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Abstract 
The Newcomb-Benford law, which describes the uneven distribution of the 
frequencies of digits in data sets, is by its nature probabilistic. Therefore, the 
main goal of this work was to derive formulas for the permissible deviations 
of the above frequencies (confidence intervals). For this, a previously devel-
oped method was used, which represents an alternative to the traditional ap-
proach. The alternative formula expressing the Newcomb-Benford law is 
re-derived. As shown in general form, it is numerically equivalent to the 
original Benford formula. The obtained formulas for confidence intervals for 
Benford’s law are shown to be useful for checking arrays of numerical data. 
Consequences for numeral systems with different bases are analyzed. The al-
ternative expression for the frequencies of digits at the second decimal place 
is deduced together with the corresponding deviation intervals. In general, in 
this approach, all the presented results are a consequence of the positionality 
property of digital systems such as decimal, binary, etc. 
 

Keywords 
Benford’s Law, Confidence Intervals in Benford’s Law, Alternative Expression 
of Benford’s Law, Benford’s Law for Different Numeral Systems, Frequencies 
of Digits at the Second Decimal Place 

 

1. Introduction 

The surprising fact of the uneven distribution of decimal digits over decimal 
places was noticed by Newcomb [1] in 1881 and then rediscovered in 1938 by 
Benford [2], who gave the corresponding mathematical expression 

( ) 1log 1F n
n

 = + 
 

,                      (1) 
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where F(n) is the frequency of numbers having the first digit n (the base of the 
logarithm is 10). Evidently, the sum of all 9 frequencies equals 1. 

Since then, the law has been repeatedly tested and applied in a wide variety of 
areas [3]-[10] and continues to attract the attention of researchers [11]-[22]. 
Meanwhile, efforts have been made to justify or derive the above equation [23] 
[24] [25] [26]. In Ref [26] it was connected with the scaling invariance of physi-
cal laws. It was shown that the Benford law is valid for numbers distributed ex-
ponentially [27]. Also, there exists the geometrical explanation of the Benford 
law [28]. Such a variety of explanations for the same law is somewhat unusual in 
physics and mathematics where, as a rule, there is a single main reason explain-
ing its origin. 

The simplest explanation of the Newcomb-Benford law has been given by the 
author of the present communication in cooperation with Ed. Bormashenko and 
E. Shulzinger [29]. We have shown that Benford’s law follows as a consequence 
of the “positionality” of numeral systems like the decimal one. 

People unacquainted with the literature on the subject refuse to believe that in 
arrays of unfalsified data almost a third of decimal numbers begin with the digit 
1. At the same time, no one is surprised by the fact that in the binary system all 
the numbers begin with the digit 1. 

The main assumptions of the present work are as follows. 1) Any natural nu-
merical array, which is being analyzed, is bounded from above either essentially 
or by the number of presented digits (the position of the decimal point is irrele-
vant). 2) Within this array, the probability of encountering any number is the 
same for all numbers, but not for digits in each position. 

First, I will give a brief overview of the cited work [29] presenting its results in 
a more convenient form. An alternative to Equation (1) expression will be de-
duced in a new way; its relation to Equation (1) will be clarified. The importance 
of inequalities for frequencies of digits will be emphasized and illustrated by the 
distribution of the population in Israeli cities and by the results by state of the 
2020 presidential elections in the United States. Finally, the same method of ex-
tremal frequencies will be applied to the determination of digits frequencies at 
the second decimal place. 

2. Frequencies of Digits as a Consequence of the Structure of 
the Positional Numeral System 

Benford’s law is often used to check the reliability of various arrays of numerical 
data. In any case, these arrays are bounded above and below, and the role of 
these restrictions can be played simply by the given number of digits. For exam-
ple, the number of votes cast for a particular candidate in some place is limited 
by the number of those who have the right to vote; the distribution of the popu-
lation by city is limited by the population of the country, etc. Аs will be clear 
from what follows, only the upper limit is significant, while the lower one is 
unimportant. 
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Now let us consider the frequency F(n) of numbers with a certain digit 
1,2, ,9n = �  at first place in the set of natural numbers { } { }1,2, , m m≡� . How 

this frequency changes with increasing m? In Ref. [29] it has been shown that the 
frequency F(n) to pass a sequence of alternating local minimums, ( )min,kF n , and 
local maximums ( )max,kF n . For example, for n = 1, the minimums of F(1) are 
achieved for values of m equal to 9, 99, 999, … due to the maximum of the de-
nominator in the frequency definition while the numerator remains constant. 
Starting from these values, the frequency begins to rise since the growth of the 
numerator in percentage is greater than the growth of the denominator. Max-
imums are attained at values of m equal to 19, 199, 1999, and so on. Another 
example is n = 7 where local minimums and maximums of the frequency are at 
m values of 69, 699, 6999, …, and 79, 799, 7999, …, respectively. In general 
form, these statements are expressed by the formulas for 1,2,3,k = �  

min, 10 1k
km n= ⋅ − ,                       (2) 

( )max, 1 10 1.k
km n= + ⋅ −                      (3) 

Amount of numbers starting with the digit n up to min,km  equals to  

( )1 210 10 1 10 1 9k k k− −+ + + = −� ; analogously, amount of numbers starting with 
the digit n up to max,km  equals ( )1 110 10 1 10 1 9k k k− ++ + + = −� . Once more 
taking into account Equations ((2), (3)), one has for the frequencies at local mi-
nimums and maximums: 

( ) ( )min,
10 1

9 10 1

k

k k
F n

n
−

=
⋅ −

,                    (4) 

( )
( )

1

max,
10 1

9 1 10 1

k

k k
F n

n

+ −
=

 + ⋅ − 
.                  (5) 

The dependences of these quantities on m and the digit value n are shown in 
Figure 1. With the increase of k, both quantities in Equations ((4), (5)) converge  

 

 
Figure 1. Maximal and minimal frequencies of decimal digits at the first place in a set of 
natural numbers restricted by m (logarithmic scale). 
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very rapidly to 

( ) ( )min min,
1lim

9kk
F n F n

n→∞
= = ,                  (6) 

( ) ( )max max,
10( ) lim

9 1kk
F n F n

n→∞
= =

+
.                 (7) 

It is seen that the frequencies vary inversely with a digit value that is the qua-
litative formulation of the Newcomb-Benford law. The limiting values of fre-
quencies (6) and (7) also presented in Table 1 are very useful in analyzing real 
numerical arrays because in reality the exact upper bond, m, is unknown. The 
lowest bond is also unknown, but this is unessential since contribution of the 
first terms of the set { }1,2,3, , m�  to both numerator and denominator of the 
frequency definition is negligible compared to contribution of the last terms. 

From the minimal and maximal asymptotical frequencies, some mean values 
may be constructed like arithmetic, geometric, logarithmic or harmonic one. 
The geometric mean turned out to be closest to the original Benford distribution 
in Equation (1). One has from Equations ((6), (7)) 

( )
( )

0.43077
1

F n
n n

=
+

                       (8) 

where a numerical multiplier is the normalizing factor ( )
19

11 1A i i
−

 = + ∑ . 
The quantity F(n) is interpreted as the probability for the digit n to occupy the 
first place in a number of the decimal numeral system. As is seen from Table 1, 
the differences between the results of Benford’s law (1) and Equation (8) are 
negligible, at least from a practical point of view. 

3. Equivalence of Two Formulations of Benford’s Law 

It is possible to prove the equivalence of Equation (8) to the Benford law (1). Af-
ter the change of variable n 

( ) ( )
1

e 1 , ln 10 9 ln 2xn x
−

= − ≤ ≤                  (9) 

Equation (8) turns into 

( )
( )

31 12 sinh 2
2 2 6 21
x x xF n A A A

n n

    = = = + +    
   +   

� .      (10) 

Passing to approximate formulas we have 
 

Table 1. Frequencies of digits in numerical arrays. 

Digit, n 1 2 3 4 5 6 7 8 9 

Benford’s  
Equation (1) 

0.3010 0.1761 0.1249 0.09691 0.07918 0.06695 0.05799 0.05115 0.04576 

F(n), Equation (8) 0.3046 0.1759 0.1244 0.09632 0.07865 0.06647 0.05756 0.05077 0.04541 

Fmin(n), Equation (6) 0.111 0.0556 0.037 0.028 0.022 0.018 0.016 0.014 0.012 

Fmax(n), Equation (7) 0.556 0.370 0.278 0.222 0.185 0.159 0.139 0.123 0.111 
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( )
3

O
24
xF n A x Ax

  
= + ≈  

   
.                 (11) 

The inverse to (9) transformation is 

1ln nx
n
+

=                          (12) 

that gives after substitution of A = 0.43077 from Equation (8) and transition to 
logarithms with a base of 10 

( ) 10.992log nF n
n
+

≈ .                    (13) 

The error 3 24Ax  associated with neglecting higher-order terms reaches a 
maximum of +0.006 for n = 1, but for n = 2 it is already equal to +0.001. The va-
lidity of the proof of the equivalence of Benford’s law and Equation (8) is con-
firmed by numerical results in the table. In conclusion, the question arises 
whether to consider the formula (8) as an excellent approximation to Benford’s 
law (1), or, conversely, to consider Benford’s formula as an excellent approxima-
tion to the law (8) deduced from the properties of the decimal numeral system? 

4. Population of Israeli Cities and by State Results of the 
2020 Presidential Elections in the United States 

From Equations ((6) and (7)) the inequalities for F(n) follow 

( ) ( )
1 10

9 9 1
F n

n n
≤ ≤

+
,                    (14) 

which is more useful than Equations ((1), (8)) in applications because the exact 
upper bound of an array considered is unknown. Figure 2 shows an analysis  

 

 
Figure 2. The frequencies of digits at the first place of the numbers from data on popula-
tion of 72 Israeli cities [30]. Solid line corresponds to Equation (8). Deviation intervals 
according to inequality (14). 
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Figure 3. The frequencies of digits at the first place of the numbers from the results by 
state of the 2020 US presidential election [31]. 

 
using (8) and (14) of the population distribution over 72 cities of Israel in ac-
cordance with the results of the 2008 census [30]. Lacking the right software and 
programming skills, I choose data with a small number of items and performed 
the calculation manually. For the same reason, as another example, a sampling 
of 51 items was considered, which represents the results by state of the 2020 US 
presidential election [31] (Figure 3). 

In both Figures, there are only a few cases of going beyond the deviation in-
tervals (14), and these goings are small. It should not be forgotten that all con-
sideration is probabilistic. In addition, for the above reason, small samplings 
were chosen. The Benford law is often used to detect violations and fraud in da-
tasets. From this point of view, the adequacy of the census and the vote count in 
the presidential 2020 elections successfully pass this test. 

5. Other Positional Numeral Systems 

Generalization to other than decimal numeral systems is straightforward. In-
stead of Equations ((8) and (14)) one has Equations ((15) and (16)) [29] 

( )
( )1

N
N

A
F n

n n
=

+
                      (15) 

where N is the base of a numeral system, 1 1n N≤ ≤ − , and  
( )

11
1 1 1N

NA i i
−− = + ∑  is the normalizing factor and 

( ) ( ) ( )( )
1

1 1 1N
NF n

N n N n
≤ ≤

− − +
.               (16) 

In particular, in the binary system (N = 2), all the last equations turn into 1 for 
n = 1 (all the numbers in the binary system begin with 1). 

Normalizing factors for the most popular numeral systems are as follows: 

2 1A = , 8 0.467469A = , 10 0.430773A = , 16 0.353036A = . For systems with a 
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low base, the probability of finding the digit 1 at the first place of number is 
high; for example, ( )4 1 0.503626F = . This makes them undesirable for digital en-
cryption since the chances are high that the encoded number starts with one. In this 
regard, coding using high base numeral systems is preferred; for example, in hexade-
cimal numeral system this probability is two times lower, ( )16 1 0.249634F = . 

6. Frequencies of Digits at the Second Decimal Place 

The alternation of local minimums and maxima of digit frequencies when ex-
panding a limited set of natural numbers {m} can also be used for the second de-
cimal position. Let us show this by the example of the digits 0 and 2. For n = 0, 
maxima are attained for the following values of m: 10, 20, …, 90, 109, 209, …, 
909, 1099, 2099, … 9099, 10,999, 20,999, …, 90,999, …. Wherein, amount of 
numbers contained in {m} with 0 at the second place changes, respectively, as 
follows: 1, 2, …, 9, 19, 29, …, 99, 199, 299, …, 999, 1999, 2999, … 9999, …. In 
general form, this is expressed with a help of two indices: 110 10 1k ki −⋅ + −  and 
( ) 11 10 1ki −+ ⋅ −  where i runs from 1 to 9. Thus, the corresponding frequency is 

( ) ( ) 1
max
, 1

1 10 1
0

10 10 1

k

i k k k

i
G

i

−

−

+ ⋅ −
=

⋅ + −
.                  (17) 

Analogously, for the minimal frequencies the values of m and amount of the 
required numbers in {m} are, respectively, 9, 19, 29, …, 99, 199, 299, …, 999, 
1999, 2999, …, 9999, 19,999, 29,999, …, 99,999, … and 0, 1, 2, …, 9, 19, 29, …, 
99, 199, 299, …999, 1999, 2999, …, 9999. The minimal frequencies are 

( )
1

min
,

10 10 .
10 1

k

i k k

iG
i

−⋅ −
=

⋅ −
                     (18) 

For n = 2, the maximal frequencies are attained for m values: 12, 22, …, 92, 
129, 229, …929, 1299, 2299, …, 9299, 12,999, 22,999, …. 92,999, …. Amount of 
numbers with 2 at the second place in {m} is as follows: 1, 2, …, 9, 19, 29, …, 99, 
199, 299, …, 999, 1999, 2999, …, 9999, …. The formula for the frequency: 

( ) ( ) 1
max
, 1

1 10 1
2

10 3 10 1

k

i k k k

i
G

i

−

−

+ ⋅ −
=

⋅ + ⋅ −
.                 (19) 

The minimal frequencies are for m: 11, 21, …, 91, 119, 219, …, 919, 1199, 
2199, …, 9199, 11,999, 21,999, …, 91,999, … with the same amount of numbers 
in numerator as in Equation (18): 

( )
1

min
, 1

10 12
10 2 10 1

k

i k k k

iG
i

−

−

⋅ −
=

⋅ + ⋅ −
.                 (20) 

For 0 9n≤ ≤ : 

( ) ( )
( )

1
max
, 1

1 10 1
10 1 10 1

k

i k k k

i
G n

i n

−

−

+ ⋅ −
=

⋅ + + ⋅ −
                (21) 

( )
1

min
, 1

10 1
10 10 1

k

i k k k

iG n
i n

−

−

⋅ −
=

⋅ + ⋅ −
.                 (22) 

Both the minimum of Equation (22) (minimum minimorum) and the maxi-
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mum of Equation (21) are attained at 1i = . Further, the limits for k going to in-
finity: 

( )max 2
11

G n
n

=
+

,                      (23) 

( )min 1
10

G n
n

=
+

.                      (24) 

One of possible estimations of the probability to find the digit n at the second 
place of a number may be the normalized geometrical mean of the maximal and 
minimal frequencies (23) and (24): 

( )
( )( )

1.44237
10 10 1

G n
n n

=
+ + +

                  (25) 

(compare to Equation (15)).Corresponding numerical data are presented in Ta-
ble 2. 

It is seen from Table 2 that the confidence intervals strongly overlap that may 
prevent the second digit statistics from analyzing arrays of numbers. Also, the 
distribution of probabilities is too smooth. 

For the numeral systems with the arbitrary base N, one has from Equation 
(25): 

( )
( )( )1

N
N

B
G n

N n N n
=

+ + +
                  (26) 

where ( )( )
11

0 1 1N
NB N i N i

−− = + + + ∑  (compare to Equation (25)). For 
low bases, the probabilities may differ more sharply. Thus, for the binary system 
(N = 2): ( )2 0 2 2 0.59G = − ≈  while ( )2 1 2 1 0.41G = − ≈ . 

7. Conclusions 

With the expansion of a bounded set of natural numbers, the density of numbers 
starting with a certain digit experiences quasiperiodic oscillation (see Figure 1). 
The maxima and minima of this oscillation quickly stabilize and determine 
possible deviations from Benford’s law. Formulas for these deviations are useful 
when analyzing numeric arrays for fraud. 

The geometric mean of the above minimum and maximum decreases with the 
increase in values of the initial digits of numbers, giving an alternative quantitative  

 
Table 2. Probabilities and deviation intervals for digits at the second decimal place. 

Digit, n 0 1 2 3 4 5 6 7 8 9 

G(n),  
Equation (25) 

0.1375 0.1255 0.1155 0.1069 0.0995 0.0931 0.0875 0.0825 0.0780 0.0740 

( )minG n ,  

Equation (24) 
0.1000 0.0909 0.0833 0.0769 0.0714 0.0667 0.0625 0.0588 0.0556 0.0526 

( )maxG n , 
Equation (23) 

0.1818 0.1667 0.1538 0.1429 0.1333 0.1250 0.1176 0.1111 0.1053 0.1000 
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expression (8) for the Newcomb-Benford law. This expression approximately 
coincides with Benford’s formula (1) up to the second order in some small pa-
rameter, which is less than 1. 

The results are generalized to the arbitrary base of positional numeral systems. 
The systems with the higher base are preferable in digital encryption because for 
them digit frequencies are close to each other and maximal possible deviations 
overlap. 

The elaborated method of extremal digital frequencies applies to the second 
decimal place. In this case, a smooth dependence on the digit value may prevent 
the method from applying to the check of numerical arrays for fraud. 

Perhaps, taking into account information about the boundaries of the numer-
ical arrays under consideration will narrow the confidence intervals and improve 
the correspondence of the calculated and measured frequencies in the case of 
truthful data. Work in this direction is expected to be carried out in the near fu-
ture. 
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