
A Declarative Model for Web
Accessibility Requirements and
its Implementation
Jens Pelzetter*

Faculty 3—Mathematics and Computer Science, University of Bremen, Bremen, Germany

The web has become the primary source of information for many people. Many services
are provided on the web. Despite extensive guidelines for the accessibility of web pages,
many websites are not accessible, making these websites difficult or impossible to use for
people with disabilities. Evaluating the accessibility of web pages can either be done
manually, which is a very laborious task, or by using automated tools. Unfortunately, the
results from different tools are often inconsistent because of the ambiguity of the current
guidelines. In this paper, a declarative approach for describing the requirements for
accessible web pages is presented. This declarative model can help developers of
accessibility evaluation tools to create tools that produce more consistent results and
are easier to maintain.

Keywords: web, accessibility, wcag, ACT rules, accessibility evaluation

1 INTRODUCTION

The web has become the primary source of information for many people in the last two decades.
Many companies sell their products online. In many countries, government services are available on
the web. However, despite the availability of extensive guidelines for accessible web pages and web
applications, many websites are not accessible yet. On the other hand, a significant number of people
have slight impairments or develop slight impairments when growing older. Before long, the first
people who have grown up with the Internet will reach an age in which age-related impairments
become imminent. Therefore, accessibility will become even more relevant for web pages in the
next years.

Accessible web pages may also be helpful for other people, like people with temporary
impairments. For instance, the ability to use a pointing device (mouse) may be limited due to
an injury of the dominant hand. In this case, it may be helpful for a user if a web page can be operated
using the keyboard. Environmental conditions like bright sunlight are another example. Under such
conditions, a web page with insufficient contrast can become very difficult to read.

Most of the guidelines for accessible web pages are based on the Web Content Accessibility
Guidelines (Kirkpatrick et al., 2018) published by the W3C. The previous version 2.0 of the WCAG
(Caldwell et al., 2008) became an ISO standard in 2012 (ISO, 2012). Many legislative bodies have also
recognized the importance of accessible web pages. For example, the European Union issued the
European Web Accessibility directive (The European Parliament and the Council of the European
Union, 2016). The “Barrierefreie Informationstechnikverordnung” (German Accessible Information
Technology Ordinance, BITV 2.0) (Verordnung, 2011) implements this directive as national
legislation. Both cite the WCAG.

The manual evaluation of the accessibility of a website is a time-consuming task that requires
good expertize in web technologies and accessibility. Several tools are available that provide some

Edited by:
Carlos Duarte,

University of Lisbon, Portugal

Reviewed by:
Fabio Paternò,

Italian National Research Council, Italy
J. Eduardo Pérez,

University of the Basque Country,
Spain

*Correspondence:
Jens Pelzetter

jens.pelzetter@uni-bremen.de

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal

Frontiers in Computer Science

Received: 13 September 2020
Accepted: 06 January 2021
Published: 04 March 2021

Citation:
Pelzetter J (2021) A Declarative Model

for Web Accessibility Requirements
and its Implementation.

Front. Comput. Sci. 3:605772.
doi: 10.3389/fcomp.2021.605772

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057721

ORIGINAL RESEARCH
published: 04 March 2021

doi: 10.3389/fcomp.2021.605772

http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.605772&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full
http://creativecommons.org/licenses/by/4.0/
mailto:jens.pelzetter@uni-bremen.de
https://doi.org/10.3389/fcomp.2021.605772
https://doi.org/10.3389/fcomp.2021.605772
www.frontiersin.org
www.frontiersin.org
www.frontiersin.org
www.frontiersin.org
https://doi.org/10.3389/fcomp.2021.605772

support for evaluating the accessibility of a web page. The Web
Accessibility Evaluation Tools List1 published by the Web
Accessibility Initiative of the W3C contains 136 entries. The
completeness and implementation approaches of these tools vary
significantly. Some tools only check a specific aspect of web
accessibility, for example, whether the text on a web page has
sufficient contrast. Other tools check a variety of criteria. Another
difference is the user interface: some tools integrate their user
interface into the user’s browser as a browser extension. Some are
implemented as stand-alone applications or web services.

Only 28 of these tools are categorized as supporting themost recent
version 2.1 of the WCAG. Many tools have not been updated to
implement themost recent guidelines and support themost recentweb
technologies. One reason for this problem is that the implementation
of the guidelines defined by the WCAG and its supplemental
documents like the Techniques for WCAG 2.1 (Campbell et al.,
2019) is quite complex. From the user’s perspective, these tools are
often cumbersome to use. Different tools often produce inconsistent
results and still require intensive manual work.

This article presents a declarative model for describing
accessibility requirements for web pages according to the Web
Content Accessibility Guidelines by the W3C. Rules for checking
the accessibility of a web page have been broken down into small
tests that can be implemented independently. The declarative
model describing accessibility requirements presented in this
article allows developers to focus on the implementation of tests
and an easy-to-use interface for the user. Different tools using this
declarative model should produce more consistent results. Adding
new rules to a tool using the declarative model or improving
existing rules should be much easier since only the declarative
model has to be updated instead of changing the code of the tool.

The rest of the article is structured as follows: In Section 2,
related work is discussed. Also, a brief overview of the current
accessibility standards is provided. In Section 4.1, the declarative
model and its representation using ontology and a prototype of a
tool using the declarative model are presented. Section 5
discusses the results and future work.

This article is an extended version of a previously published
article (Pelzetter, 2020) presented at theWeb for All conference in
April 2020. The declarative model is described in more detail. A
more detailed description of the web-a11y-auditor, a prototype of
a tool that uses the declarative model, has also been added.

2 BACKGROUND AND RELATED WORK

2.1 Background
The primary (technical) guidelines for creating accessible web pages
are the Web Content Accessibility Guidelines (WCAG)
(Kirkpatrick et al., 2018) published by the W3C. The Web
Content Accessibility Guidelines are a technology-agnostic
description of the requirements for accessible web pages.
Possible techniques for implementing the WCAG are described
in Techniques forWCAG 2.1 (Campbell et al., 2019). Techniques for

the WCAG also describe several common failures. These failures
describe common bad practices in web development.Web pages on
which these bad practices can be found are often difficult to use for
people with impairments. Each description of a technique or failure
contains a test procedure to check whether the technique has been
successfully implemented or not. For each failure, a test procedure is
provided for checking that the failure is not present on a web page.

Neither the Web Content Accessibility Guidelines nor the
Techniques for the WCAG document define which technique
may be used to satisfy a success criterion of the WCAG or which
failures cause a web page to fail a success criterion. How to meet the
WCAG (Quick Reference) (Eggert and Abou-Zahra, 2019) describes
which techniques can be used to satisfy each success criterion of the
WCAG. It also lists the failures described in the Techniques for the
WCAG that are relevant for each success criterion. For some success
criteria, different techniques may be sufficient, depending on the
characteristics of the document. For example, the sufficient
techniques for success criterion 1.4.3 Contrast (Minimum) depend
on the font size and the font weight of the text. Some success criteria
can only be satisfied by the combination of multiple techniques.

Understanding these requirements requires time, a good
understanding of web technologies and accessibility
requirements, and careful reading. To make the technical
requirements for accessible web pages easier to understand and
less ambiguous, and to harmonize the interpretation of the
requirements defined by the WCAG, the W3C has published a
new recommendation, the Accessibility Conformance Testing
(ACT) Rules Format (Fiers et al., 2019). This recommendation
defines a structure for writing rules to test accessibility.

Two types of ACT Rules have been defined: Atomic rules
define a specific requirement, and composite rules combine
several other rules. Each ACT Rule consists of several sections.
Both types of rules contain a unique ID, a description, a mapping
to one or more success criteria of the WCAG, assumptions about
the evaluated web page or the elements for the rule is applicable,
possible limitations of assistive technology relevant for the rule,
and test cases to check the implementation of a rule.

Moreover, atomic rules list the input aspects relevant to the rule,
such as the DOM tree or CSS styling. The Applicability section of an
atomic rule describes for which elements a rule is applicable. Each
atomic rule defines at least one expectation that must be met by the
elements for which the rule is applicable. If a rule has multiple
expectations, each element for which the rule is applicable must
satisfy all expectations. Composite rules may also have an
Applicability section. The Expectation section of a composite rule
lists all rules combined by the rule and defines whether all or at least
one of the combined rules must be passed by the elements for which
the rule is applicable. For evaluating the accessibility of a web page,
the Applicability definition and Expectations are the most relevant
sections. A community group has already created several rules using
this format.2

For example, the rule Button has an accessible name3 describes
how to check whether a button has an accessible name. Buttons are

1https://www.w3.org/WAI/ER/tools/, retrieved Dec 14th, 2019.

2https://act-rules.github.io/pages/about.
3https://act-rules.github.io/rules/97a4e1 accessed 2019-12-07.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057722

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://www.w3.org/WAI/ER/tools/
%20https://act-rules.github.io/pages/about
%20https://act-rules.github.io/rules/97a4e1
%20https://act-rules.github.io/rules/97a4e1
www.frontiersin.org
www.frontiersin.org

used frequently in modern web design for all kinds of interactions,
like opening a menu. Such a button is only usable with assistive
technology like screen readers if the button has an accessible name.
The accessible name is provided to the screen reader by the browser.
TheApplicability section describes how to find all elements for which
this rule is applicable:

The rule applies to elements that are included in the
accessibility tree with the semantic role of button, except for
input elements of type�“image.”

This definition describes several conditions that have to be met
by the elements for which the rule is applicable:

• The element must be included in the accessibility tree. Apart
from the DOM tree used to create the visual output of an
HTML document, a browser also manages a second tree of
elements, the accessibility tree. This tree is provided to
assistive technologies by the browser using the
accessibility API of the operating system. The DOM tree
and the accessibility tree are not the same. An element that is
present in the DOM tree may not be part of the
accessibility tree.

• The second requirement is that an element has the semantic
role button. The term role originates from the ARIA (Diggs
et al., 2017) recommendation. Roles are used in ARIA (among
other extensions to HTML) to provide the accessibility API of
the operating system with more information about the
semantics of an HTML document. Many HTML elements
have implicit roles (Faulkner and O’Hara, 2020). For example,
the role button is implicitly assigned to theHTML elements for
creating buttons (<input type�“button”> and button).

It is also possible to create a widget that looks like a button
using other HTML elements like a div container. For this widget,
the role button must be provided explicitly by the author. In both
cases, the rule Button has an accessible name is applicable.

• The third requirement is that the element is not an image
button.With < input type�“image”>, it is possible to use an
image as a button. This type of buttons is excluded from this
rule because image buttons are checked by other rules.

The rule has a single expectation:
Each target element has an accessible name that is not

empty (" ").
The expectation states that each element for which the rule is

applicable must have an accessible name and that the accessible
name cannot be an empty string. The accessible name is used by
assistive technology like screen readers to disclose the button to the
user. The accessible name should contain a brief description of the
purpose of the button. The algorithm that browsers should use to
compute the accessible name of an element is described in a technical
recommendation (Diggs et al., 2018) published by the W3C.

2.2 Related Work
The different approaches for evaluating the accessibility of a web
page may be categorized into three categories (Abascal et al.,
2019; Nuñez et al., 2019):

• Automatic testing
• Manual inspection (by experts)
• User testing

Automated testing is mostly used according to Nuñez et al.
(2019) but does not always find all existing problems. Testing by
experts is the most effective way, and user testing works most
effectively to verify how people with disabilities perform specific
tasks on a web page (Abascal et al., 2019; Nuñez et al., 2019). One
important difference between user testing and expert evaluation is
that user testing is more focused on the usability of web pages for
users with disabilities. In contrast, an expert evaluation is more
focused on the technical side (Abascal et al., 2019).

Despite their limitations, automated tools play an important
role in the process of developing accessible websites because they
significantly reduce the time and effort required to conduct an
evaluation (Abascal et al., 2019). The currently available
automated tools may produce different results, false negatives,
or false positives because of different implementations of the
guidelines. Multiple tools may be combined for an accessibility
evaluation to avoid missing potential problems (Abascal et al.,
2019).

Automated tools cannot check all requirements. For example,
to check whether a heading is sufficient for its associated section,
human judgment is required. The effectiveness of automated
tools varies depending on the number of tests implemented.
Another factor that affects the effectiveness of a tool is the
ability of the developers of the tool to translate the guidelines
for accessible web pages, which are expressed in natural language,
into a computational representation (Abascal et al., 2019). The
Evaluation and Report Language (EARL) (Abou-Zahra and
Squillace, 2017; Velasco et al., 2017) has been proposed to
facilitate the comparison of results from different tools.
Unfortunately, EARL has not reached the status of a W3C
technical recommendation yet.

Several tools for user testing use crowdsourcing. These tools
have two different approaches. Some of them are trying to
improve the accessibility of a web page by adding metadata.
The process of annotating a web page with such metadata is likely
to be very time consuming; crowd-based tools allow the
distribution among many authors. Other crowd-based tools
split the accessibility evaluation into small tasks for
distribution, making the evaluation less expensive (Abascal
et al., 2019). The effectiveness of crowdsourcing-based tools
has not yet been demonstrated.

Manual inspection by experts also has its issues. Even experts
do not find all accessibility problems. In some cases, a manual
inspection may also produce false positives (problems that do not
exist). In a study based on the WCAG 2.0 (Brajnik et al., 2012),
experts and novice evaluators evaluated several web pages for
accessibility problems. Experts were only correct in 76% of all
cases. This rate dropped by about 10% for novice evaluators.
Expert users produced 26–35% false positives andmissed 26–35%
of the real problems. Novice evaluators without much experience
produced much more false positives than experienced evaluators
and found less real problems than experienced experts. Due to a
large variety in the results of novice evaluators, no conclusions for

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057723

Pelzetter Declarative Model for Web Accessibility Requirements

www.frontiersin.org
www.frontiersin.org
www.frontiersin.org

that group were drawn in the study (Brajnik et al., 2010, Brajnik
et al., 2012).

It has been suggested to develop unambiguous, machine-
readable specifications to facilitate a better application of the
accessibility guidelines, to produce more consistent results, and to
develop tools that seamlessly integrate into the development
process of web pages to increase the adoption of accessibility
guidelines (Abascal et al., 2019).

An XML-based language for specifying accessibility
guidelines, the Language for Web Guideline Definition
(LWGD), has been proposed together with an environment
called MAUVE for evaluating accessibility (Schiavone and
Paternò, 2015). The validation process of MAUVE is based on
the DOM tree of the document. MAUVE downloads the web
page to evaluate, and creates the DOM tree itself. The validator
module interprets the guidelines formalized in the XML language
to checks whether the DOM tree passes the checks defined in
XML. The LWGD language allows it to define the element to
check the conditions to validate. The conditions may be
combined using Boolean operators.

The effectiveness of MAUVE was compared with the Total
Validator,4 a commercial product. In comparison,MAUVEmissed
fewer problems than the Total Validator. For false positives,
MAUVE reported more false positives than the Total Validator
in some cases; in other cases, the Total Validator produced more.
The article about MAUVE (Schiavone and Paternò, 2015) shows
an example with two conditions: one to check whether an element
is followed by another element, and one to check whether an
element has a specific child element. The article does not list all
available conditions.

A newer version of MAUVE, called MAUVE++, has also been
extended to support the WCAG 2.1 and was compared to the
WAVE tool Broccia et al. (2020). MAUVE++ still uses the LWGD
for specifying the rules to check. The main improvements are on
the user site, including a better presentation of the result and the
option to validate complete websites.

3 METHODS

The declarative model described in this article was developed in
three steps. The key components of the model are atomic tests
that can be combined to express more complex rules. Two
options were considered as a starting point: The tests
described in the Techniques for the WCAG (Campbell et al.,
2019), and the rules developed by the ACT Rule Community
Group5 based on the new ACT Rules Format (Fiers et al., 2019).

The description of the Techniques for the WCAG (Campbell
et al., 2019) does not contain information on when a technique is
applicable. This information is provided in an additional
document, How to meet the WCAG (Eggert and Abou-Zahra,
2019). It turned out that the descriptions of the applicability of the
techniques from this document are sometimes ambiguous. Also,

the description often contained conditions that turned out to be
difficult to translate into a formal, machine-readable form.

The second option that was considered as a starting point was
the ACT Rules Format (Fiers et al., 2019), which has been
developed with the goal of creating unambiguous rules that
can be implemented more easily. These rules turned out to be
much easier to translate into a formal model. An ACT Rule
consists of several sections, which differ depending on the type of
the rule. Atomic rules describe a specific requirement that a web
page has to satisfy to be accessible. Composite rules combine the
outcome of other rules to a single outcome and are used to
describe complex requirements.

The two sections of an atomic ACT Rule that are most
important for creating the model are the applicability
definition and the expectations. The applicability definition
describes for which elements a rule is applicable. The
expectations describe the requirements that each element for
which the rule is applicable must satisfy. The applicability
sections and the expectation sections contain many repeating
phrases such as “. . .is included in Accessibility Tree. . .”

In the first step, these phrases have been collected and used to
define the atomic tests described in chapter 4.1. Some of these
tests require parameters, for example, the name of an attribute.
The definitions developed in this step are not tailored to a specific
serialization. One possible serialization is RDF. Other possible
serializations are a custom XML or JSON format or ontology.

As a second step, the model had to be put into a machine-
readable form. In this case, the Web Ontology Language (OWL)
(Hitzler et al., 2012) was chosen. OWL has several advantages.
OWL has clearly defined semantics, allowing to verify the
consistency of an ontology using a semantic reasoner.
Ontologies providing knowledge for different domains can be
combined to a larger ontology. It is also possible to define
complex rules in an ontology that can be used by a reasoner
to infer knowledge based on the data in the ontology. A very early
version of the ontology and the software used this approach to
infer the results of an evaluation. Unfortunately, this approach
did not scale well (see Section 5). The ontology also contains
classes for the concepts of the WCAG, such as principles,
guidelines, success criteria, and the techniques and failures
described in the Techniques for the WCAG. This information
is used to provide context about the rules for the user. The
ontology itself has been split into individual modules that may be
reused independently from each other. The ontology has been
created using the Protégé editor.6

The third step was the development of a prototype application
that uses the ontology. The application is described in detail in
Section 4.2. In addition to showing that the model may be used to
create an evaluation tool, the second goal of the prototype was to
test how manual evaluation steps can be simplified so that even
inexperienced users can perform them and produce reliable
results. The architecture of the web-a11y-auditor is described
in Section 4.2.

4https://www.totalvalidator.com.
5https://act-rules.github.io/pages/about. 6https://protege.stanford.edu/.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057724

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://www.totalvalidator.com
%20https://act-rules.github.io/pages/about
%20https://protege.stanford.edu/
%20https://protege.stanford.edu/
www.frontiersin.org
www.frontiersin.org

4 RESULTS

4.1 Declarative Model
Except for MAUVE, all other tools for checking web pages for
accessibility problems known to the author implement tests for
checking the requirements for accessible web pages directly in
code. Implementing the checks directly as code makes
maintenance or customization of tools difficult. The
approach described uses a declarative model of the
accessibility rules to describe what to check, not how to
perform tests. The key components of the declarative model
are clearly specified atomic tests that are combined to build
complex rules. The implementation of the tests is the
responsibility of the developers of the tools that use the
declarative model.

Using this declarative model to implement evaluation tools
has several advantages. Developers may focus on a reliable
implementation of the tests and an easy-to-use user interface.
Different tools may implement the tests in different ways. A tool
implemented as a browser extension may use the APIs provided
by the browser for analyzing the evaluated document. Another
tool with a stand-alone implementation may use a browser
automation framework such as Selenium for accessibility
evaluation.

The results produced by the tools may still differ in detail, but
this can only be caused by the limitations of the implementation
of the tests and not by different interpretations of the rules. Also,
because each implementation of a test is only a small,
independent unit of code, the implementations of the test
tasks are easy to test.

For the development of test tools, the usage of the declarative
model has an additional advantage. To adopt the requirements
for accessible web pages for new technologies or changing usage
patterns, the guidelines and rules for accessible web pages have to
be updated with an increasing pace. Using the declarative model,
it is not necessary to change the code of a test tool to integrate new
rules. Instead, only the model has to be updated. Code changes
are only necessary if a rule requires an atomic test that was not
implemented before.

The ACT Rules developed by the ACT Rule Community
Group have been chosen as a starting point because they
provide the best available (if incomplete) summary of the
requirements for accessible web pages. The ACT Rules also
contain fewer special cases than the description of sufficient
technologies provided by the WCAG Quick Reference.
Therefore, the assumption was that the ACT Rules are easier
to model. For the ACT Rules developed by the ACT Rules
community, there are also test cases available for each rule,
which allows checking the implementation of a rule.

The first step in developing the model was the definition of the
atomic tests needed to build a model of the ACT Rules. In the
current version, the ontology contains 48 tests used to build a
declarative, machine-readable model of the applicability
definition and expectations of ACT Rules. Some of these tests
require additional parameters. These parameters are also
described in the model.

An ACT Rule may have several outcomes. The outcome Passed
indicates that an element has passed a rule, and the outcome
Failed indicates that an element has failed a rule. If one element
for that the rule is applicable does meet the expectations of the
rule, the complete document fails the rule. If no elements for
which the rule is applicable are found, the outcome of the rule is
Inapplicable. An ACT Rule tested by an automatic tool may also
have the outcome unpredictable if one of the tests of the rule
cannot be done automatically.

4.1.1 Examples for Tests
The following examples for checks are shown in a function-like
notation. The tests described here can be interpreted as an
extension of the Element interface of the DOM API
(WHATWG, 2020). Therefore, the tested element is not
explicitly specified as a parameter. How exactly these tests are
implemented depends on the design of the implementation. The
test matchesCssSelector (selector) checks if an element matches
the specified CSS selector. This test is used in many applicability
definitions to find the elements for which the rule is applicable.
Usually, this test is combined with other tests to find the elements
for which an ACT Rule is applicable.

Accessibility APIs require information about the role of an
HTML element, for example, if the element is a button. For many
HTML elements, implicit roles have been defined (Faulkner and
O’Hara, 2020). If necessary, authors can change the role of an
HTML element using the role attribute. The test hasRole
(roleName,) checks if an element has one of the roles
provided in the parameters, either as an implicit role or
explicitly assigned. This test is often used to filter out form
controls or buttons. The test passes if the tested element has
at least one of the roles provided in the parameters.

For some rules, it is also necessary to check if a role has been
explicitly assigned to an element, such as the role button to a div
element used as a button. The test hasExplicitRole () checks if a
role has been explicitly assigned to the tested element. The test
only checks if the role of the element has been explicitly assigned,
not if the element has a specific role. A combination of
hasExplicitRole and hasRole is used to test if a specific role
has been explicitly assigned to an element.

The Accessible Rich Internet Applications (ARIA) (Diggs
et al., 2017) recommendation defines several attributes that
can be used to provide the accessibility API of the operating
system with additional information. Several rules are only
applicable for an element if they have an ARIA attribute. The
test hasAriaAttribute () is used to check if at least one ARIA
attribute is assigned to the tested element.

One important property for the accessibility of web pages is
the accessible name of an element. The accessible name is part of
the accessibility tree and is, for example, used by assistive
technology like screen readers to present the element to the
user. For example, if a button has no accessible name, a screen
reader cannot properly announce the button to the user, and the
user has no clue about the function of the button. The accessible
name is computed from several properties (Diggs et al., 2018).
The test hasAccessibleName () used the algorithm for computing

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057725

Pelzetter Declarative Model for Web Accessibility Requirements

www.frontiersin.org
www.frontiersin.org
www.frontiersin.org

the accessible name to check if the tested element has a none
empty accessible name.

The implementation of these tests may vary. Some require
access to the DOM tree and are only checking the presence or
absence of attributes or elements. A tool implementing the
tests should not use the HTML document received from the
server directly. On modern web pages, the initial HTML code
is often altered by scripts running after the browser has loaded
the page. If an HTML document is syntactically incorrect,
browsers try to fix the errors by altering the DOM tree.
Therefore, the DOM tree generated by the browser should
be used for accessibility evaluations and not the raw source
code of the document.

4.1.2 Combination of Tests
For most applicability definitions and expectations, it is necessary
to combine several tests. For some applicability definitions and
expectations, some form of negation is required, for example, to
express that an element should not have a specific role.

The model provides three options for this purpose. negate is
used to express negation, and allOf and oneOf are used to
combine the outcomes of multiple tests. The names negate,
allOf, and oneOf were chosen instead of the simpler names
not, and, and or to avoid conflicts with ontology languages or
programming languages in which not, and, and or are often
reserved identifiers.

An implementation of negate should change the outcome of
the associated test from passed to failed and vice versa. Other
outcomes like cannot tell should not be changed by the
implementation of negate.

Two options are available for combining multiple tests: allOf
requires that all combined tests pass, and oneOf requires only one
of the combined tests to pass. An implementation also has to
handle special cases, for example, whether one test has the
outcome cannot tell. In this case, the implementation of allOf
as well as of oneOf should return the outcome cannot tell.

4.1.3 Expressing ACT Rules Using the Model
The following examples of ACT Rules are given in the same
notation as the examples of individual tests.

The rule Button has an accessible name7 checks if a button has
an accessible name. The applicability definition for this rule is as
follows:

The rule applies to elements that are included in the
accessibility tree with the semantic role of button, except for
input elements of type�“image.”

This applicability definition can be broken down into three tests:

• Checking whether the element is included in the
accessibility tree.

• Checking whether the element has the semantic role of
button.

• Checking whether the element is an image button. This can
be done using the CSS selector input [type�image].

Using the declarative model, the applicability definition of this
rule can be expressed as pseudo code:

allOf (isIncludedInAccessibilityTree(),
hasRole(“button”),
not(matchesCssSelector(“input[type�image]”))
The applicability definition requires that elements for which

the rule is applicable are not buttons of the type image. Therefore,
the outcome of the test for the CSS selector is negated. The
applicability definition also requires that all requirements are met
by elements for which the rule is applicable. Therefore, allOf is
used to combine the tests.

The expectation of this rule requires that every button has an
accessible name:

Each target element has an accessible name that is not
empty (" ").

Only one test is necessary to check whether an accessible name
is available for an element:

hasAccessibleName()
Images can be used in different ways on a web page. One purpose

is decoration; another purpose is to support the textual content. If an
image is not used as decoration, it needs an accessible name that
describes the content of the image. Decorative images have to be
marked correctly using an empty alt attribute. The rule Image has
accessible name8 checks whether an image is either marked as
decorative or has an accessible name.

The applicability definition of the rule is as follows:
The rule applies to HTML img elements or any HTML

element with the semantic role of img that is included in the
accessibility tree.

This applicability definition can be broken down into three tests:

• The element has the semantic role of img. Sometimes, the
equivalent role image is used for images. This role is also
provided as a parameter for the hasRole test.

• All img elements are applicable, regardless of the role
assigned to them.

• The element is included in the accessibility tree.

These tests can be expressed in their combination as
allOf (oneOf(hasRole(“img”, “image”),
matchesCssSelector(“img”)),
isIncludedInAccessibilityTree()).
The tests for the role and the CSS selector are combined with

oneOf to express that only one of these tests has to pass. The result
of isIncludedInAccessibilityTree is combined with the result of
oneOf to express that an element for which this rule is applicable
has to be included in the accessibility tree.

The expectation of the rule is as follows:
Each target element has an accessible name that is not empty

("") or is marked as decorative.
The expectation can be broken down into two conditions:

• Checking whether the image has an accessible name
• Checking whether the image is marked as decorative

7https://act-rules.github.io/rules/97a4e1. 8https://act-rules.github.io/rules/23a2a8.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057726

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://act-rules.github.io/rules/97a4e1
%20https://act-rules.github.io/rules/23a2a8
%20https://act-rules.github.io/rules/23a2a8
www.frontiersin.org
www.frontiersin.org

These conditions can be expressed as
oneOf (hasAccessibleName()
isDecorative())
An element for which the rule is applicable has only to pass one

of the two tests. Therefore, both tests are combined using oneOf.

4.1.4 ACT Rules as an Ontology
There are several options for creating a machine-readable
representation of models like the one described in this article. One
possible option is the development of a custom XML language or a
JSON data model. Another option is to use linked data (RDF) or an
ontology. For the model described here, an ontology was used. There
are several different ontology languages. One of themost common ones
is the Web Ontology Language (OWL) (Hitzler et al., 2012), which is
used for ontology described in this article.

The ontology9 contains the tests described in the previous
sections, the ACT Rules (as of November 2019), as well as the
Success Criteria of the WCGA 2.1. The tests described in

Section 4.1 are modeled as classes. Individual applications of
the tests for a rule are modeled as individuals together with
the required parameters. The values of the parameters are
provided using data properties. The UML diagram in
Figure 1 shows the primary classes and properties of this
ontology. The diagram uses the UML notation. The
generalization relationship is used to show a subclass
relationship between two classes. Object properties are
shown using the usual UML elements for properties. Data
properties are shown as properties inside their domain class.
Please note that the diagram does not show all properties. For
example, most of the object properties have an inverse
counterpart to make it easier to retrieve related individuals
from both ends of a relationship. These properties are not
shown in the diagram.

Rules are represented as individuals of one of these two classes,
AtomicACTRule or CompositeACTRule. Both classes are
subclasses of the BaseACTRule class. The BaseActRule class
contains the properties shared by atomic and composite rules:
the rule ID, which provides a unique identifier for the rule, the
name of the rule, and the description of the rule. These data can

FIGURE 1 | UML diagram showing the primary classes of the web-a11y-auditor ontology.

9https://ontologies.web-a11y-auditor.net.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057727

Pelzetter Declarative Model for Web Accessibility Requirements

https://ontologies.web-a11y-auditor.net
https://ontologies.web-a11y-auditor.net
www.frontiersin.org
www.frontiersin.org

be used by an application using the ontology to display the rule to
a user.

The ontology also contains classes and properties for
describing the success criteria, guidelines, principles, and
conformance levels of the WCAG. Additional properties for
describing the relations between ACT Rules and the Success
Criteria of the WCAG are also provided. This information can be
used by tools using the ontology to provide the user with
background information about the rules.

The applicability definitions and expectations are modeled
using separate classes. To provide a human-readable
description of an applicability definition or an exception,
the Applicability and Expectation classes also provide a
property for the textual description. The textual description
can be used by a tool using the ontology to display information
about the rule to a user. The Expectation class has two
properties that are not part of the ACT Rules format: The
property number is used to order the expectations of a rule. For
some use cases, it is also useful to have a unique identifier for
an expectation. The identifier property provides such an
identifier.

The tests are modeled using subclasses of the Test class. For
each of the atomic tests found in ACT Rules, the ontology
contains a subclass of the Test class. For brevity, these classes are
not shown in Figure 1. The hasSelector property is used to
associate an individual of the Applicability class with an
individual of the test class ElementFilter. For expectations,
the association between the individual of the Expectation
class and the ExpectationTest class is expressed using the
hasTest property.

The operators for combining the results of other tests (allOf,
oneOf, and negate) are also modeled as subclasses of the Test
class. Treating these operators as tests makes it possible to use
them in the same places as atomic tests. The associations
between an individual of the classes AllOf or OneOf and the
combined tests are expressed using the combines property. For
the association between an individual of the negate class and the
negated test, the negates property is used. In both cases, an
individual of the Applicability class or the Expectation class can
only be associated with one instance of the Test class. This
instance can either be a real test or one of the combining tests,
oneOf or allOf.

Composite rules do not have an applicability definition or
expectations. Instead, they combine the outcomes of multiple
rules into a single result. A composite rule either requires that all
combined rules pass or that at least one of the combined rules
passes. Composite rules are represented in the Ontology by
instances of the CompositeRule class. The aggregation type is
represented using the aggregationType property. The input rules
are associated with a composite rule using the hasInputRule
property.

Figure 2 shows a UML object diagram of the individuals used
to represent the rule Button has an accessible name in the
ontology. The type of the individual is provided after the
colon on the top of the rectangle representing the individual.
The rule itself is represented by an individual of the
AtomicACTRule class. Applicability definition and

expectations are modeled using individuals of the classes
Applicability and Expectation. The tests are represented by
individuals of several subclasses of the Test class. In this
example, these are the classes: IsIncludedInAccessibilityTree,
HasRole, MatchesCssSelector, and HasAccessibleName.

The test HasRole requires an additional parameter to provide
the role(s) for which the test will check. This information is
provided by an additional data property. Likewise, the CSS
selector used by the MatchesCssSelector test is provided by an
additional data property. The tests without parameters do not
have any additional properties.

An individual of the Applicability class or the Expectation
class can only be associated with one instance of the Test class. If
an applicability definition or an expectation consists of multiple
tests, these tests have to be combined using an individual of the
oneOf or allOf classes. In the example, the applicability definition
contains three tests which are combined using AllOf. The test
MatchesCssSelector is also negated to exclude all image buttons.

A complete list of supported ACT Rules and atomic tests is
available as supplementary material.

4.2 The Web-a11y-Auditor: A Prototype
Implementation
A prototype of an application that uses the ontology described in
Section 4.1, the web-a11y-auditor, has been implemented. The
application is split into several modules, which are all run as
independent services.3 Figure 3 shows an overview of the
architecture of the web-a11y-auditor.

The user interface is provided by theweb-a11y-auditor-ui service.
This module is implemented using the Nuxt framework.10 The web-
a11y-auditor-ui service interacts with a RESTful API provided by the
web-a11y-auditor-web module. This module retrieves the
information for showing results from the database. If a new
evaluation is created, the web-a11y-auditor-web module sends a
message to the web-a11y-auditor-jobmanager-module. The job
manager module receives this message and creates a task for
analyzing the document to evaluate. This task is sent to an
instance of the web-a11y-auditor-worker module. This module is
responsible for all interaction between the web page to evaluate and
the web-a11y-auditor. The worker modules use the Selenium
framework11 to analyze the web page to evaluate. A message
broker is used to manage the communication between the
worker instances, the job manager, and the web module. The
web-a11y-auditor uses Apache ActiveMQ Artemis12 as message
broker. Several different message queues are used to organize the
communication between the modules of the web-a11y-auditor. All
message queues are FIFO queues. The New Evaluations Queue is
used by the web-a11y-auditor-web module to notify the web-a11y-
auditor-jobmanager about new evaluations. The Jobs Queue is used
by the jobmanager to send jobs to theworker instances. The first free
worker instance will pick up the next task from the queue and

10https://nuxtjs.org/.
11https://selenium.dev/.
12https://activemq.apache.org/components/artemis/.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057728

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://nuxtjs.org/
%20https://selenium.dev/
%20https://activemq.apache.org/components/artemis/
%20https://activemq.apache.org/components/artemis/
www.frontiersin.org
www.frontiersin.org

execute it. Results for the test jobs are sent back to the job manager
using the Job Results Queue. The job manager processes the
messages, stores the results in the database, and creates additional
tasks if necessary. For example, if an applicability test task is finished
and a rule is applicable for an element, the job manager will create
the tasks for checking if the element passes all expectations of the
rule. TheNotifications queue is used by the jobmanager to notify the
web-a11y-auditor-web module about status changes. Using the
Status Queries Queue, the web-a11y-auditor-web module can
query the job manager about the status of an evaluation. The

status reports are generated asynchronously and sent back to the
web-a11y-auditor-web module using the Status Reports Queue.

The evaluations and the result are currently stored in a
relational database (PostgreSQL). The Job Manager is the only
module that can write to the database. All other modules are only
reading from the database. The workers only execute the test
tasks. The overall outcome of a rule for an element is computed
from the results of the tests by the web application when test
results are accessed. To process the tests, multiple worker
instances are used to speed up the evaluation process.

FIGURE 2 | UML object diagram showing the rule Button has an accessible name as an example of a rule in the ontology.

FIGURE 3 | Diagram showing the architecture of the web-a11y-auditor.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6057729

Pelzetter Declarative Model for Web Accessibility Requirements

www.frontiersin.org
www.frontiersin.org
www.frontiersin.org

To start an evaluation, the user enters the URL of the page to
evaluate. The evaluation is done in five steps:

1. Analyze the document and store a screenshot of the document
and the CSS selectors and coordinates of each element. The
screenshot and the element coordinates are used by the web
application to show which element is related to a result.

2. Generate the tasks for checking which rules are applicable for
which element of the evaluated document.

3. Check which rules are applicable for which element.
4. Generate the tasks for checking the expectation for the

applicable rules.
5. Check if the elementsmatch the expectations of the applicable rules.

In the first phase, one of the workers analyzes the web page to
evaluate and extracts a unique CSS selector for the element and
the coordinates and the size of the bounding box of each element.
Also, a screenshot of the web page to evaluate is generated in this
first phase. All this information is stored in the database. In the
subsequent phases, the results for each supported rule are added.

For each of the atomic tests to execute, a task is created and sent
to the workers. The job manager gets the information about which
atomic tests have to be executed for an applicability definition or an
expectation of a specific rule from the ontology. Based on this
information, which includes the name of the test to execute and, in
some cases, additional parameters, the job manager creates the
tasks for the workers. How a specific atomic test is executed
depends on the implementation of the worker.

One of the worker instances retrieves the task, executes it, and
sends the result back to the Job Manager. The Job Manager stores the
result in the database. Aside from the specification of the tests, all other
data provided by the ontology are only used by the web application.

To execute the tests, the web-a11y-auditor uses the Selenium
framework.13 Selenium uses the Web Driver API (Stewart and
Burns, 2018, 2019) to control a browser instance. The tests are
executed in this browser instance using Selenium. This approach
has some advantages compared with APIs like JSoup,14 which are
implementing only a DOM parser. DOM parsers like JSoup only
implement parts of a browser rendering engine. For example,
elements generated using JavaScript could not be checked using a
DOM parser that does not execute JavaScript. Also, some tests
cannot be done by a simple inspection of the DOM tree. For
example, for a test that checks if an element is focusable using the
keyboard, it is necessary to simulate keyboard interaction.

Some tests cannot be executed automatically yet. For these
tests, the web-a11y-auditor guides the user through the tests. If a
test cannot be executed automatically, the test is added to a list of
tasks that require manual evaluation. This list is presented to the
user. The user can process this list in any order. The tests are
presented to the user in the form of a simple question like:

Does the highlighted heading describe the content of its
associated section?

The dialog shows a screenshot of the evaluated web page. The
element under evaluation is highlighted in the screenshot. To create
the image with the highlighted element, the screenshot created in
the first phase of the evaluation is used. The highlighted section is
added using the coordinates and the size of the bounding box of the
element. The coordinates and the size of the bounding box have
been obtained in the first phase of the evaluation. The questions
used in these dialogs are simple yes/no questions. The answer
corresponds with one of the outcomes passed and failed (the web
application currently uses a switch control for selecting the result).
Figure 4 shows an example of the dialog. When all manual
evaluation questions are done, the results of the evaluation are
presented to the user. An example is shown in Figure 5.

The results display shows the results for all rules. Details of the
results can be viewed by clicking on one of the rules. The details
view shows the results for all tested elements.

5 DISCUSSION

The declarativemodel presented in this article was developedwith the
goal of providing a foundation for different types of accessibility tools
and to minimize the required maintenance for such tools. Moreover,
thismodel is easy to extend and adapt to changes in the requirements.

The current version of the model is based on the ACT Rules
Format (Fiers et al., 2019) and the rules developed by the ACT
Rules Community Group. During the development of the
prototype implementation, the web-a11y-auditor, the rules
published by the ACT Rules Community Group have been
updated several times. These changes included the addition of
new rules, the removal of some rules, and changes to the
applicability definitions and expectations of some rules. For
some rules, requirements were added to the applicability
definitions and expectations or removed from them. As
expected, no changes in the code of the prototype were
necessary to integrate the updated rules into the prototype.
Only the ontology was edited to match the updated rules.
After replacing the ontology, the web-a11y-auditor used the
updated rules.

At first glance, the approach presented in this article looks very
similar to the approach used by the MAUVE project (Schiavone
and Paternò, 2015). However, the approaches differ in many
ways. In LGWD, the definitions of the conditions and checks are
much more oriented toward a DOMAPI (at least in the examples
shown in the article). This makes it difficult, if not impossible, to
add checks that cannot be done using the DOMAPI, for example,
checking for keyboard traps. Another difference is the model
itself. LGWD is a custom XML language. The model presented in
this article uses an ontology allowing the combination of the
knowledge represented in the ontology with other ontologies.

Originally, it was intended to put much more logic into the
ontology, for example, inferring whether a document passed a
rule. The first experiments showed several problems with that
approach. One problem already emerged during the development
of the first version of the ontology itself. OWL uses an Open
World Assumption. Expressing that there are no more instances
of a class than those specified in the ontology required complex

13https://selenium.dev/.
14https://jsoup.org/.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 60577210

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://selenium.dev/
%20https://jsoup.org/
%20https://jsoup.org/
www.frontiersin.org
www.frontiersin.org

additional modeling. The second problem was performance.
With only a few (less than 40 elements), the reasoning worked
as expected. However, even small web pages often contain several
hundred HTML elements. For each element, the applicable rules
have to be determined. For each rule and element, an additional
individual for the result has to be added. For a web page with 500
elements—which is not an unusual number—and the 35 rules
currently supported by the web-a11y-auditor, this would produce
17,500 results for the rules. Most applicability definitions also
contain more than one test. Therefore, the number of test results
is even larger. Each of these results would be an individual in the
ontology, with several properties. For each of these properties,
another axiom is added to the ontology. All these axioms have to
be processed by the reasoner. With that number of axioms,
reasoning on OWL ontologies with the available reasoners like
Openllet15 becomes extremely slow and requires several gigabytes
of memory. Sometimes, this even causes out-of-memory errors.
Therefore, it was decided to use the ontology only to model the
ACT Rules and to use the ontology as a knowledge base only, and
not as a rule engine. Based on the experience gained during the
development of the web-a11y-auditor, it would also require a
significant amount of code to put the data gathered from the
website into the ontology.

It was planned to compare the effectiveness of the web-a11y-
auditor with other tools and manual evaluations. Unfortunately,
due to the COVID-19 pandemic, it was not possible to recruit
enough people for a study. Nevertheless, the web-a11y-auditor
was tested by some users during the development. The most
valuable insights for the development of the web-a11y-auditor
come not from the results of the evaluations but from the
responses from the users. The users who tested the web-
a11y-auditor found the tool easy to use and also found the
instructions for the manual tests very helpful.

6 CONCLUSION

In this article, a declarative model for accessibility requirements
of web pages was presented. The foundations of this model are the
so-called atomic tests, which are small, easy to implement tests.
Each of these tests only checks a specific aspect. These tests are
combined to formulate rules for testing the accessibility of web
pages. Based on the rules developed by the ACT Rules
Community Group, several atomic tests can be developed.
This approach could be a possible option for creating a
machine-readable model for rules in the ACT Rules Format or
other similar rules. One possible serialization of this model using
theWeb Ontology Language (OWL) was also presented, together
with an example of a tool—the web-a11y-auditor—that uses the
declarative model.

FIGURE 4 | Dialog for manual evaluation in the web-a11y-auditor web application.

15https://github.com/Galigator/openllet.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 60577211

Pelzetter Declarative Model for Web Accessibility Requirements

%20https://github.com/Galigator/openllet
%20https://github.com/Galigator/openllet
www.frontiersin.org
www.frontiersin.org

The approach for modeling accessibility rules presented in this
article can be used to provide an easily extendable model for
accessibility rules and similar structured rules. A prototype of a
tool that uses the model is also presented to show that the model
can be used as base for creating evaluation tools.

7 FUTURE WORK

The declarative model presented in this article works as intended
but can be optimized. For example, several tests, such as checking
if an element is included in the accessibility tree, are used by
multiple rules. In the current version of the model and the web-
a11y-auditor, these tests are repeated for each rule that uses the
tests. In an optimized version of the model, these tests should not
be repeated. Instead, all rules should refer to the same instance of
the test.

The web-a11y-auditor is currently only able to check static
web pages. Dynamic web pages where new elements are added to
the DOM tree cannot be validated completely. A possible
approach for allowing a validation tool to check the different
states of a dynamic web page is to create a model of these states
and the possible transitions between the states. Ideally, this model
should be created automatically.

To validate the effectiveness of the model and the prototype
implementation, a study that compares the results of the
web-a11y-auditor with other tools, such as WAVE or
MAUVE++, and manual evaluation should be conducted
as soon as possible.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These
data can be found here: https://ontologies.web-a11y-
auditor.net.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/
full#supplementary-material.

FIGURE 5 | Results of an evaluation in the web-a11y-auditor.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 60577212

Pelzetter Declarative Model for Web Accessibility Requirements

https://ontologies.web-a11y-auditor.net
https://ontologies.web-a11y-auditor.net
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2021.605772/full#supplementary-material
www.frontiersin.org
www.frontiersin.org

REFERENCES

Abascal, J., Arrue, M., and Valencia, X. (2019). “Tools for web accessibility
evaluation,” in Web accessibility: a foundation for research. Editors
Y. Yesilada and S. Harper (London, United Kingdom: Springer London),
479–503. doi:10.1007/978-1-4471-7440-0_26

Abou-Zahra, S., and Squillace, M. (2017). Evaluation and Report Language (EARL)
1.0 Schema, Tech. rep. World Wide Web Consortium (W3C). Available at:
https://www.w3.org/TR/EARL10-Schema/.

Brajnik, G., Yesilada, Y., and Harper, S. (2010). “Testability and validity of WCAG
2.0: the expertise effect,” in Proceedings of the 12th international ACM
SIGACCESS conference on computers and accessibility, Orlando, FL,
October 25–27, 2010 (ACM), 43–50.

Brajnik, G., Yesilada, Y., and Harper, S. (2012). Is accessibility conformance
an elusive property? A study of validity and reliability of WCAG 2.0.
ACM Trans. Accessible Comput. (TACCESS) 4, 8. doi:10.1145/2141943.
2141946

Broccia, G., Manca, M., Paternò, F., and Pulina, F. (2020). Flexible automatic
support for web accessibility validation. Proc. ACM Hum. Comput. Interact. 4,
1. doi:10.1145/3397871

Caldwell, B., Cooper, M., Reid, L. G., and Vanderheiden, G. (2008). Web content
accessibility guidelines (WCAG) 2.0. W3C, Tech. rep.

Campbell, A., Cooper, M., and Kirkpatrick, A. (2019). Techniques for wcag
2.1.[Dataset].

Diggs, J., Craig, J., McCarron, S., and Cooper, M. (2017). Accessible Rich Internet
Applications (WAI-ARIA) 1.1. W3C, Tech. rep. Available at: https://www.w3.
org/TR/wai-aria-1.1/.

Diggs, J., Garaventa, B., and Cooper, M. (2018). Accessible name and description
computation 1.1. W3C, Tech. rep.

Eggert, E., and Abou-Zahra, S. (2019). How to meet WCAG (Quick reference).
W3C, Tech. rep. Available at: https://www.w3.org/WAI/WCAG21/quickref/.

Faulkner, S., and O’Hara, S. (2020). ARIA in HTMLW3C working draft 06 August
2020. W3C, Tech. rep. Available at: https://www.w3.org/TR/2020/WD-html-
aria-20200810/.

Fiers, W., Kraft, M., Mueller, M. J., and Abou-Zahra, S. (2019). Acessibility
conformance testing (ACT) rules format 1.0. W3C, Tech. rep.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2012).
OWL 2 Web Ontology Language Primer (Second Edition), Tech. rep. World
Wide Web Consortium (W3C). Available at: https://www.w3.org/TR/owl2-
primer/.

ISO (2012). ISO/IEC 40500:2012 information technology — W3C web content
accessibility guidelines (WCAG) 2.0. W3C, Tech. rep.

Kirkpatrick, A., Connor, J. O., Campbell, A., and Cooper, M. (2018). Web Content
Accessibility Guidelines (WCAG) 2.1. W3C, Tech. rep. Available at: https://
www.w3.org/TR/WCAG21/.

Nuñez, A., Moquillaza, A., and Paz, F. (2019). “Web accessibility evaluation
methods: a systematic review,” in Design, user experience, and usability.
practice and case studies. Editors A. Marcus and W. Wang (Cham,
Switzerland: Springer International Publishing), 226–237.

Pelzetter, J. (2020). “A declarative model for accessibility requirements,” in
Proceedings of the 17th international web for all conference, Taipei,
Taiwan, April 20–21, 2020 (New York, NY: Association for Computing
Machinery). doi:10.1145/3371300.3383339

Schiavone, A. G., and Paternò, F. (2015). An extensible environment for guideline-
based accessibility evaluation of dynamic web applications. Univers. Access Inf.
Soc. 14, 111–132. doi:10.1007/s10209-014-0399-3

Stewart, S., and Burns, D. (2018).WebDriverW3C Recommendation 05 June 2018.
W3C, Tech. rep. Available at: https://www.w3.org/TR/webdriver1/.

Stewart, S., and Burns, D. (2019). WebDriver level 2 W3C working draft 24
November 2019. W3C, Tech. rep. Available at: https://www.w3.org/TR/2019/
WD-webdriver2-20191124/.

The European Parliament and the Council of the European Union (2016).
Directive (EU) 2016/2102 of the European parliament and of the council of
26 October 2016 on the accessibility of the websites and mobile applications of
public sector bodies, Tech. rep. Available at: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016L2102.

Velasco, C. A., Abou-Zahra, S., and Koch, J. (2017). Developer guide for evaluation
and report language (EARL) 1.0, Tech. rep. Available at: https://www.w3.org/
TR/EARL10-Guide/.

Verordnung (2011). Verordnung zur Schaffung barrierefreier Informationstechnik
nach dem Behindertengleichstellungsgesetz (Barrierefreie Informationstechnik-
Verordnung - BITV 2.0). Federal Republic of Germany. Available at: https://www.
gesetze-im-internet.de/bitv_2_0/.

WHATWG (2020). DOM living standard, Tech. rep.

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Pelzetter. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 60577213

Pelzetter Declarative Model for Web Accessibility Requirements

https://doi.org/10.1007/978-1-4471-7440-0_26
https://www.w3.org/TR/EARL10-Schema/
https://doi.org/10.1145/2141943.2141946
https://doi.org/10.1145/2141943.2141946
https://doi.org/10.1145/3397871
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/TR/2020/WD-html-aria-20200810/
https://www.w3.org/TR/2020/WD-html-aria-20200810/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://doi.org/10.1145/3371300.3383339
https://doi.org/10.1007/s10209-014-0399-3
https://www.w3.org/TR/webdriver1/
https://www.w3.org/TR/2019/WD-webdriver2-20191124/
https://www.w3.org/TR/2019/WD-webdriver2-20191124/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L2102
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L2102
https://www.w3.org/TR/EARL10-Guide/
https://www.w3.org/TR/EARL10-Guide/
https://www.gesetze-im-internet.de/bitv_2_0/
https://www.gesetze-im-internet.de/bitv_2_0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.frontiersin.org
www.frontiersin.org

	A Declarative Model for Web Accessibility Requirements and its Implementation
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methods
	4 Results
	4.1 Declarative Model
	4.1.1 Examples for Tests
	4.1.2 Combination of Tests
	4.1.3 Expressing ACT Rules Using the Model
	4.1.4 ACT Rules as an Ontology

	4.2 The Web-a11y-Auditor: A Prototype Implementation

	5 Discussion
	6 Conclusion
	7 Future Work
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

