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Abstract: Highly effective pesticide applications require a continual adjustment of the pesticide
spray flow rate that attends to different canopy characterizations. Real-time image processing with
rapid target detection and data-processing technologies is vital for precision pesticide application.
However, the extant studies do not provide an efficient and reliable method of extracting individual
trees with irregular tree-crown shapes and complicated backgrounds. This paper on our study
proposes a Mahalanobis distance and conditional random field (CRF)-based segmentation model to
extract cherry trees accurately in a natural orchard environment. This study computed Mahalanobis
distance from the image’s color, brightness and location features to acquire an initial classification of
the canopy and background. A CRF was then created by using the Mahalanobis distance calculations
as unary potential energy and the Gaussian kernel function based on the image color and pixels
distance as binary potential energy. Finally, the study completed image segmentation using mean-
field approximation. The results show that the proposed method displays a higher accuracy rate
than the traditional algorithms K-means and GrabCut algorithms and lower labeling and training
costs than the deep learning algorithm DeepLabv3+, with 92.1%, 94.5% and 93.3% of the average P,
R and Fl-score, respectively. Moreover, experiments on datasets with different overlap conditions and
image acquisition times, as well as in different years and seasons, show that this method performs
well under complex background conditions, with an average Fl-score higher than 87.7%.

Keywords: agricultural computer vision; tree-crown segmentation; complex scene; natural or-
chard environment

1. Introduction

Precision agriculture is a management strategy that uses modern science and technol-
ogy to obtain required agricultural information for efficient precision crop management,
such as formula fertilization, precision seeding, pest control, weed removal and water
management [1-3]. Precision-spraying technology is vital for prevention and pest control.
However, although precision-spraying technologies have been widely used in precision
agricultural production, their efficient application on cherry orchards remains a big chal-
lenge [4]. For instance, implementing established spraying strategies to tree crops with
different canopy characteristics, such as irregular sizes and shapes, may lead to spray
drift and pesticide overdosing, posing a great risk to farmers and the environment [5,6].
The situation may be worsening when the crown’s size and shape change significantly in
different growth stages [7]. To reduce the negative impact of pesticide application, it is
necessary to develop a canopy extraction technology that provides accurate tree-canopy
data for precision-spraying systems.

Proximal sensing vehicle-mounted technologies are defined as the use of sensors and
traction systems to identify and detect agricultural parameters [8,9]. At present, field-based
sensors are widely adopted for automatic tree identification, such as Visible-Near-Infrared
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imaging [10,11], stereo imaging [12,13] and thermal imaging [14,15]. Target extraction
based on RGB (Red Green Blue) digital cameras has seen a wide application in preci-
sion farming due to its low cost and non-contact data collecting [16-18]. In this process,
color index-based segmentation techniques are mostly applied to complete the crucial
background removal. Several studies summarized the well-performing color indices in dis-
tinguishing plants from backgrounds [19-21], including excessive green index (ExG) [22],
excess green minus excess red index (ExR) in RGB color space [23] and spectral vegetation
indices such as the Normalized Difference Vegetation Index (DVI) [24] and the Green—Red
Vegetation Index (GRV) [25]. However, such color index-based methods will be ineffec-
tive when the background and plant share similar colors, e.g., green weeds and canopies.
Omuair extracted canopies from artificial turf in high-altitude communities using color and
texture features [26], which is not applicable to a natural orchard environment where the
physiological features will be unstable, especially when the canopy overlaps the weeds [27].
Past studies showed that thresholding and filtering technology based on the grayscale
or edge characteristics are often used in image pre-processing or combined with other
segmentation methods [28,29], which means that the method based on a single feature is
difficult to remove complex backgrounds.

By contrast, the statistics-based machine learning (ML) method can overcome the
limitations of feature-based segmentation [30-32]. ML methods can be divided into two
categories: unsupervised and supervised learning algorithms. Unsupervised learning algo-
rithms typically adopt clustering methods, such as Fuzzy C-Means (FCM), K-means and
Gaussian Mixture Model (GMM). Liu et al. [33] used the Type-2 FCM to extract the Ginkgo
and Platanus canopies from the UAV(Unmanned Aerial Vehicle) image without a complex
background. Qi et al. [34] proposed an effective fruit tree segmentation method based
on K-means clustering and color features to separate the background from the canopy.
This method, however, is not ideal for the input images that contain weed background.
Abdalla et al. [35] employed GMM, self-organizing maps, Fuzzy C-means and K-means
algorithms calculated with the highest color features from ten color models to segment
oilseed rape images, but the results cannot be generalized to other complex situations as
the features between oilseed rape and background are obviously different and easy to
distinguish. On the other hand, the unsupervised learning algorithms do not require model
training and are simple to use, but they cannot process images with complex backgrounds.

Supervised learning algorithms, which can be divided into two types, i.e., tradi-
tional supervised learning algorithms and deep learning, can perform well in the segmenta-
tion task of complex scenes [36-38]. Chen et al. [39] proposed a citrus canopy segmentation
method based on the SVM (Support Vector Machines) segmentation model trained with
14 color features and five statistical textures. Mattos et al. [40] used the CNN (Convolutional
Neural Network) algorithm to segment the citrus canopy from the background, which has
an overall accuracy of 94% in seven different orchards. Wu et al. [41] proposed the deep
learning model to extract apple tree’s canopies and parameters with an over 90% of seg-
mentation accuracy and recall rate. This body of research has exemplified the application of
artificial intelligence in the farming industry. However, traditional supervised learning al-
gorithms rely on complex feature engineering (FE), while deep learning requires large-size
labeled data and high-performance computers. Lu et al. [42] summarized 34 available deep
learning datasets in the agricultural field, including weeds, fruits and common ground
crops, but no open-source datasets on fruit trees are included. Hence, supervised learning
is not always the best choice.

Compared to the structured environments, a natural orchard environment poses more
challenges to image segmentation. For example, the images taken from cherry orchards
may include various non-target elements such as sky, land, cover films (Figure 1a) and
houses (Figure 1b). Moreover, the tree’s physiological properties, especially the porous
media, lead to an uneven distribution of light within the canopy (Figure 1c). It is also
difficult to differentiate the canopy from the weeds when there is an overlap between the
two (Figure 1d).
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Figure 1. Challenges of crown segmentation in the unstructured environment: (a) sky, land and cover
films; (b) house; (c) uneven light distribution within the canopy images; and (d) weeds.

The objective of the current study was, therefore, to propose a method for extracting
cherry-tree canopies from the complex background that has a higher accuracy rate than the
traditional supervised learning methods and lower computational costs than unsupervised
algorithms, such as deep learning. This study provides a new way to characterize image
features of tree crown by computing Mahalanobis distance from the image’s color, bright-
ness, and location features to acquire an initial classification of the canopy and background.
Moreover, the tree-crown area features and global image features were considered by using
the conditional random field (CRF). It was created by using the Mahalanobis distance
calculations as unary potential energy and the Gaussian kernel function based on the image
color and pixels distance as binary potential energy. Finally, the study completed image
segmentation using mean-field approximation. This proposed work will contribute to
future machine-vision-based tree-crop extraction.

2. Materials Acquisition
2.1. Test Site and Image Acquisition

The study was conducted on a cherry orchard of Zhongnong Futong Company in
Tongzhou, Beijing (116°48'32.1"" E and 39°51'46.37"" N) (Figure 2a). The test area has
representative climatic characteristics in local orchards, with weeds germinating and
flourishing in May and June. Cherry trees are spaced 4 m per plant with a 5 m path
between rows. The average height of the canopy was about 1.7 m. An untrained tree
experimental field was selected, with a total area of 10,660 m? (82 x 130 m).
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Figure 2. Test site, and the illustrations of images under different lighting conditions and weeds densities: (a) cherry orchard

in Tongzhou Beijing, (b) cloudy day with high-density weeds and (c) sunny day with normal-density weeds.

The trees were photographed with a digital camera (LICE-7M2, Sony Inc., Tokyo,
Japan), which features a 24.3-megapixel sensor that enables high-resolution images,
5-Axis Steady Shot INSIDE Stabilization, ISO sensitivity of 400, a focal length of 135 mm
and a body size of 126.9 x 95.7 x 59.7 mm. The camera was mounted on Beno IT15 gimba-
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land positioned 1 to 1.5 m above the ground and 3 to 3.5 m in front of the tree trunk. In order
to execute the image processing program, the input image was adjusted to the following
unified parameters: png format (lossless compression), 900:1600-pixel aspect ratio, 24 bits
(three channels in total, and 8 bits for each channel). The images were collected under
different light conditions and in different growth stages from April to October, each year,
between 2018 and 2020. Figure 2 illustrates images captured under different lighting and
weedy conditions in the field. Figure 2b exemplifies a cloudy day with high-density weeds,
whereas Figure 2¢ displays a sunny day with normal-density weeds.

Template and Ground Truth Generation

The template and the ground truth are images of manually delineating the canopy
area, with the former used for image classification and the latter for algorithm performance
comparisons. In order to minimize subjectivity in image labeling, we invited an expert with
experience in agricultural image processing to use Photoshop to generate ground truth and
the template. The template includes two manually segmented images, which only capture
the crown area and are representative in terms of the colors, light and shooting angles in the
image datasets. They were captured on a sunny and cloudy day, respectively. The template
was created with Adobe Photoshop 2018 as an image-labeling tool [43], following three
steps: selecting the lasso tool in Adobe Photoshop 2018 to outline the edge of the tree
crown, taking the inside region of the closed curve as the image foreground and using the
fill function to set the area outside the foreground to black (Figure 3b). In effect, the ground
truth processing for algorithm performance comparison follows the same workflow but
adds one step of setting the image foreground to white (Figure 3c).

(b) (c)

Figure 3. Image annotation schematic: (a) original canopy image, (b) standard image and (c) ground
truth image.

3. Methodology

Figure 4 is a flowchart of the proposed method: feature extraction, Mahalanobis
distance computation and conditional random field (CRF) building. All algorithms were
developed in MathWorks MATLAB R2018a and Python3.6 software on a PC equipped
with an Intel®Core ™ i7-6700 central processing unit (CPU) and 16 GB of random-access
memory (RAM).
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Figure 4. Overall flowchart of the proposed method.

3.1. Feature Construction of Tree Crown

Feature extraction consists of two steps: extracting color features to remove the non-
green background and extracting brightness and height features to separate canopies
from weeds.

3.1.1. Color Feature Extraction

Since the plants were distinctively green, the study removed non-green background
regions based on color features [44]. HSV (hue, saturation and value) color model was
adopted to extract color features, where H represents hue, S represents saturation, and V
represents brightness. In this model, only the hue (H) and saturation (S) channels describe
color information, while brightness (V) is a separate channel [45]. Thus, the HSV model
will effectively deal with lighting changes or uneven lighting in the orchard image, which is
an unachievable outcome in RGB color space. Converting RGB color space to HSV follows
the calculations below [45]:

MAX = max(R',G',B'), MIN = min(R’,G', B) @
0, ifR' = G = B
60><(O+M), ifMAX = R/
H="9 ¢« (2 + M), if MAX = G/ )
60><(4+M), FMAX — B
5= { el(;,e ifmlg/ } x 100% @
’ MAX

V= MAX x 100% )
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where we have the following;:

T 1 G = 7 -
r+g+b r+g+b r+g+b

Rl r ! g BI b

where r, ¢ and b are the red, green and blue channels in RGB color space; R, G’ and G’ are
the normalized red, green and blue channels; H represents the type of color; S indicates the
degree of color saturation; and V is the value of brightness.

Figure 5 is an example of the variation of spectral components at the exacted location
(marked as a red dotted line) under different lighting conditions. Figure 5b shows that the
G component in the RGB color model changes sharply, while the H and S components in
the HSV color space are stable. Therefore, the hue (H) and saturation (S) are selected as the
color features for non-green background removal.

0.3
0.25
0.2f
0.1]
5
0.1
0.0
5
a i) C
(a) (b)

Figure 5. Influence of lighting conditions on spectral components: (a) an image of a fruit tree with fading light from left to

right and (b) the curve of green, hue and saturation under different lighting conditions.

3.1.2. Brightness and Height Feature Crossing

Weeds have a similar green color to the canopy; thus, we are not able to remove them
from the image by using color features only. Weeds are annual herbaceous plants usually
growing 0.5 m tall, while tree crops can be up to 2.5-4.0 m. However, this significant
height difference may be ineffective in distinguishing them when the weeds and the tree
canopy may come into contact and overlap in the image. Therefore, the target region can
be divided into two parts by plant height: the upper canopy area and the overlapping area
between the canopy and the weeds. In the isolated canopy region, it is easy to distinguish
the canopy from weeds based on height. In the overlapping area, the distinguishment can
be based on light intensity. The light intensity from the upper crown layer to the lower
is gradually weakened [46]. Thus, the lower crown layer is mainly in the shadow due
to insufficient light, while the weed area is in the sun (Figure 6). This study selected the
brightness distribution in the vertical direction of the image as the feature to distinguish
between the canopy and weeds. The height and brightness features can be extracted from
vertical pixel coordinates of the image and the V component of the HSV space, respectively.
Pixel coordinates represent the position of pixels in the image. For an image with height H,
each pixel height is (Y; = 1,2, H). The V component was obtained by Equation (4).
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Figure 6. The illustrations of the brightness and height distribution of canopy under different lighting
conditions. The yellow dotted lines indicate the mingled areas, and the color bar manifests brightness
value. From left to right are the crown- and weed-height distribution, the original image and the
brightness image; from top to bottom are the sunny fruit-tree images and cloudy fruit-tree images.

3.2. Mahalanobis Distance Computation

Mahalanobis distance is a distance criterion that assigns each pixel into prediction
groups, i.e., tree crown and background, by measuring pixel similarity [47]. This study
utilized Mahalanobis distance rather than other measures, e.g., Euclidean distance, be-
cause Mahalanobis distance considers the correlation between features. The Mahalanobis
distance classified the canopy and background pixels by measuring the feature similar-
ity between the original image and the template. The corresponding calculation follows
two steps:

(a) Computing mean vectors and covariance matrix: The mean vectors are the average
value of the feature, commonly referring to the centroid of data distribution. The fea-
ture is a four-dimensional vector (H, S, Y and V) which is extracted from the template
and sample images. The mean vectors are calculated as follows:

n=f(H S, V,Y) 5)
— 1 n — 1 n - 1 n o 1 "
H= Y0 H,S=-Y. S, V=-Y V,Y="YI Y ©

where H, S and V are the hue, saturation and brightness components of HSV color
space, respectively; Y is pixel height; n is the number of pixels; i=1,2, 3, n; and f is a
vector composed of H, S, V and Y. The covariance matrix is a square and symmetric
matrix containing the variances and covariances associated with components of
feature f (H, S, V and Y). The formula to compute the covariance between two

variables is as follows:
1
Cov(f, 1) = —(f =)' (f — 1) @)

where f is a pair of variables with the four components (H, S, V, Y); u is the mean
vectors obtained by Equation (5); n is the number of pixels.
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(b) Computing the Mahalanobis distance: Mahalanobis distance will divide each pixel
into two groups described by different mean vectors and covariances. Its formula
Equation (8) is as follows:

M= \/(f =) Coo(f — ), f = (H,S,V,Y) ®)

where f is four-dimensional vectors containing the H, S, V and Y values of each pixel;
u is the mean vectors calculated by Equation (5); the Cov is the covariance matrix
calculated by Equation (7).

Figure 7 exemplifies the Mahalanobis distance calculation results. Figure 7b is the
Mahalanobis distance obtained only by the H and S features where the non-green back-
ground was removed based on color feature, but the weeds were remained in the image.
Figure 7c is the Mahalanobis distance based on H, S, V and Y features. From Figure 7,
the Mahalanobis distance of the canopy regions is small, the gray value is low and the
color is close to black. When the background area has a low similarity to the canopy,
the Mahalanobis distance value becomes larger and the color is close to white.

- 0.8

0.4

0.2

Figure 7. Examples of Mahalanobis distance computing: (a) original image; (b) three-dimensional image of Mahalanobis
distance based on H and S features; and (c) three-dimensional image of Mahalanobis distance based on H, S, V and

Y features.

3.3. Conditional Random Field for Image Segmentation

After a pre-classification of the image based on Mahalanobis distance, this section
discusses conditional random field (CRF) modeling for image segmentation.

3.3.1. Energy Function Construction

Conditional Random Field (CRF) is a conditional probability distribution model
that outputs random variables with a set of random input variables [48]. In the image
segmentation task, CRF treats pixels or pixel features as random input variables with a
probability distribution and pixel label as output variables. If the definition of the random
variable Y; = (y1, Y2, y3, yn;) obeys the Markov property, the distribution of Y; constitutes
a conditional random field. Each pixel i is assigned a corresponding label Y; through
observable variable X; = (x1, X2, X3, xp) in this random field. Figure 8 illustrates the overall
operation of the CRF model.
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Feature sequence

Label sequence

Label set

Figure 8. The CRF operation chart. X is the feature sequence, Y is the label sequence, L1 indicates
the tree-crown class, and L2 indicates the background class. R, G and B are the red, green and
blue channels in RGB color space; w and & represent the vertical and horizontal coordinate of the
image, respectively.

The specific steps are as follows:
(1) Model construction: establishing the mapping relationship between X and Y through

the conditional probability distribution P(Y | X). In the fully connected conditional
random field model, P(Y | X) is expressed in the form of Gibbs distribution:
PY|X) =

705 P E(1X)) ©)

where X indicates the feature set f, and Y corresponds to the class labels, Ye{L1, L2}.
L1 represents the tree crown, and L2 is the background. Z is a normalization term that
ensures the distribution P sums to 1 and is defined as follows:

Z(X) =) exp{E(Y|X)} (10)
Y

where E(Y | X) denotes the Energy function.

(2) The Energy function minimization: CRF aims to find the output Y with the maximum
conditional probability P(Y | X). According to Equation (9), the problem of condi-
tional probability maximization is the problem of energy minimization, which can be
expressed as follows:

y" = arg myinE(Y|X) (11)

where y* is the minimization of Energy function E(Y | X) The E(Y | X) consists of two types
of potential energy: unary potentials and pairwise potentials:

N N
E(Y|X) = ;lpu(]/i) + Y v (viy)) (12)

ij=1

where 1, (y;) is the unary potential for the probability of pixel i taking the label y;, denot-
ing the pixel’s local information; ,(y;, y;) is the pairwise potential, representing the label
class similarity relationship between nearby pixels i and j, including inter-pixel global
information; and i, j€{1, 2,3, N} are the pixel indices.

Equation (12) shows that unary and pairwise potential functions are the crux of
conditional random field modeling. Their respective definition follows.

(3) The unary potential construction: The unary potential is the probability that a pixel
obtains the corresponding label, indicating the category information of the current
observation point. The study employed the Mahalanobis distance classifier results
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described in Section 3.2 to construct the unary potential energy. The unary potential
takes the negative logarithm to provide a framework that unifies energy minimization:

ul) = —log (1= (i) (13)

Pwm (y;) is the label assignment probability for each pixel by the Mahalanobis distance
classifier, which is calculated by Equation (8). The smaller the Mahalanobis distance,
the greater the probability that the pixel is assigned to the canopy category. When the
probability that the pixel i takes the label y; is large, the unary potential and energy
are small.

(4) The pairwise potential computation: The pairwise potential pixels are constraints of
the final label assignment. Its goal is to assign adjacent labeled pixels with similar
characteristics to the same category. The punishment strength is positively correlated
to the feature difference between adjacent pixels under the same label, thereby re-
stricting the classifier’s misclassification behavior. The general form of the paired
potential function is a linear combination of Gaussian kernel functions:

K
ye(vi y;) = uyiy)) Z_ﬁlw(’”)K(’”) (fi f) (14)

where u (y;, y;) is a constant symmetric label compatibility function between the labels
Yi, and y; to punish the similar pixels with different class labels. When the classifier
assigns different labels to adjacent pixels, the greater the difference between pixel features,
the smaller the penalty is, which is consistent with Gibbs energy minimization. Moreover,
w M is the coefficient weight of the given kernels; m = (1, 2,3, N) is the number of kernel
K (M), K (m) (f]-, f]-) is the kernel potential function on feature vectors; and f] is feature vectors
of pixels i, while f; is feature vectors of pixels j.

This study used two Gaussian kernels to construct the K, which is primarily composed
of the pixels’ spectral and distance information (m = 2):

@ W pi—pl® 1G=Gl | o pi = pil’
K (fl,f]) =wMexp(— 2 o )+ w'Hexp(— 2 ) (15)
4 ﬁ Y

where the first item is an appearance kernel based on RGB color and distance information;
C s a three-dimensional vector composed of R, G and B components; P is a two-dimensional
position vector composed of vertical and horizontal directions; C; and C; are color vectors
of the pixel on positions p; and p;. The second item is a smooth kernel used to remove small
isolated areas; w () and w @ are the coefficient weights of each kernel; 6, 0 B and 0., are
the parameters of Gaussian kernel.

3.3.2. CRF Inference

The average field approximation theory is an efficient inference method that ap-
proximates the conditional probability distribution P(Y) with a simple distribution Q(Y),
thereby simplifying the calculation process [49]. The average field approximation is calcu-
lated with Equation (16):

Q(Y) = H Qi(yi) (16)

where Q;(y;) is the independent marginal distribution of the random variable y;. For ease
of exposition, assume that Q(Y) is the product of multiple independent distributions.

To make the distribution Q(Y) approximate the true distribution P(Y), this study used
the Kullback-Leibler (KL) distance as a metric, which is defined as follows:

_ Yo Qi(yi)
D(@IP) = o)1 5( ) a7
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where D is the KL distance between the Q distribution and the P distribution. The Q
distribution can be calculated by taking the minimum KL distance as the convergence
criterion. The iteration flow includes five steps: message passing, weighting filter output,
compatibility conversion, the unary potentials adding and probability normalizing. Liu has
introduced this iteration process in detail [50].

3.4. Evaluation Indices and Competing Segmentation Methods for Segmentation Performance
3.4.1. Competing Segmentation Methods

To validate the proposed method’s crown segmentation effects on cherry trees, this study
compared it with the K-means clustering algorithm, Convolutional Neural Networks (CNN)
and GrabCut algorithm, which were widely used in tree image segmentation [51-53].
K-means is an unsupervised machine learning algorithm that does not require labeled
datasets and model training [54]. To extract crowns by using the K-means clustering algo-
rithm, the Elbow methods were employed to determine the optimal number of clusters (k)
by computing the sum of squared errors (SSE). Figure 9a shows the relationship between k
and SSE. When the k value increases, the SSE value drops sharply. However, the SSE value
will not change significantly if the k number continues to increase. Therefore, the K value at
the bending position identifies the optimal number of clusters. CNN is a supervised machine
learning algorithm that relies on labeled data and model training. DeepLabV3+ is one of the
best CNN-based semantic segmentation models at present [55]. It improves the Xception
network and adopts an Encoder-Decoder structure, thereby optimizing boundary details
by restoring the ow-level features (Figure 9d). DeepLabV3+ retrains the Atrous Spatial
Pyramid Pooling (ASPP) module to acquire multi-scale information. To segment canopies
using DeeplabV3+, this study created 500 single-channel labeled images (see Figure 9c for
an example), of which 400 were used for training and 50 for verification and testing, re-
spectively. The model was trained on the Ubuntu 18.04 operating system of NVIDIA RTX
2080TI. GrabCut is an interactive algorithm that requires user interaction to implement
image segmentation [56]. GrabCut segments images by creating a new pixel distribution
that is close to the foreground’s pixel distribution. The foreground is the area inside the
red bounding box, which is manually drawn by experts with image processing experience

(see Figure 9b).

8000 '

6000 1

5—; 4000 1
up

2000 1

0 L 1 1 |

1 2 3 4 ] 6 7

Figure 9. Cont.
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Figure 9. The illustrations of the four competing segmentation. (a) Relationship between k and SSE. (b) Image foreground
labeling. (c) Labeled data for model training. (d) The structure of the DeepLabV3+ network.

3.4.2. Evaluation Indices

Three performance measures, namely Precision (P), Recall (R) and Fl-score (F1),
are introduced to evaluate the cherry canopy segmentation results. P is the correctly
extracted percentage of the canopy pixels with the segmentation method, indicating the
segmentation accuracy. R is the percentage of the missing canopy pixels, measuring the
segmentation completeness. F1 is the compromised mean of the P and R, representing
the global metric of canopy segmentation accuracy. The actual trees area was manually
counted using Adobe Photoshop 2018. These metrics are defined as follows:

P=TP/(TP+FP) x 100% (18)
R=TP/(TP+FN) x 100% (19)
F, =2PR/(P+R) x 100% (20)

where TP is the number of canopy pixels correctly produced by the segmentation algorithm.
FP represents the number of background pixels that are misidentified as trees. FN represents
the number of tree pixels that are misidentified as background. A higher value of these
three metrics indicates the segmentation method’s better performance.

4. Results and Discussion
4.1. Segmentation Results of the Four Competing Methods

To evaluate the performance of the proposed method, the study selected 200 images
with complex backgrounds, including bare soil, weeds, sidewalks, houses, plastic films
and shelter, and under different lighting conditions. Figure 10 shows the original images
of cherry trees. There were four rows of images that were taken on different weather
conditions, i.e., sunny or cloudy and with different densities of weeds, i.e., high-density
or low-density. Figure 10 exemplifies the four competing methods” segmentation results.
From left to right are: the original image, the result of the proposed method, the K-means
algorithm’s result, the DeepLabV3+ algorithm’s result, the GrabCut algorithm’s result and
the ground truth.
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Figure 10. Comparison of different segmentation results: (a) sunny day and low-density weeds;
(b) sunny day and high-density weeds; (c) cloudy day and low-density weeds; and (d) cloudy day
and low-density weeds. From left to right are the original image, the result of the proposed method,
the K-means algorithm’s result, the DeepLabV3+ algorithm’s result, the GrabCut algorithm’s result
and the ground truth.

Figure 10 shows that the K-means algorithm failed to discriminate the canopy from
the background. Lighting conditions have a greater impact on the K-means algorithm than
the densities of weeds, as this method over-segmented all shaded areas as tree crowns.
The remaining three methods performed well in canopy identification, robust under dif-
ferent light conditions and with different densities of weeds. However, the DeepLabV3+
algorithm results are not satisfactory, which is ineffective in crown branch recognition due
to the ignored local information in convolution and upsampling. The overall segmenta-
tion results using the GrabCut method are better than that of K-means and DeepLabV3+
algorithm. However, the GrabCut method lost many image details, resulting in smooth
tree-crown edges. This experiment shows that the proposed method could accurately
identify tree crowns and obtain more image details than other algorithms.

Table 1 shows the average segmentation result and the computational cost of 200 test
images using different segmentation methods. The average P, R and F1 values of K-means
are 58.1%, 79.7% and 68.9%, respectively. The segmentation accuracy of DeepLabV3+ is
higher than that of K-means, with the average P increased by 24.3% and the average R
reduced by 5.8%. The GrabCut algorithm’s average P, R and F1 values have increased by
4.4%, 6.5% and 5.7% compared with K-means and 28.2%, 0.6% and 14.9% compared with
DeepLabV3+. The results also show that the proposed method performs better than the
remaining three methods with 92.1%, 94.5% and 93.3% of the average P, R and F1 values.
K-means algorithm takes the lowest computational cost and does not require labeling data
or model training. In contrast, the DeepLabV3+ algorithm needs massive model training
and image annotations. GrabCut requires labeling all testing images, thereby taking
the longest time. Hence, the proposed method in the study has a higher accuracy rate
than traditional unsupervised algorithms and a lower computational cost than interactive
algorithms and supervised algorithms.
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Table 1. Average results for 200 images using different algorithms.
Segmentation Evaluation Index Computational Cost Assessment Index
Method Average P Average Average Average The Number of Training Time-
(%) R (%) F1 (%) Time (s) Labeled Images Consuming
K-means 58.1 79.7 68.9 0.366 - -
DeaplabV3+ 82.4 73.8 78.1 0.554 500 8h
Grabcut 86.3 80.3 83.8 0.978 200 -
Proposed
Algorithm 92.1 94.5 93.3 0.736 2 -

4.2. Performance Results under Different Overlapping Conditions and at Different Day Times

Different shooting angles may lead to two types of image samples, i.e., some crowns
heavily overlapping with weeds, and crowns and weeds barely touching each other.
Moreover, orchard images taken at different times of the day may have different exposure.
For instance, images captured at noon, under strong sunlight, have the overexposure
problem. This section compares the segmentation results of images taken under different
overlapping conditions and in different times of the day. Figure 11 exemplifies cherry-tree
images taken under a slightly overlapping condition (Figure 11a), partially overlapping
condition (Figure 11b) and highly overlapping condition (Figure 11c), or in the morning
(Figure 11d), at noon (Figure 11e) and in the evening (Figure 11f).

Figure 11. Comparison of segmentation results under different overlapping conditions and at different day times: (a) sam-

ples under a slightly overlapping condition; (b) samples under a partially overlapping condition; (c) samples under a highly

overlapping condition; (d) samples collected in the morning; (e) samples collected at noon; and (f) samples collected in

the evening.

Figure 11 shows that the tree crown was accurately extracted using the proposed
method. Although the proposed method would miss some treetop leaves under high-
exposure conditions (see Figure 11e) and lose some crown details under low-exposure
conditions (see Figure 11d), the extraction results were relatively accurate. Table 2 illustrates
the proposed segmentation method’s average P, R and F1 values for 100 sample images.
The average P, R and F1 values are 93.2%, 93.5% and 93.4%, respectively, with an accuracy
rate over 90%. On the other hand, the average P value decreases significantly in the test set
when the canopy and weeds overlap heavily. Hence, the overlapping degree between the
canopy and weeds will affect the segmentation accuracy. Meanwhile, the average R values
drop in the test set under both overexposure and underexposure conditions. Thus, the time
of the image shooting mainly impacts the segmentation completeness. These discoveries
underpin the proposed method’s effectiveness in tree-crown recognition under different
overlapping conditions and at different day times of image shooting.
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Table 2. Average statistics for 100 images under different overlapping conditions and at different
times of the day.

Indices Overlapping Degrees Image Shooting Day Times In Total
Slightly Partly = Heavily Morning Noon  Evening
Average P/% 94.9 92.9 90.8 94.1 93.9 93.1 93.2
Average R/% 95.3 94.9 93.8 94.9 90.4 92.1 93.5
Average F1/% 95.1 93.9 92.3 94.5 92.1 92.6 93.4

4.3. Segmentation Results in Different Years and Seasons

This section analyzes the proposed method’s effectiveness in different years and
seasons, and the image segmentation results are plotted in Figure 12. Figure 12a shows
images and their segmentation results in 2018 spring and summer. Figure 12b displays
images taken in 2019 spring and summer. Figure 12¢ only contains images in 2020 autumn,
as the COVID-19 pandemic interrupted the image acquisition [57]. The highlighted patches
show the image acquisition data. The test results of the datasets show that the proposed
method can satisfy the segmentation of images taken in different seasons and years. To carry
out quantitative verification, this study has analyzed a total of 150 sets of tree images that
were taken continuously in 2018, 2019 and 2020.

Figure 12. Segmentation results of the proposed method in different seasons and years: (a) samples in 2018 spring and

summer; (b) samples in 2019 spring and summer; and (c) samples in 2020 autumn.

Figure 13 shows that season has a greater impact on the segmentation effect than the
growth year. The average F1 value in spring is higher than in other seasons because the
images taken in spring have brighter colors and fewer weeds. Images taken in autumn
have the lowest segmentation accuracy and segmentation completeness because canopy
characteristics have changed in autumn, with changed leaf color and scattered crown.
Overall, the average P, R and F1 values in 2018, 2019 and 2020 are consistently above 87.7%.
The results indicate that the proposed method is robust in canopy recognition in different
years and seasons.
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Figure 13. Average statistics of the proposed method for 200 sample images.

5. Conclusions

This study contrived to extract cherry-tree crowns from the complex background
properly. The proposed method takes three stages: to compute Mahalanobis distance from
the image’s color, brightness and location features to acquire an initial classification of
the canopy and background; to create a conditional random field, using the Mahalanobis
distance calculations as unary potential energy and the Gaussian kernel function based on
the image color and pixels distance as binary potential energy; and, finally, to complete
the image segmentation, using mean-field approximation. In comparison with other
methods, the proposed method has the highest average P, R and Fl-score values, i.e., 92.1%,
94.5% and 93.3%, respectively, which were 34%, 14.8% and 24.2% higher than that of K-
means traditional supervised algorithms. Compared with Grabcut interactive segmentation
algorithms and DeepLabV3+ deep learning algorithm, the proposed method has lower
image annotation and model training costs. The study also verified the feasibility and
validity of the proposed method under different overlapping conditions, at different times
of image acquisition, and in different years and seasons, and their results indicate that
the overlapping conditions mainly affect the accuracy of the algorithm, but the image
acquisition time affects the completeness of segmentation. The result also demonstrates
that the season has a greater impact on the segmentation effect than the growth year. In a
nutshell, the proposed method can outstand different environmental conditions, with the
overall average P, R and F1 values higher than 87.7%. This study has exemplified that
computer vision technology has great potential in crop identification. Future work will test
the proposed method’s application on other orchard tree crops and study new techniques
that do not require data labeling.
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