation Analysis and Results 

As we all know, the most effective method used for algal bloom control process 
is the biological control method with circular economy effect, hence the rela-
tionship between filter-feeding fish abundance and algal biomass deserves to be 
made clear in fish-drift algae communiyua by means of numerical simulation. 
Furthermore, the best way to control economic cycle is to harvest fish stocks, 
thus, the mortality rate d can be regarded as a key control parameter in numeri-
cal simulation. At the same time, on the basis of the actual monitoring data of 
Wujiayuan reservoir from 2016 year to 2019 year and some critical threshold 
conditions, it is easier to determine that 1 0.8r = , 2 0.7r = , 3 0.1r = , 1 18K = , 

2 15K = , 3 8K = , 1 0.001b = , 2 0.002b = , 1 0.75a = , 2 0.6a = , 1 0.4e = , 
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2 0.35e = , 1 2.25c = , 2 2c = . Furthermore, with the help of theorems 3.2, 3.3, 
and 3.4, it is easy to estimate the value range of key parameter d, which can make 
that the system (2.3) has specific dynamic behavior. 

In order to investigate the relationship between filter-feeding fish abundance 
and algal biomass, some time series diagram and phase diagram have been given. 
It is obvious to see from Figure 1 that the algae population is extinct and the 
biomass of filter-feeding fish is relatively low when the value of d is 0.007, which 
suggests that the filter-feeding fish population is not harvesting. However, the 
biomass of filter-feeding fish decreases rapidly with time, and finally tends to a 
low level constant. But, it should be stressed that this result is consistent with 
Theorem 3.2 (2), which also shows that reducing the filter-feeding fish harvest 
rate could not maintain the sustainable survival of the algae-fish ecosystem and 
the system (2.3) has a sudden decay dynamic process. As the value of control para-
meter d increases to 0.008, it can be found from Figure 2 that the cyanobacteria 
population and filter-feeding fish will oscillate with attenuation and end up with 
a low constant, but the green algae population is still in a sudden decline, this  
 

 
Figure 1. Time series diagram of the system (2.3) with 0.07d = . 

 

 
Figure 2. Time series diagram of the system (2.3) with 0.08d = . 
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simulation process implies that the cyanobacteria population and filter-feeding 
fish can coexist in low abundance with the increase of control parameter d value. 

As the value of critical parameter d increases to 0.15, it can be seen from Fig-
ure 3 that the cyanobacteria population and filter-feeding fish will be in a state 
of sudden saturation dynamics and finally enters the dynamic state of periodic 
oscillation, but the green algae population increases and decreases in a short 
time in the early stage, and then decreases sharply to extinction. However, in any 
case it’s something to be happy that the cyanobacteria population and filter- 
feeding fish population can coexist in the form of periodic oscillation and their 
abundance is also considerable, but it is a pity that the green algae population is 
finally going extinct. Obviously, this result is not conducive to the laboratory 
simulation test. When the value of critical parameter d is increased to 0.22, which 
also implies that filter-feeding fish harvest is included, it is worth observing from 
Figure 4 that the cyanobacteria population, green algae population and filter- 
feeding fish population can coexist in periodic oscillation and their abundance is 
considerable. This result can directly tell us that when the value of key parameter 
d is in a certain area, it can not only maintain the harmonious development of  
 

 
Figure 3. Time series diagram and phase diagram of the system (2.3) with 0.15d = . 
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Figure 4. Time series diagram and phase diagram of the system (2.3) with 0.22d = . 

 
algae-fish ecosystem, but also obtain the economic cycle support of algae bloom 
control through filter-feeding fish harvest. Furthermore, this numerical result 
also proves that the Theorem 3.4 is correct and feasible. 

With the increase of fish harvest intensity, the value of critical parameter d 
increases to 0.4355, it is evident from Figure 5 that the cyanobacteria population, 
green algae population and filter-feeding fish population can coexist in a stable 
constant state and their abundance is relatively low, especially the green algae 
population, we speculate that this result may be caused by the competition be-
tween cyanobacteria population and green algae population. At the same time, 
combined with Figure 4 and Figure 5, it must be pointed out that the system 
(2.3) has subcritical Hopf bifurcation, which also directly proves that Theorem 
3.2 (3) and Theorem 3.4 are feasible and effective. Moreover, it should be 
stressed that when the value of key parameter d is in a certain area, the cyano-
bacteria population, green algae population and filter-feeding fish population 
can coexist in a steady state, the abundance of cyanobacteria population and 
green algae population are relatively low, which is not conducive to the outbreak 
of algal blooms, and the harvesting power of the filter-feeding fish population is  
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Figure 5. Time series diagram and phase diagram of the system (2.3) with 0.4355d = . 

 
large, which is conducive to achieving better economic effects. Nevertheless, if 
the harvesting power of the filter-feeding fish population is too strong, fil-
ter-feeding fish populations will go extinct, the cyanobacteria population and 
green algae population will proliferate rapidly, which can result in algal blooms, 
this result can be found in Figure 6. In addition, it is obvious to see from Figure 
6 that Theorem 3.2 (1) is correct and feasible. 

Based on the above numerical simulation analysis, on the one hand, from the 
perspective of population interaction dynamics, the system (2.3) has different 
population interaction dynamic behaviors with the increase of the value of key 
parameter d, such as stability and Hopf bifurcation, which can indicate that the 
filter-feeding fish population seriously affects the growth dynamics of the algae 
population and illustrate that all the theoretical derivation is correct and feasible. 
On the other hand, from the perspective of ecological control of algal blooms, the 
value of key parameter d is in a certain range (there is a certain intensity of filter- 
feeding fish harvesting), the abundance of cyanobacteria population, green algae 
population and filter-feeding fish population is relatively large, which can main-
tain the good development of algae-fish ecosystem. Furthermore, it is successful  
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Figure 6. Time series diagram of the system (2.3) with 0.55d = . 

 
for key parameter d to explain how to directly affect the population interaction 
dynamics of the system (2.3) and explicit that the abundance is a linear correla-
tion between the algae population and the filter-feeding fish based on periodic 
oscillation mode. 

5. Conclusions 

In this paper, for the implementation of laboratory ecological simulation expe-
riment of the algae population and the filter-feeding fish, an algae-fish system 
was established to inquire into the population interaction dynamics and explore 
how the filter-feeding fish population affects the growth dynamics of the algae 
population. Mathematically theoretical works have been pursuing the investiga-
tion of stability of the equilibrium and existence of Hopf bifurcation. Some crit-
ical threshold conditions for stability and Hopf bifurcation have been given in 
detail, which was the theoretical basis of numerical simulation. 

Numerical simulation works indicated that the population interaction dy-
namics of the system (2.3) mainly depended on the value of key parameter d. 
Within this framework, the direct and indirect effects caused by key parameter d 
were investigated to parse the discovery of the growth dynamics of the algae 
population in view of population interaction dynamics, which in turn could 
prove the feasibility of the theoretical derivation and reveal the relationship be-
tween filter-feeding fish abundance and algal biomass in fish-drift algae com-
muniyua. Furthermore, it was also worth pointing out that the filter-feeding fish 
population may be a crucial factor in controlling the proliferation of the algae 
population, which could also directly grasp the evolution of community dynam-
ics. 

In the follow-up research works, we will further explore the population dy-
namic relationship between the algae population and the filter-feeding fish by 
using bifurcation dynamic analysis. At the same time, because cyanobacteria and 
green algae have different growth dynamic mechanisms, the interaction rela-
tionship between cyanobacteria and green algae still needs to be further studied. 
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In summary, this paper mainly used an algae-fish system to describe the cor-
relation between the algae population and the filter-feeding fish, and gave some 
simulation data to the population interaction dynamics, all these results were 
expected to be useful in the study of community dynamics and laboratory eli-
mination experiment of the algae population. 
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