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In this study, we consider the Josephson current in a system composed of a superconductor/quantum dot/superconductor
junction. In the model, the Coulomb interaction in the quantum dot is taken into consideration, and the Lacroix ap-
proximation is applied to study the electron correlation. We derive Green’s function of the quantum dot by applying the
Lacroix truncation. Although the Andreev bound state does not occur in our formulations, the π-junction occurs for
a restricted parameter range. On comparing the Kondo temperature with that estimated by another method, it is found
that our Lacroix approximation does not capture well the Kondo physics in the superconductor/quantum dot/
superconductor junction.

1. Introduction

In the last few decades, the Josephson current in a system
composed of a superconductor/quantum dot/supercon-
ductor (S/QD/S) junction has been extensively studied [1–4].
When identical superconducting leads are separated by
a thin layer of insulator, the Josephson current can flow
because of the coherent tunneling of Cooper pairs across the
insulator in the absence of a potential difference. When the
tunneling amplitude across the barrier is small and the spin
is conserved, the current depends on the superconductor
phase difference θ between the left and right leads. -e
current is expressed as J � Jc sin θ, where Jc denotes the
critical current, which is proportional to the normal con-
ductance through the barrier [5]. When θ� 0, the Josephson
current is zero and the junction is in the ground state. When
θ� π, the current becomes zero; however, in this case, the
junction energy is maximum and it is in an unstable state.
Very recently, carbon-nanotube Josephson junction systems
have been studied intensively [6–8].

When we consider physics at low temperatures under the
Coulomb interaction in the QD, the physical behavior of the

system depends on the relative magnitude of the Kondo
temperature TK and the BCS gap Δ [9]. When TK≫Δ, the
Kondo effect is sufficiently strong to break the Cooper pair at
the Fermi level, and the localized spin in the QD is screened;
it is expected that a Kondo singlet will be formed.-is results
in a positive critical current (0-junction). By contrast, when
TK≪Δ, the Cooper pair is strongly coupled, and the Kondo
screening is essentially negligible. In this case, the Cooper
pair is subjected to a localized magnetic moment in the QD.
When the Coulomb repulsion in the QD is large, the ground
state of the QD is a magnetic doublet, and the electrons in
a Cooper pair can tunnel one by one via virtual processes.
-e spin ordering of the Cooper pair is reversed, resulting in
a π-junction [3, 10, 11]. -e 0-π transition is expected to
occur around TK∼Δ. -e tuning of the π-junction in S/QD/S
systems has been studied extensively [3, 12–14].

-e current density in the S/QD/S system is composed
of two parts: continuous and discrete spectrums. -e
former (latter) arises from outside (inside) the BCS gap.
-e current from the continuous current density is
calculated by the usual numerical integral. By contrast,
the current from the discrete current density is calculated
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by applying the complex function theory. -e discrete
current density arises from the Andreev bound states
(ABSs) inside the BCS gap. -e ABSs are determined as
poles of the QD Green’s function, and there is a pair of
ABSs ω0

± in the absence of Coulomb interaction. In
particular, when the energy level of the QD coincides
with the Fermi level ωF � 0, ω0

± � 0. In this situation, the
current jumps discontinuously when the BCS phase
difference is ±π [15, 16]. Usually, the current from the
discrete current density is much larger than that from the
continuous current density.

-e Coulomb interaction in the QD is studied by many
methods: the numerical renormalization group (NRG)
method [17–19], noncrossing approximation [20], quantum
Monte Carlo (QMC) method [21–23], and so on. Although
the NRG and QMC methods are very precise methods, they
are computationally expensive. -e simplest method is the
Hartree approximation, which corresponds to the zeroth-
order approximation. In this method, a two-particle Green’s
function is truncated by decoupling at the mean-field level.
Beyond the Hartree approximation, the Hartree–Fock (HF)
approximation is proposed, where up to the first order of the
tunneling amplitude is considered. -is method was applied
to the level-crossing quantum phase transition between the
BCS-singlet and the magnetic doublet states [24–27]. -e
above two approximations can be applied to describe single-
particle physics. -e higher-order Green’s functions are not
taken into consideration; therefore, these approximations
are not sufficient when we consider Kondo physics [28]. To
overcome this defect, the Lacroix approximation has been
proposed [29]. In this approximation, a greater higher-order
correlation effect is included in the QD Green’s function by
truncation in the second order. Although the Lacroix ap-
proximation suffers from several defects, the mathematical
procedures to derive the QD Green’s functions are a simple
application of the equation of motion. Although there have
been many studies on QD systems that employ the Lacroix
approximation [28, 30–34], only a few studies have been
conducted on the current in S/QD/S systems [33, 35].

From these standpoints, we examine the current in
a system composed of an S/QD/S junction with Coulomb
interaction by applying the Lacroix approximation. Under
second-order truncation and simplification, Green’s func-
tion of the QD is obtained. Using Green’s functions, we
calculate the electron occupation number in the QD and the
Josephson current. We can observe the π-junction in a re-
stricted parameter range, but our Lacroix approximation
does not capture well the competition between the Kondo
effect and superconductivity.

2. Model and Formulation

We first introduce the setup of the system and give its
Hamiltonian. For the system, Green’s functions of the QD

and the Josephson current are derived by employing the
equation of motion.

2.1. Model and Green’s Functions of the QD. We consider
a system composed of an S/QD/S junction, where Coulomb
interaction exists in the QD. -e geometry of the setup is
shown in Figure 1. -e total Hamiltonian of the system is
written as

H � HL + HR + HD + HT, (1)

where

Hα � 􏽘
k,σ

εkc
†
α,k,σcα,k,σ + 􏽘

k

Δαc
†
α,k,↑c

†
α,− k,↓ + H.c.􏼐 􏼑,

HD � 􏽘
σ
εdd

†
σdσ + Und↑nd↓,

HT � t 􏽘
k,σ

c
†
L,k,σdσ + c

†
R,k,σdσ + H.c.􏼐 􏼑,

(2)

where α � L, R and σ � ↑, ↓. Hα represents the super-
conducting lead α; cα,k,σ denotes the annihilation operator of
an electron with energy εk, wave number k, and spin σ in the
lead; the order parameter Δα � Δeiθα with the BCS gap Δ and
the BCS phase θα; HD represents the QD; dσ denotes the
annihilation operator of an electron with spin σ; and εd

denotes the QD energy level. -e occupation number of an
electron in the QD with spin σ is defined by ndσ � d†

σdσ , and
U represents the Coulomb repulsion between electrons with
up- and downspins. HT represents the electron tunneling
between the leads and the QD. -e coupling strength be-
tween electrons in the QD and the leads is defined by
Γ0 � π]t2, where the tunneling amplitude t is real and v

denotes the normal density of states (DOS) at the Fermi
level.

To describe the above system, we introduce the 2× 2
Nambu representation. We set the spinor field operators as

Ψαkσ �
cα,k,σ

c†α,− k,σ

⎛⎝ ⎞⎠,

Ψ†αkσ � c†α,k,σ cα,− k,σ􏼐 􏼑,

Ψdσ �
dσ

d†
σ

􏼠 􏼡,

Ψ†dσ � d†
σ dσ􏼐 􏼑,

(3)

where σ � ↓, ↑. Hereinafter, Green’s function written
with a hat symbol represents a 2 × 2 matrix. Using the
above operators, the retarded (advanced) 2 × 2 matrix
Green’s function is defined as 􏽢G

r(a)

αkσ,βk′σ′(t, t′) � ∓iθ
(± t∓ t′)〈{Ψαkσ(t),Ψ†βk′σ(t′)}〉. -e lesser Green’s func-
tions are defined as follows:
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􏽢G
<
αkσ,α′k′σ′ t, t′( 􏼁 � i

〈c†α′,k′ ,σ′ t′( 􏼁cα,k,σ(t)〉 〈cα′ ,− k′,σ′ t′( 􏼁cα,k,σ(t)〉

〈c†α′,k′ ,σ′ t′( 􏼁c†α,− k,σ(t)〉 〈cα′ ,− k′,σ′ t′( 􏼁c†α,− k,σ(t)〉
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

􏽢G
<
dσ,αkσ t, t′( 􏼁 � i

〈c†α,k,σ t′( 􏼁dσ(t)〉 〈cα,− k,σ t′( 􏼁dσ(t)〉

〈c†α,k,σ t′( 􏼁d†
σ(t)〉 〈cα,− k,σ t′( 􏼁d†

σ(t)〉
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(4)

Employing the equation of motion, we derive all
Green’s functions. We denote 􏽢gr

d as the retarded Green’s
function of the QD in the absence of coupling with the
leads, and 􏽢gr

ασ is denoted as the retarded Green’s function
of the lead α with spin σ in the absence of coupling with
the QD. In the Nambu representation, these functions are
written as

􏽢g
r
d(ω)( 􏼁

− 1
�

ω − εd + i0+ 0

0 ω + εd + i0+

⎛⎝ ⎞⎠,

􏽢g
r
ασ(ω) � − iπ]ρ(ω)

1
σΔα
ω

σΔα
ω

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5)

respectively, where a symbol with an overbar represents the
complex conjugate of the symbol, and the factor ρ(ω) is
defined as

ρ(ω) �

|ω|
�������
ω2 − Δ2

√ , |ω|>Δ,

ω
i

�������
Δ2 − ω2

√ , |ω|<Δ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

It is noteworthy that ρ denotes the ordinary BCSDOS for
|ω|>Δ; however, it is imaginary for |ω|<Δ.

We define Green’s functions of the QD with spin σ using
the Zubarev notation as

􏽢G
r

dσ(ω) � 〈〈 dσ

d†
σ

⎛⎝ ⎞⎠; d†
σ dσ􏼐 􏼑〉〉

�
〈〈dσ ; d†

σ〉〉 〈〈dσ ; dσ〉〉

〈〈d†
σ ; d†

σ〉〉 〈〈d
†
σ ; dσ〉〉

⎛⎜⎝ ⎞⎟⎠.

(7)

By using the Dyson equation, we obtain the retarded
Green’s functions of the QD as

􏽢G
r

dσ(ω)􏽨 􏽩
− 1

� 􏽢G
(0)r

dσ (ω)􏼔 􏼕
− 1

− 􏽢ΣUσ (ω), (8)

where 􏽢ΣUσ (ω) is the self-energy due to the on-site Coulomb
interaction. Following references [19, 36], 􏽢ΣUσ (ω) �

U􏽢Fdσ(ω)[􏽢G
r

dσ(ω)]− 1, where 􏽢Fdσ(ω) is defined as

􏽢Fdσ(ω) �
〈〈dσndσ ; d†

σ〉〉 〈〈dσndσ ; dσ〉〉

− 〈〈d†
σndσ ; d†

σ〉〉 − 〈〈d†
σndσ ; dσ〉〉

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

In the absence of Coulomb interaction, 􏽢G
(0)r

dσ (ω) is given
by

􏽢G
(0)r

dσ (ω)􏼔 􏼕
− 1

� 􏽢g
r
d(ω)( 􏼁

− 1
− 􏽢Σ0(ω), (10)

where 􏽢Σ0 is the noninteracting self-energy, which is calcu-
lated by

􏽢Σ0(ω) � 􏽢T 􏽢g
r
Lσ(ω) + 􏽢g

r
Rσ(ω)( 􏼁􏽢T, (11)

where 􏽢T � t􏽢σz, and 􏽢σz denotes the third component of the
2× 2 Pauli matrices. Each element of 􏽢Σ0 is given in
Appendix.

In the presence of Coulomb interaction, it is necessary to
calculate 􏽢ΣUσ self-consistently. In this study, we derive
Green’s functions, 􏽢G

r

dσ , under the Lacroix approximation.
Although the Lacroix truncation was originally proposed for
the Anderson model with normal conducting leads [29], we
extend the method to superconducting leads. -e detailed
derivations are given in Appendix. -e final expression of
the (11)-component of 􏽢G

r

dσ is

􏽢G
r

dσ(ω)􏽨 􏽩11 �
1

Rσ(ω) − U Qσ(ω) + Tσ(ω)( 􏼁/Pσ(ω)
, (12)

R
t t

D L

Figure 1: Schematic diagram of a superconductor/quantum dot/superconductor (S/QD/S) junction. t denotes the tunneling amplitude
between the leads and the QD.

Advances in Condensed Matter Physics 3



where

Pσ(ω) � ω − εd − U 1 − 〈ndσ〉( 􏼁 + 3iΓ0

+ U A1σ(ω) − A2σ(ω)( 􏼁,

Qσ(ω) � ω − εd − U〈ndσ〉( 􏼁 A1σ(ω) − A2σ(ω)( 􏼁

+ U 〈ndσ〉 1 − 〈ndσ〉( 􏼁 − 〈dσdσ〉〈d
†
σd

†
σ〉􏽨 􏽩

− 2iΓ0〈ndσ〉 − B1σ(ω) + B2σ(ω)( 􏼁,

Rσ(ω) � ω − εd − Σ011(ω) − U〈ndσ〉

−
Σ012(ω) + U〈dσdσ〉( 􏼁 Σ021(ω) + U〈d†

σd†
σ〉􏼐 􏼑

ω + εd − Σ022(ω) + U〈ndσ〉
,

Tσ(ω) � 2εd + U 1 +〈ndσ〉 − 〈ndσ〉( 􏼁( 􏼁

×〈dσdσ〉
Σ021(ω) + U〈d†

σd†
σ〉

ω + εd − Σ022(ω) + U〈ndσ〉
,

(13)

and the (21)-component of 􏽢G
r

dσ is given by

􏽢G
r

dσ(ω)􏽨 􏽩21 �
Σ021(ω) + U〈d†

σd†
σ〉

ω + εd − Σ022(ω) + U〈ndσ〉
􏽢G

r

dσ(ω)􏽨 􏽩11.

(14)

We can obtain [􏽢G
r

dσ(ω)]12 and [􏽢G
r

dσ(ω)]22 in a similar
way, and the final expressions are given in Appendix.

2.2. Current and Electron Occupation Number in the QD.
-e current from the lead L to the lead R is given by the time
derivative of the electron occupation number in the lead L.
Applying the equation of motion [37, 38] and the definition
NL � 􏽐k,σc†L,k,σcL,k,σ , we obtain the current IL as follows [39]:

IL � − e〈dNL

dt 〉 �
ie

Z
〈 NL, H􏼂 􏼃〉

�
ie

Z
t 􏽘

k,σ
〈c†L,k,σdσ〉 − 〈d†

σcL,k,σ〉􏼐 􏼑

�
e

Z
t 􏽘

k,σ
G
<
dσ,Lkσ(t, t) − G

<
Lkσ,dσ(t, t)􏼐 􏼑,

(15)

where the matrix elements of the lesser Green’s functions are
denoted as follows: G<dσ,Lkσ(t, t′) � i〈c†L,k,σ(t′)dσ(t)〉. Simi-
larly, IR, which is the current from the lead R to the lead L, is
obtained. Using the 2× 2 matrix Green’s functions and their
Fourier-transformed forms, we obtain the Josephson current I as

I �
1
2

IL − IR( 􏼁

�
1
2

et

2πZ
􏽘
k,σ

􏽚 dω 􏼔􏽢G
<
dσ,Lkσ(ω) − 􏽢G

<
Lkσ,dσ(ω)

− 􏽢G
<
dσ,Rkσ(ω) + 􏽢G

<
Rkσ,dσ(ω)􏼕

11
,

(16)

where [􏽢G]ij is the i, j-th element of 􏽢G. -e occupation
number of an electron with spin σ in the QD is given by

〈nd↑〉 �
1
2πi

􏽚 dω 􏽢G
<
d↑(ω)􏽨 􏽩11,

〈nd↓〉 �
1
2πi

􏽚 dω 􏽢G
<
d↓(ω)􏽨 􏽩11.

(17)

-e averaged occupation number in the QD is
〈nd〉 � 〈nd↑〉 + 〈nd↓〉.

To calculate the current (16), the retarded and lesser
Green’s functions between the QD and the leads are nec-
essary. We can derive these retarded Green’s functions by
employing the equation of motion, as follows:

􏽢G
r

dα � 􏽢G
r

dσ
􏽢T􏽢g

r
α,σ ,

􏽢G
r

αd � 􏽢g
r
α,σ

􏽢T􏽢G
r

dσ .
(18)

In the above expressions, we used a simple notation for
summation over a wave vector k: 􏽐k,k′

􏽢Gαk,βk′ ≡ 􏽢Gαβ. -e
Langreth theorem states that the lesser Green’s function of
a matrix 􏽢A􏽢B is given as [􏽢A􏽢B]< � 􏽢A

r 􏽢B
<

+ 􏽢A
<􏽢B

a [40]. For
equilibrium, by employing the fluctuation dissipation
theorem, we obtain 􏽢G

<
(ω) � f(ω)(􏽢G

a
(ω) − 􏽢G

r
(ω)), where

f(ω) denotes the Fermi distribution function. -is
function is given as f(ω) � 1/(eωβ0 + 1) with β0 � 1/kBT,
and the Fermi energy is set as ωF � 0. -e advanced
Green’s function, Ga

ij(ω), is calculated by using the
retarded Green’s function as 􏽢G

a

ij(ω) � (􏽢G
r

ji(ω))†. -us,
we can construct all Green’s functions on the basis of
􏽢G

r

dσ(ω).
-e Josephson current consists of two components: the

current due to the continuous spectrum for |ω|>Δ and that
due to the discrete spectrum for |ω|<Δ:

I � Idis + Icon,

Idis �
e

2πZ
􏽚
Δ

− Δ
dωf(ω)jd(ω),

Icon �
e

2πZ
􏽚

− Δ

− ∞
+ 􏽚
∞

Δ
􏼠 􏼡dωf(ω)jc(ω),

(19)

where jd(c)(ω) denotes the discrete (continuous) current
density. Under the HF approximation, using the definitions
of 􏽢Σ0 and 􏽢ΣHF

dσ given in equations (11) and (A.10), re-
spectively, we find that 􏽢G

r

dσ(ω) has singular points (poles).
We write the determinant of (􏽢G

r

dσ(ω))− 1 as D(ω), which
becomes
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D ω; εd, θL, θR( 􏼁 � det 􏽢G
r

dσ(ω)􏼐 􏼑
− 1

􏼔 􏼕

� ad − bc,

(20)

where

a � ω − εd + 2iΓ0ρ(ω) − U〈ndσ〉,

b � − σiΓ0 ΔL + ΔR( 􏼁ρ0(ω) − U〈dσdσ〉,

c � − σiΓ0 ΔL + ΔR( 􏼁ρ0(ω) − U〈d†
σd

†
σ〉,

d � ω + εd + 2iΓ0ρ(ω) + U〈ndσ〉,

(21)

where ρ0(ω) � ρ(ω)/ω. In our previous study [27], we
considered the spin-flip effects on the current in an S/QD/S
junction with a Josephson junction in the range |ω|<Δ. For
the system, the HF approximation was applied by neglecting
the pairing correlation functions 〈d†

σd†
σ〉 and 〈dσdσ〉. In the

absence of direct tunneling between leads and spin-flip
effects in the QD, D(ω; εd, θ) � det[(􏽢G

r

dd(ω))− 1] in that
paper coincides with equation (20) without pairing corre-
lation functions. D(ω) given by equation (20) is a quadratic
function in terms of ω, and consequently, two poles can
occur in 􏽢G

r

dσ(ω). When ρ(ω) is given, D(ω) has a finite
imaginary part for |ω|>Δ. On the contrary, D(ω) has
a real part with an infinitesimal imaginary part for |ω|<Δ.
-e ABSs exist inside the gap |ω|<Δ, and their positions
correspond to the poles of Green’s function 􏽢G

r

dσ(ω).
-e discrete current Idis originates from the ABSs, and to
calculate Idis, we employ the Sokhotski–Plemelj formula,
limω⟶ω0

􏽒 dω/g(ω) � − iπ/g′(ω0), where ω0 is a real solu-
tion of g(ω0) � 0 denoting the position of the ABS. On the
contrary, the continuous spectrum outside the gap |ω|>Δ
contributes to the continuous current Icon, which is calcu-
lated by means of the usual numerical integral.

In this study, we consider the system to be at zero
temperature, and all the energy quantities are scaled by the
BCS gap Δ. Without loss of generality, we put θR � − θL, and
the BCS phase difference between the left and right
superconducting leads is set as θ � θL − θR. We set the DOS
in the leads in the normal state v � 1/(2W) in the range
|ω|≤W, where we choose the half bandwidth W � 20 such
that W is much larger than all other energy scales.

3. Numerical Calculation Results

Here, we show the numerical calculation results obtained by
the Lacroix approximation. We define the total density of
states in the QD as ρd(ω) � − (1/π)􏽐σIm[􏽢G

r

dσ(ω)]11, and ρd

is shown in Figure 2. In our calculation, the multiple integral
over ω is divided into two regions: |ω|>Δ and |ω|<Δ. ρ(ω)

defined by equation (6) diverges at |ω| � Δ; therefore,
a sharp peak and dip are observed around |ω| � 1 in ρd.
In the case of the particle-hole symmetric case, εd � − U/2,
we observe the Coulomb peaks around ω � ±U/2
(Figure 2(a)). However, it is known that the Kondo peak at
the Fermi level (ω � 0) does not appear in the Lacroix
approximation. On the contrary, in the case of the particle-
hole asymmetric case, we observe the Coulomb peaks
around ω � εd and εd + U, and the antiresonant dip is

observed around ω � U + 2εd (Figure 2(b)). -is unphysical
resonance is a specific characteristic of the Lacroix ap-
proximation, which disappears in the limit U⟶∞
[29, 41]. In Figure 2(c), the Kondo peak is observed around
the Fermi level.

-e dependence of the current on the BCS phase dif-
ference is shown in Figure 3. In the case of the HF ap-
proximation, the current I is expressed in the form
I � Ic sin θ, where Ic is called the critical current and θ is the
BCS phase difference. In the HF approximation, the am-
plitude Ic depends slightly on θ, and the phase shift occurs
when εd is chosen in the range − U< εd < 0 (Figure 3(a)).-at
is, the current-phase relations change from I � |Ic|sin θ to
I � − |Ic|sin θ with changing εd, which is called the 0-π
transition [42]. A similar property is observed in the Lacroix
approximation (Figure 3(b)). However, a difference is that
the current amplitude Ic depends strongly on the phase θ.
-is is caused by different calculation schemes employed by
the two approximations; the HF approximation is a type of
mean-field theory, taking only the nonconnected part in 􏽢Fdσ
into consideration, and the macroscopic parameters 〈ndσ〉

and 〈d†
σd†

σ〉 are determined self-consistently. On the con-
trary, in the Lacroix approximation, by taking the connected
term 􏽢F

c

dσ into consideration, these macroscopic parameters
are self-consistently determined for each θ. As a result, these
parameters are dependent on θ. Although the current sat-
isfies I � 0 at θ � 0, ±π, it deviates from the relation I �

Ic sin θ with a fixed Ic.
Let us consider the 0-π transition in terms of the

Kondo temperature and the BCS gap under a large
Coulomb repulsion. -e Kondo temperature TK in the
normal conductor connected to a QD is given by several
calculation schemes. TK calculated by scaling theory is
TK � Γ

������
U/(2Γ)

􏽰
exp[πεd(1 + εd/U)/(2Γ)], where Γ � 2π]t2

[43]. For the SU(N) Anderson impurity model, TK cal-
culated by the renormalization group scaling theory
is TK � exp[πεd/(NΓ)] [44]. However, for the same
model, TK calculated by the Lacroix approximation is TK �

W exp[πεd/((N − 1)Γ)] [29, 45]. Although the formulation
by the Lacroix truncation scheme is rather crude, it can
qualitatively capture the 0-π transition in the S/QD/S
system, where the Kondo effect and superconductivity
compete against each other [35]. -e relative magnitude of
Δ and TK determines the characteristics of the dependence
of the current on the BCS phase difference. In the weak
coupling case, Δ ≫ TK, the π-junction is observed, and the
ground state of the QD is doublet (dashed curve in
Figure 3(b)). On the contrary, in the strong coupling case,
TK≫Δ, the 0-junction is observed, and the ground state of
the QD is the Kondo singlet (solid curve in Figure 3(b)).
Comparing the results obtained by our Lacroix approxi-
mation with those obtained by the HF approximation
(Figure 3(a)), the dependence of the current on the BCS
phase difference θ is highly nonsinusoidal. For the in-
termediate coupling case, TK∼Δ, and the dependence of
the current breaks into three different regions. In the
central region around θ � 0, the behavior of the current
resembles that in the ballistic short junction: the current
changes linearly with θ. In the surrounding two regions,
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the dependence of the current on the phase is similar to
that in a π-junction (Figure 3(c)). At the transition point
TK∼Δ, we obtain εd∼[(N − 1)Γ ln(Δ/W)]/π by using the
Lacroix expression. In our parameters withN � 2, εd∼ − 0.2.
-is value does not agree with our numerical calculation
result, εd∼ − 5.5. In spite of this discrepancy, the above-
mentioned properties of dependence of current on the BCS
phase difference are qualitatively consistent with the re-
sults obtained by the NRG method [13]. In our calculation
of HF approximation, a complex dependence of the cur-
rent on the phase, such as that in Figure 3(c), did not occur
around the transition point TK∼Δ.

-e dependence of the averaged occupation number of
the electrons in the QD on the QD energy level is shown in
Figure 4. For a much smaller εd such as εd≪ − U, 〈nd〉∼2.

Intermediate values of εd such as − U< εd < 0, where 〈nd〉∼1,
define a magnetic region in which a π-junction occurs. For
larger values of εd satisfying εd > 0, 〈nd〉∼0. -is property is
identical for both the HF and the Lacroix approximations.

-e current density distribution under the HF ap-
proximation is shown in Figure 5(a). -e total current
density is defined as j(ω) � jd(ω) + jc(ω). When εd is
chosen such that εd∼ − U, we can find sharp peaks within
the BCS gap Δ in the current density distribution j. -e
positions of these peaks correspond to the zero of D. -ere
is an ABS below the Fermi level, and it carries a negative
current. Although jc > 0, it is generally small and satisfies
jc≪ |jd| so that j < 0 (π-junction) [46]. -e dependence of
the pole positions of Green’s function [􏽢G

r

dσ(ω)]11 on εd is
shown in Figure 5(b). We defined ω0

± as the real solutions
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Figure 2: Total local density of states in the QD for Γ0 � 0.5 and U� 12. (a) εd � − 6. (b) εd � − 5. (c) εd � − 4.
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of D(ω) � 0 within the BCS gap, |ω0
±|<Δ. Here, ω0

±
corresponds to the position of the ABS, and we find that
ω0

− ≃ − ω0
+ is satisfied [47]. On the contrary, in the Lacroix

approximation, [􏽢G
r

dσ(ω)]11 is given by equation (12),
which is described by the variables Pσ , Qσ , Rσ , and Tσ . If Pσ ,
Qσ , and Tσ are neglected, [􏽢G

r

dσ(ω)]11 � 1/Rσ(ω), which
agrees with the result obtained from the HF approximation
[27]. When the connected term 􏽢F

c

dσ is considered, Pσ , Qσ ,
and Tσ appear in the expression of [􏽢G

r

dσ(ω)]11. We see that
Pσ and Qσ have finite imaginary parts due to the terms
proportional to iΓ0, and Rσ and Tσ have a similar property:
for |ω|>Δ, Rσ and Tσ have finite imaginary parts. On the

contrary, for |ω|<Δ, Rσ and Tσ have real parts with an
infinitesimal imaginary part. In our Lacroix approxima-
tion, we define D(ω) as D � PσRσ − U(Qσ + Tσ). -en,
unlike the HF approximation, D has a finite imaginary part
for any value of ω, and there is no real solution for D � 0 in
the range |ω|<Δ.

-e dependence of the critical current on the QD energy
level is shown in Figure 6. In the caseU� 0, Ic is positive, and
it diverges at εd � 0 (Figure 6(a)). For a finiteU, we apply the
HF or Lacroix approximations. Generally, for U< Γ0, nd↑
and nd↓ are almost equal, and the current is positive with
amaximum at εd � − U/2. By contrast, forU>Γ0, nd↑ and nd↓
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Figure 3: Dependence of the current on the BCS phase difference for Γ0 � 0.1 andU� 5. (a) HF approximation: the solid, dashed, and dotted
curves correspond to cases εd � 1, − 3, and − 7, respectively. (b) Lacroix approximation: the solid, dashed, and dotted curves correspond to
cases εd � 0, − 4, and − 7.5, respectively. (c) Lacroix approximation: the solid and dashed curves correspond to cases εd � − 5.5 and − 6.0,
respectively.
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are not equal, and therefore, the QD becomes magnetic. In
the HF approximation, the π-junction occurs in the range
− U< εd < 0 (Figure 6(b)). By contrast, in our Lacroix ap-
proximation, although the π-junction occurs around εd∼ − U
or 0, it does not occur in the entire range − U< εd < 0
(Figure 6(c)). Current I is composed of Idis and Icon, and the

dependence of Idis and Icon on εd is shown in Figure 6(d).
Because there is no real solution for D� 0, Idis and Icon were
calculated by the usual integral. We see that Idis and Icon have
similar properties; Idis and Icon are negative around εd∼ − U
and Δ, but Idis and Icon are positive with a sharp peak around
εd∼ − (U + Δ) and 0.�us, in our calculations, even if there is
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Figure 5: Current density and dependence of the pole position on the QD energy level. �e data are obtained by the HF approximation
for Γ0 � 0.1 and θ� π/2. (a) Current density.�e solid and dashed curves correspond to casesU � 3 with εd � − 3 and εd � − 4, respectively.
(b) Dependence of the pole positions of Ĝ(0)rdσ on the QD energy level. �e solid curves with symbols •, ∘, and ∗ correspond to casesU � 0,
3, and 5, respectively.
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Figure 4: Dependence of the averaged occupation number in the QD on the QD energy level for Γ0 � 0.1 and θ� π/2. �e solid, dashed, and
dotted curves correspond to cases U� 5, 8, and 10, respectively. (a) HF approximation. (b) Lacroix approximation.
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no real solution for D� 0 in the range − U< εd < 0, a negative
current (critical current Ic < 0) occurs around εd∼ − U and Δ.

4. Conclusions

We have studied the current in an S/QD/S junction system
with Coulomb interaction. In the HF approximation, up to the
first order of tunneling amplitude t was considered, while the
electron correlation was not considered sufficiently; therefore,
it was necessary to include a higher-order Green’s function.
In this study, the Lacroix approximation was applied, where
up to the second order of t was considered. In the HF

approximation, the connected term 􏽢F
c

dσ was neglected in the
cluster expansion, and the macroscopic parameters 〈ndσ〉,
〈d†

σd†
σ〉, and 〈dσdσ〉 were self-consistently determined. It

turned out that this simplification corresponded to the neglect
of 〈〈dσndσ ; d†

σ〉〉c, 〈〈cα,k,σndσ ; d†
σ〉〉c, 〈〈d†

σcα,k,σdσ ; d†
σ〉〉c, and

〈〈c†α,k,σdσdσ ; d†
σ〉〉c in the expansion of the higher-order

Green’s functions. -e lack of these connected terms is
a crucial defect when we consider low-temperature physics
such as Kondo physics. In our Lacroix approximation, the
connected term 􏽢F

c

dσ was taken into consideration under
several simplifications; the superconducting correlation
functions involved in the QD and leads and all the pairing
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Figure 6: Dependence of the critical current on the QD energy level for Γ0 � 0.1 and θ � π/2. (a) U� 0. (b) HF approximation. (c) Lacroix
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corrections obtained from higher-order Green’s functions
were neglected. Under these simplifications, we calculated
〈〈dσ ; d†

σ〉〉 and 〈〈d†
σ ; dσ〉〉 self-consistently.

In our Lacroix approximation, 〈〈dσ ; d†
σ〉〉 was expressed

by the variables Pσ , Qσ , Rσ , and Tσ . When the connected
term 􏽢F

c

dσ was not considered, Pσ , Qσ , and Tσ vanished,
giving 〈〈dσ ; d†

σ〉〉 � 1/Rσ , which recovered the expression
obtained by the HF approximation [27].-e denominator of
〈〈dσ ; d†

σ〉〉 was defined as D(ω). In the HF approximation,
when we chose εd∼ − U or 0 for a finiteU, there were two real
solutions for D� 0 in the range |ω|<Δ. One solution below
the Fermi level yielded a negative current, and the π-junction
occurred in the range − U< εd < 0. On the contrary, in our
Lacroix approximation, there was no real solution for D� 0,
which results from our calculation scheme based on the
Lacroix approximation; the variables Pσ and Qσ were
complex for the entire range of ω because of the terms
proportional to iΓ0. As a result, although the π-junction did
not occur in the entire range − U< εd < 0, the negative
current occurred only around εd∼ − U and Δ.

In the HF approximation, the higher-order electron
correlation is inherently not taken into consideration, and
therefore, a discussion of the characteristics of the current
in terms of the ratio Δ/TK is inappropriate. Although
higher-order Green’s functions are taken into consider-
ation under simplifications in the Lacroix approximation,
it is not a precise calculation compared with the NRG,
functional RG, and QMC methods [48]. In fact, our nu-
merical calculation results did not agree well with TK
estimated by Lacroix. In spite of this discrepancy, our
numerical calculation results captured several aspects of
the 0-π transition and the Kondo resonance in restricted
parameters. However, our Lacroix approximation could
not capture well the competition between Kondo physics
and π-junction for all the parameters. -e Lacroix ap-
proximation employs a truncation at the second order of t
and applies cluster expansion for higher-order Green’s
functions. Under these simplifications, reliable calculation
results are obtained in restricted parameters, and only the
qualitative features of Kondo physics in superconductors
are obtained.

Appendix

A. Derivation of Green’s Function of the QD

In this section, we present the derivation of 􏽢G
r

dσ(ω) fol-
lowing reference [49], in which the normal conductor/QD/S
junction was considered. We use the Zubarev notation for
the retarded Green’s function, Gr

A,B(ω) � 〈〈A; B〉〉, which is
composed of the operators A and B. -e equation of motion
of 〈〈A; B〉〉 is given by

ω〈〈A; B〉〉 �〈[A, B]+〉 +〈〈[A, H]− ; B〉〉, (A.1)

where [A, B]± � AB ± BA. We first derive the equations of
motion of each element of the retarded Green’s function
􏽢G

r

dσ(ω) given by equation (7):

ω − εd − Γ1(ω)( 􏼁〈〈dσ ; d
†
σ〉〉 + Λ1〈〈d

†
σ ; d

†
σ〉〉

� 1 + U〈〈dσndσ ; d
†
σ〉〉,

(A.2)

ω + εd − Γ2(ω)( 􏼁〈〈d†
σ ; d

†
σ〉〉 − Λ2〈〈dσ ; d

†
σ〉〉

� − U〈〈d†
σndσ ; d

†
σ〉〉,

(A.3)

ω − εd − Γ1(ω)( 􏼁〈〈dσ ; dσ〉〉 + Λ1〈〈d
†
σ ; dσ〉〉

� U〈〈dσndσ ; dσ〉〉,
(A.4)

ω + εd − Γ2(ω)( 􏼁〈〈d†
σ ; dσ〉〉 − Λ2〈〈dσ ; dσ〉〉

� 1 − U〈〈d†
σndσ ; dσ〉〉,

(A.5)

where we put Γ1(ω) � 􏽐k,αt2(ω + εk)/E2
k, Γ2(ω) � 􏽐k,αt2

(ω − εk)/E2
k,Λ1(ω) � 􏽐k,ασΔα(t2/E2

k), andΛ2(ω) � 􏽐k,ασΔα
(t2/E2

k) with E2
k � ω2 − ε2k − Δ2. For the symbols σ � ↑, ↓, +

and − are, respectively, assigned for the up- and downspins
in the mathematical calculations. Replacing the sum over the
wavenumber k by an integral, we obtain Γ1(ω) � Γ2(ω) �

− 2iΓ0ρ(ω), Λ1 � − iΓ0σ(ΔL + ΔR)ρ0(ω), and Λ2 � − iΓ0σ
(ΔL + ΔR)ρ0(ω), where Γ0 � π]t2, ρ(ω) � (|ω|θ(|ω| − Δ)/

�������
ω2 − Δ2

√
) + (ωθ(Δ − |ω|)/i

�������
Δ2 − ω2

√
), and ρ0(ω) � (sgn

(ω)θ(|ω| − Δ)/
�������
ω2 − Δ2

√
) + (θ(Δ − |ω|)/ i

�������
Δ2 − ω2

√
). Here,

θ(ω) and sgn(ω) are the Heaviside step function and the
sign function, respectively.

To simplify the description of equations (A.2)–(A.5), we
introduce a matrix 􏽢Fdσ(ω) as

􏽢Fdσ(ω) �
〈〈dσndσ ; d†

σ〉〉 〈〈dσndσ ; dσ〉〉

− 〈〈d†
σndσ ; d†

σ〉〉 − 〈〈d†
σndσ ; dσ〉〉

⎛⎝ ⎞⎠. (A.6)

Using these expressions, equations (A.2)–(A.5) are
written in the matrix form as

􏽢G
(0)r

dσ (ω)􏼔 􏼕
− 1

􏽢G
r

dσ(ω) � 􏽢I + U􏽢Fdσ(ω), (A.7)

where 􏽢I is an identity matrix and

􏽢G
(0)r

dσ (ω)􏼔 􏼕
− 1

�
ω − εd − Σ011(ω) − Σ012(ω)

− Σ021(ω) ω + εd − Σ022(ω)

⎛⎜⎝ ⎞⎟⎠,

(A.8)

where 􏽢Σ0 is a noninteracting self-energy with components
Σ011 �Σ022 � − i(Γ0L + Γ0R)ρ(ω) ≡ − 2iΓ0ρ(ω), Σ012 � σiΓ0(ΔL +

ΔR)ρ0(ω), and Σ021 � σiΓ0(ΔL + ΔR)ρ0(ω), where we used the
property Γ0L � Γ0R ≡ Γ0. It is known that equation (A.6) is not
closed because 􏽢Fdσ includes the higher-order terms of 􏽢Gdσ .
To overcome this difficulty, we employ the truncation ap-
proximation. We first expand 􏽢Fdσ as

􏽢Fdσ � 􏽢ΣHF

dσ
􏽢G

r

dσ(ω) + 􏽢F
c

dσ(ω), (A.9)

where 􏽢ΣHF
dσ is the nonconnected part, which is given as
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􏽢ΣHF

dσ �
〈ndσ〉 〈dσdσ〉

〈d†
σd†

σ〉 − 〈ndσ〉
􏼠 􏼡, (A.10)

and the connected part is

􏽢F
c

dσ(ω) �
〈〈dσndσ ; d†

σ〉〉c 〈〈dσndσ ; dσ〉〉c

− 〈〈d†
σndσ ; d†

σ〉〉c − 〈〈d†
σndσ ; dσ〉〉c

⎛⎝ ⎞⎠. (A.11)

When the connected part is neglected, 􏽢Gdσ satisfies the
relation

􏽢G
(0)r

dσ (ω)􏼔 􏼕
− 1

− U􏽢ΣHF

dσ (ω)􏼠 􏼡􏽢G
r

dσ(ω) � 􏽢I. (A.12)

-e solution of (A.12) is obtained self-consistently. -e
occupation number in the QD 〈ndσ〉 and the pairing cor-
relation function 〈d†

σd†
σ〉 are given by the relations

〈ndσ〉 � −
1
π

􏽚 dωf(ω)Im 􏽢G
r

dσ(ω)􏽨 􏽩11,

〈d†
σd

†
σ〉 �〈dσdσ〉 � −

1
π

􏽚 dωf(ω)Im 􏽢G
r

dσ(ω)􏽨 􏽩21,

(A.13)
where f(ω) is the Fermi distribution function with the
Fermi level ωF � 0.

Beyond the HF approximation, one needs to take 􏽢F
c

dσ
into consideration. For the study of Kondo physics, we need
to consider only the contributions from the diagonal
components in equation (A.11) [50, 51]. Here, we apply the
Lacroix truncation, where the second order of connection
O(t2) is considered. In this approximation, although the
diagonal components of 􏽢F

c

dσ are considered, anomalous
higher-order Green’s functions such as 〈〈dσndσ ; dσ〉〉c and
〈〈d†

σndσ ; d†
σ〉〉c are neglected. -is yields the relation

〈〈d†
σ ; d

†
σ〉〉 �

Σ021(ω) + U〈d†
σd†

σ〉
ω + εd − Σ022(ω) + U〈ndσ〉

〈〈dσ ; d
†
σ〉〉,

(A.14)
and equation (A.2) becomes

ω − εd − Σ011(ω) − U〈〈ndσ〉〉􏼐 􏼑〈〈dσ ; d
†
σ〉〉

− Σ012(ω) + U〈dσdσ〉􏼐 􏼑〈〈d†
σ ; d

†
σ〉〉

� 1 + U〈〈dσndσ ; d
†
σ〉〉c.

(A.15)

All we have to do is to calculate 〈〈dσndσ ; d†
σ〉〉c self-

consistently. -e procedure is as follows. -e equation of
motion of 〈〈dσndσ ; d†

σ〉〉 is given by

ω − εd − U( 􏼁〈〈dσndσ ; d
†
σ〉〉 �〈ndσ〉 + 􏽘

α,k

t〈〈cα,k,σndσ ; d
†
σ〉〉

+ 􏽘
α,k

t􏼒〈〈d†
σcα,k,σdσ ; d

†
σ〉〉

− 〈〈c†α,k,σdσdσ ; d
†
σ〉〉􏼓.

(A.16)

-e higher-order Green’s functions, 〈〈cα,k,σndσ ; d†
σ〉〉,

〈〈d†
σcα,k,σdσ ; d†

σ〉〉, and 〈〈c†α,k,σdσdσ ; d†
σ〉〉, are included in

the right-hand side of equation (A.16). -e equations of
motion of these higher-order Green’s functions are

ω − εk( 􏼁〈〈cα,k,σndσ ; d
†
σ〉〉 � t〈〈dσndσ ; d

†
σ〉〉

+ σΔα〈〈c
†
α,− k,σndσ ; d

†
σ〉〉

+ 􏽘

α′,k′
t􏼒〈〈d†

σcα′,k′ ,σcα,k,σ ; d
†
σ〉〉

− 〈〈c†α′,k′,σdσcα,k,σ ; d
†
σ〉〉􏼓,

(A.17)

ω − ω1,k􏼐 􏼑〈〈d†
σcα,k,σdσ ; d

†
σ〉〉 �〈d†

σcα,k,σ〉 + t〈〈dσndσ ; d
†
σ〉〉

+ σΔα〈〈d
†
σc

†
α,− k,σdσ ; d

†
σ〉〉

+ 􏽘

α′,k′
t􏼒〈〈d†

σcα,k,σcα′ ,k′ ,σ ; d
†
σ〉〉

− 〈〈c†α′,k′,σcα,k,σdσ ; d
†
σ〉〉􏼓,

(A.18)

ω − ω2,k􏼐 􏼑〈〈c†α,k,σdσdσ ; d
†
σ〉〉 �〈c†α,k,σdσ〉 − t〈〈dσndσ ; d

†
σ〉〉

− σΔα〈〈cα,− k,σdσdσ ; d
†
σ〉〉

+ 􏽘

α′,k′
t􏼒〈〈c†α,k,σcα′ ,k′ ,σdσ ; d

†
σ〉〉

+〈〈c†α,k,σdσcα′ ,k′ ,σ ; d
†
σ〉〉􏼓,

(A.19)

where ω1,k � εk and ω2,k � − εk + 2εd + U. To obtain 〈〈dσndσ ;

d†
σ〉〉c, we apply cluster expansion under spin conservation

to Green’s functions in equations (A.17)–(A.19). -at is,

〈〈dσndσ ; d
†
σ〉〉 ∼ 〈ndσ〉〈〈dσ ; d

†
σ〉〉 +〈〈dσndσ ; d

†
σ〉〉c,

(A.20)

〈〈cα,k,σndσ ; d
†
σ〉〉 ∼ 〈ndσ〉〈〈cα,k,σ ; d

†
σ〉〉 +〈〈cα,k,σndσ ; d

†
σ〉〉c,

(A.21)

〈〈d†
σcα,k,σdσ ; d

†
σ〉〉 ∼ 〈d

†
σcα,k,σ〉〈〈dσ ; d

†
σ〉〉

+〈〈d†
σcα,k,σdσ ; d

†
σ〉〉c,

(A.22)

〈〈c†α,k,σdσdσ ; d
†
σ〉〉 ∼ 〈c

†
α,k,σdσ〉〈〈dσ ; d

†
σ〉〉

+〈〈c†α,k,σdσdσ ; d
†
σ〉〉c.

(A.23)

On the contrary, we neglect all the superconducting
correlation functions and pairing correlations obtained from
higher-order Green’s functions, such as 〈〈c†α,− k,σndσ ; d†

σ〉〉,
〈〈d†

σc†α,− k,σdσ ; d†
σ〉〉, and 〈〈cα,− k,σdσdσ ; d†

σ〉〉. Applying these
cluster expansions and approximations to (A.16), the final
equation composed of the connected part of Green’s functions is
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ω − εd − U 1 − 〈ndσ〉( 􏼁( 􏼁〈〈dσndσ ; d
†
σ〉〉c

� U􏼂〈ndσ〉 1 − 〈ndσ〉( 􏼁 − 〈dσdσ〉〈d
†
σd

†
σ〉􏼃〈〈dσ ; d

†
σ〉〉

+ 2εd + U 1 − 〈ndσ〉 +〈ndσ〉( 􏼁􏼂 􏼃〈dσdσ〉〈〈d
†
σ ; d

†
σ〉〉

+ 􏽘
α,k

t􏼒〈〈cα,k,σndσ ; d
†
σ〉〉c − 〈〈c†α,− k,σdσdσ ; d

†
σ〉〉c

+〈〈d†
σcα,− k,σdσ ; d

†
σ〉〉c􏼓.

(A.24)

To describe 〈〈cα,k,σnd,σ ; d†
σ〉〉c, 〈〈c†α,− k,σdσdσ ; d†

σ〉〉c, and
〈〈d†

σcα,− k,σdσ ; d†
σ〉〉c in terms of 〈〈dσndσ ; d†

σ〉〉c, we apply the
expansions

ω − εk( 􏼁〈〈cα,k,σndσ ; d
†
σ〉〉c ∼ t〈〈dσndσ ; d

†
σ〉〉c, (A.25)

ω − ω1,k􏼐 􏼑〈〈d†
σcα,− k,σdσ ; d

†
σ〉〉c ∼ A1,α,k,σ〈〈dσ ; d

†
σ〉〉

+ B1,α,k,σ〈〈dσndσ ; d
†
σ〉〉c,
(A.26)

ω − ω2,k􏼐 􏼑〈〈c†α,− k,σdσdσ ; d
†
σ〉〉c ∼ A2,α,k,σ〈〈dσ ; d

†
σ〉〉

− B2,α,k,σ〈〈dσndσ ; d
†
σ〉〉c,
(A.27)

where

A1,α,k,σ � ω1,k − εd − U〈ndσ〉􏼐 􏼑〈d†
σcα,− k,σ〉 + t〈ndσ〉

− 􏽘

k′,α′
t〈c†α′,k′ ,σcα,− k,σ〉,

A2,α,k,σ � ω2,k − εd − U〈ndσ〉􏼐 􏼑〈c†α,− k,σdσ〉 − t〈ndσ〉

+ 􏽘

k′,α′
t〈c†α,− k,σcα′ ,k′ ,σ〉,

B1,α,k,σ � t − U〈d†
σcα,− k,σ〉,

B2,α,k,σ � t + U〈c†α,− k,σdσ〉.
(A.28)

Substituting the approximations of equations (A.25)–
(A.27) into equation (A.24), we obtain 〈〈dσndσ ; d†

σ〉〉c.
Substituting this result into equation (A.15) with the help of
equation (A.14), we finally obtain 〈〈dσ ; d†

σ〉〉 as

〈〈dσ ; d
†
σ〉〉 �

1
Rσ(ω) − U Qσ(ω) + Tσ(ω)( 􏼁/Pσ(ω)( 􏼁

,

(A.29)

where

Pσ(ω) � ω − εd − U 1 − 〈ndσ〉( 􏼁 + 3iΓ0

+ U A1σ(ω) − A2σ(ω)( 􏼁,

Qσ(ω) � ω − εd − U〈ndσ〉( 􏼁 A1σ(ω) − A2σ(ω)( 􏼁

+ U 〈ndσ〉 1 − 〈ndσ〉( 􏼁 − 〈dσdσ〉〈d
†
σd

†
σ〉􏽨 􏽩

− 2iΓ0〈ndσ〉 − B1σ(ω) + B2σ(ω)( 􏼁,

Rσ(ω) � ω − εd − Σ011(ω) − U〈ndσ〉

−
Σ012(ω) + U〈dσdσ〉( 􏼁 Σ021(ω) + U〈d†

σd†
σ〉􏼐 􏼑

ω + εd − Σ022(ω) + U〈ndσ〉
,

Tσ(ω) � 2εd + U 1 +〈ndσ〉 − 〈ndσ〉( 􏼁( 􏼁

×〈dσdσ〉
Σ021(ω) + U〈d†

σd†
σ〉

ω + εd − Σ022(ω) + U〈ndσ〉
.

(A.30)

In the above, we defined the variables as

Aiσ � 􏽘
α,k

t〈d†
σcα,− k,σ〉

z+ − ωi,k

�
i

2π
􏽘
α,k

1
z+ − ωi,k

􏽚 dω′f ω′( 􏼁t􏼒〈〈cα,− k,σ ; d
†
σ〉〉

r

ω′

− 〈〈cα,− k,σ ; d
†
σ〉〉

a

ω′􏼓,

(A.31)

where we put z+ �ω + i0+ and used the spectral
theorem 〈d†

σcα,− k,σ〉 � (i/2π) 􏽒 dωf(ω)(〈〈cα,− k,σ ; d†
σ〉〉

r

ω

− 〈〈cα,− k,σ ; d†
σ〉〉

a

ω) and 〈c†α,− k,σdσ〉 � 〈d†
σcα,− k,σ〉. -e ex-

pression of 〈〈cα,k,σ ; d†
σ〉〉

r(a)

ω is given by

〈〈cα,k,σ ; d
†
σ〉〉

r(a)

ω

� t
z± + εk( 􏼁〈〈dσ ; d†

σ〉〉
r(a)

ω − σΔα〈〈d
†
σ ; d†

σ〉〉
r(a)

ω

z2
± − ε2k − Δ2

,

(A.32)

where z± �ω ± i0+, in which + and − denote the retarded
and advanced Green’s functions, respectively. Using these
expressions, the summation over k in equation (A.31) is
given by
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􏽘
k

t〈〈cα,− k,σ ; d†
σ〉〉

r(a)

ω′

z+ − ωi,k

�
Γ0
π

􏽚 dε
1

z+ − εi

×
z+
′ + ε( 􏼁〈〈dσ ; d†

σ〉〉
r(a)

ω′ − σΔα〈〈d
†
σ ; d†

σ〉〉
r(a)

ω′

z′2± − ε2 − Δ2
,

(A.33)

where ε1 � ε and ε2 � − ε + 2εd + U. Similarly, we defined Biσ
as

Biσ � 􏽘

α,α′ ,k,k′

t2〈c†α′,− k′ ,σcα,− k,σ〉
z+ − ωi,k

�
i

2π
􏽘

α,α′,k,k′

1
z+ − ωi,k

􏽚 dω′f ω′( 􏼁t
2

× 〈〈cα,− k,σ ; c
†
α′,− k′ ,σ〉〉

r

ω′ − 〈〈cα,− k,σ ; c
†
α′,− k′,σ〉〉

a

ω′􏼐 􏼑.

(A.34)

-e expression of 〈〈cα,− k,σ ; c†α′,− k′ ,σ〉〉
r(a)

ω
is approxi-

mately given as

〈〈cα,− k,σ ; c
†
α′,− k′ ,σ〉〉

r(a)

ω

�
− σΔα〈〈c

†
α,k,σ ; c†α′,− k′ ,σ〉〉

r(a)

ω
+ t〈〈dσ ; c†α′,− k′ ,σ〉〉

r(a)

ω
+ δα,α′δk,k′

z± − εk′

∼
t〈〈dσ ; c†α′,− k′ ,σ〉〉

r(a)

ω
+ δα,α′δk,k′

z± − εk′
,

(A.35)

with

〈〈dσ ; c
†
α,k,σ〉〉

r(a)

ω

� t
z± + εk( 􏼁〈〈dσ ; d†

σ〉〉
r(a)

ω − σΔα〈〈dσ ; dσ〉〉
r(a)
ω

z2
± − ε2k − Δ2

.

(A.36)

In the numerical calculation of the multiple integral in
Ai,σ and Bi,σ , we use the following formulas:

I1 � 􏽚
∞

− ∞
dε

1
z+ − ε

1
z′2± − ε2 − Δ2

�

± sgn ω′( 􏼁πi
�������

z′2± − Δ2
􏽱

1

− z+∓ sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

π
�������

Δ2 − z′2±

􏽱
1

− i

�������

Δ2 − z′2±

􏽱

− z+

, ω′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.37)

I2 � 􏽚
∞

− ∞
dε

1
z+ − ε

ε
z′2± − ε2 − Δ2

�

πi

z+ ± sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

πi

i

�������

Δ2 − z′2±

􏽱

+ z+

, ω′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(A.38)

I3 � 􏽚
∞

− ∞
dε

1
z+ + ε − 2εd − U

1
z′2± − ε2 − Δ2

�

∓sgn ω′( 􏼁πi
�������

z′2± − Δ2
􏽱

1

z+ − 2εd − U ± sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

− π
�������

Δ2 − z′2±

􏽱
1

i

�������

Δ2 − z′2±

􏽱

+ z+ − 2εd − U
, ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(A.39)
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I4 � 􏽚
∞

− ∞
dε

1
z+ + ε − 2εd − U

ε
z′2± − ε2 − Δ2

�

− πi

z+ − 2εd − U ± sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

− πi

i

�������

Δ2 − z′2±

􏽱

+ z+ − 2εd − U
, ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(A.40)

In this Lacroix approximation, the higher-order Green’s
functions in equation (A.16) are expressed in terms of
〈〈dσ ; d†

σ〉〉 and 〈〈dσndσ ; d†
σ〉〉c. Eliminating 〈〈dσndσ ; d†

σ〉〉c,
we calculate 〈〈dσ ; d†

σ〉〉 and 〈〈d†
σ ; d†

σ〉〉 self-consistently.
In the formulation, 〈d†

σcα,k,σ〉 and 〈c†α,k,σcα′ ,k′,σ〉 are taken
into consideration through Aiσ and Biσ , respectively. -ese
terms diverge logarithmically at the Fermi level at zero tem-
perature and play an important role in the Kondo effect [29].

Following similar procedures, we can calculate
〈〈d†

σ ; dσ〉〉 and 〈〈dσ ; dσ〉〉, and the final expressions are

〈〈d†
σ ; dσ〉〉 �

1
􏽢Rσ(ω) + U 􏽢Qσ(ω) + 􏽢Tσ(ω)􏼐 􏼑/􏽢Pσ(ω)􏼐 􏼑

,

(A.41)

〈〈dσ ; dσ〉〉 �
Σ012(ω) + U〈dσdσ〉

ω − εd − Σ011(ω) − U〈ndσ〉
〈〈d†

σ ; dσ〉〉,

(A.42)

where

􏽢Pσ(ω) � ω + εd + U 1 − 〈ndσ〉( 􏼁 + 3iΓ0

+ U 􏽢A1σ(ω) − 􏽢A2σ(ω)􏼐 􏼑,

􏽢Qσ(ω) � ω + εd + U〈ndσ〉( 􏼁 − 􏽢A1σ(ω) + 􏽢A2σ(ω)􏼐 􏼑

+ U 〈ndσ〉 − 1 +〈ndσ〉( 􏼁 +〈dσdσ〉〈d
†
σd

†
σ〉􏽨 􏽩

− 2iΓ0〈ndσ〉 − 􏽢B1σ(ω) + 􏽢B2σ(ω)􏼐 􏼑

− σΔ〈d†
σd

†
σ〉Γ0 iρ0(ω) + 2εd + U( 􏼁

1
π

�I3(ω)􏼔 􏼕,

􏽢Rσ(ω) � ω + εd − Σ022(ω) + U〈ndσ〉

−
Σ012(ω) + U〈dσdσ〉( 􏼁 Σ021(ω) + U〈d†

σd†
σ〉􏼐 􏼑

ω − εd − Σ011(ω) − U〈ndσ〉
,

􏽢Tσ(ω) � 2εd + U 1 +〈ndσ〉 − 〈ndσ〉( 􏼁( 􏼁

×〈d†
σd

†
σ〉
Σ012(ω) + U〈dσdσ〉

ω − εd − Σ011(ω) − U〈ndσ〉
,

(A.43)

where we defined 􏽢Aiσ(ω), 􏽢Biσ(ω), and �I3(ω) as

􏽢Aiσ � 􏽘
α,k

t〈c†α,k,σdσ〉
z+ − 􏽢ωi,k

�
i

2π
􏽘
α,k

1
z+ − 􏽢ωi,k

􏽚 dω′f ω′( 􏼁t􏼒〈〈dσ ; c
†
α,k,σ〉〉

r

ω′

− 〈〈dσ ; c
†
α,k,σ〉〉

a

ω′􏼓,

(A.44)

􏽢Biσ � 􏽘

α,α′ ,k,k′

t2〈c†α,k,σcα′,k′ ,σ〉
z+ − 􏽢ωi,k

�
i

2π
􏽘

α,α′ ,k,k′

1
z+ − 􏽢ωi,k

􏽚 dω′f ω′( 􏼁t
2

× 〈〈cα′,k′,σ ; c
†
α,k,σ〉〉

r

ω′ − 〈〈cα′,k′,σ ; cα,k,σ〉〉
a

ω′􏼐 􏼑,

(A.45)

�I3(ω) � 􏽚 dε
1

z+ − 􏽢ω2

1
z2

+ − ε2 − Δ2
, (A.46)

where 􏽢ω1,k � − εk, 􏽢ω2,k � εk − 2εd − U, 􏽢ω1 � − ε, and 􏽢ω2 � ε−
2εd − U. In the numerical calculation of the multiple integral
in 􏽢Ai,σ and 􏽢Bi,σ , we use the following formulas:

􏽢I1 � 􏽚
∞

− ∞
dε

1
z+ + ε

1
z′2± − ε2 − Δ2

�

± sgn ω′( 􏼁πi
�������

z′2± − Δ2
􏽱

1

− z+ ± sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

π
�������

Δ2 − z′2±

􏽱
1

i

�������

Δ2 − z′2±

􏽱

− z+

, ω′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.47)

􏽢I2 � 􏽚
∞

− ∞
dε

1
z+ + ε

ε
z′2± − ε2 − Δ2

�

πi

z+∓ sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

πi

− i

�������

Δ2 − z′2±

􏽱

+ z+

, ω′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(A.48)
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􏽢I3 � 􏽚
∞

− ∞
dε

1
z+ − ε + 2εd + U

1
z′2± − ε2 − Δ2

�

∓sgn ω′( 􏼁πi
�������

z′2± − Δ2
􏽱

1

z+ + 2εd + U∓ sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

− π
�������

Δ2 − z′2±

􏽱
1

− i

�������

Δ2 − z′2±

􏽱

+ z+ + 2εd + U
, ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.49)

􏽢I4 � 􏽚
​ ∞

− ∞
dε

1
z+ − ε + 2εd + U

ε
z′2± − ε2 − Δ2

�

− πi

z+ + 2εd + U∓ sgn ω′( 􏼁

�������

z′2± − Δ2
􏽱 , ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Δ,

− πi

− i

�������

Δ2 − z′2±

􏽱

+ z+ + 2εd + U
, ω′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Δ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(A.50)
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