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526 Cotonou, Bénin.

bInternational Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), BP 526
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ABSTRACT

In this paper, using a suitable change of variable and applying the Adomian decomposition method
to the generalized nonlinear Schrödinger equation, we obtain the analytical solution, taking into
account the parameters such as the self-steepening factor, the second-order dispersive parameter,
the third-order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain
just a few optical cycle. The analytical solutions are plotted. Under influence of these effects, pulse
did not maintain its initial shape.

Keywords: Adomian method; nonlinear Schrödinger equation; ultrashort pulse propagation.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

*Corresponding author: E-mail: ggastonedah@gmail.com;

https://www.sdiarticle5.com/review-history/78255


Edah et al.; PSIJ, 25(9): 31-38, 2021; Article no.PSIJ.78255

1 INTRODUCTION

The propagation process of ultrashort
laser pulses in a nonlinear medium is
nowadays in the center of interest because
of its important application in the optical
telecommunication, molecular systems,
cosmology, condensed matter physics, quantum
mechanics, superconductivity, and plasma
physics [1].In theoretical physics, the nonlinear
Schrödinger equation is a classical field equation
whose principal applications are the propagation
of light in nonlinear optical fibers and planar
waveguides and to Bose–Einstein condensates
confined to highly anisotropic cigar-shaped traps,
in the mean-field regime. [2] Important effects
involved in this propagation process have been
theoretically and experimentally considered by
several authors [3]. In this paper, we solve the
generalized nonlinear Schrödinger (GNLSE) by
using Adomian decomposition technique. In
this equation, the parameters such as the self-
steepening factor, the second-order dispersive
parameter, the third-order dispersive parameter
and the nonlinear Kerr effect coefficient and
the self-frequency shift are included. In a
series of remarkable papers [1-5], the authors
have studied this equation using various

approaches. One of the methods is the Adomian
decomposition method for solving a wide range of
physical problems [5-13]. Several modifications
were improved its ability in [14-22]. An advantage
of this method is that it can provide analytical
approximation or an approximated solution to
a wide class of nonlinear equations without
linearization, perturbation, closure approximation
or discretization methods. Its abilities attracted
many authors to use this method for solving
physical problems. Our paper is organized as
follows: in section. 2, we present the analytical
solutions. Section. 3 contains the results
and discussion and section. 4 contains the
conclusions.

2 ANALYTICAL RESULTS
The generalized nonlinear Schrödinger equation
deals with the pulse envelope A(z, t) related
to the electric field E(z, t). The evolution of
A(z, t) inside the dispersive nonlinear medium
is then governed by the standard NLS equation
generalized thanks to the additional terms
that represent the higher-order nonlinear and
dispersion effects. Such a generalized nonlinear
Schrödinger equation has the form [22]
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where ξ = z/LD is the distance normalized to the dispersion length and τ = (t−z/vg)/T0 is the time
normalized to input pulse width T0, δ3 = β3/(6T0|β2|) takes into account the third-order dispersion
effects governed by β3, s = 1/(ω0T0) is the parameter responsible for self-steepening and fp(τ)
governs the pulse shape. Throughout this paper, intrapulse Raman scattering τR is equal to zero.

Now we provide the analytical solution of the generalized nonlinear Schrödinger equation. Setting

κ = β0n2LD, η = εξ + τ, ηξ=0 = τ, g(η) = A(ξ, τ)

for small positive number ε, the above partial differential equation reduces to the following nonlinear
functional equation
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equivalently

g −N(g) = q (2)

where

N(g) =
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In order to obtain the analytical solution of the equation (2), the Adomian method is used for solving
nonlinear functional equations such as the equation (2), where N is a nonlinear operator from a
Hilbert space H into H, q is a given function in H. We are looking for f satisfying (2) and we assume
that (2) has a unique solution for every q ∈ H.

The Adomian method consists in representing g as follows [10-16]

g =

+∞∑
n=0

gn (4)

The nonlinear operator N is decomposed as follows

N(g) =

+∞∑
n=0

An (5)

where the An are functions (Adomian’s polynomials) of g0, . . . , gn that are obtained by writing:
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where λ is a parameter introduced for convenience. From (6) we deduced the An values by the
formulae
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[
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, n = 0, 1, 2, 3, . . . (7)

Thus we will compute in a recurrent manner gn and An to the following relationships:

g0 = q
g1 = A0

...
gn = An−1

...

Indeed for simplicity reasons we choose g′(η0) = ag(η0), g′′(η0) = bg(η0) for real numbers
a, b and we take into account g(η0) = A(0, τ), the initial pulse; then we have g0, g1 and the 2-term
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approximation of g =
∑

n≥0 gn such as:
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3 RESULTS AND DISCUSS-
ION

First of all, let’s point out that the following
parameters δ, s τR characterize the higher-
order dispersive and nonlinear terms. These
parameters govern respectively the effects of
third order dispersion, self-steepening and the

self-shift frequency. One can see that when the
width of the pulse T0 decreases, the pulse is
shorter and the nonlinear parameters increase.
Consequently, when the pulse is shorter, the
higher effects are more important. Then, when
the time T has the values of picoseconds
or larger, these parameters are very small
and can be neglected, so the standard NLS
equation becomes inadequate. We observe
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that during propagation through the waveguide,
where the propagation direction is coincident
with the z-axis, the intensity of the pulse A(t, z)
decreases due to several loss mechanisms for
both Gaussian and sech hyperbolic profiles.
From Fig. 1 we have chosen a Gaussian
pulse for ”s = 0.02, T0 = 10 [fs], β2 = −1
[ps2/km],τR = 0, a = 0.5, b = 0.25, κ = 0.1,
δ3 = 0.02 [ps3/km],ϵ = 2.5 × 10−6, P0 = 1
[mW]”. Fig. 1 compares the intensity profiles at
a distance z = 10LD with the input Gaussian
pulse. As seen there, the shape of the pulse
subsided even it keeps the same Gaussian
profile. We consider now the propagation of the
ultrashort pulse with the initial hyperbolic secant
shape with the same parameters. Fig. 2 shows
changes in the electric field with propagation.
As expected, the the electric field is distorted
considerably when compared to that at the input
taken to be: Ein(τ) = sec(τ)cos(τ). Fig. 3
presents the evolution of the intensity of the
Gaussian-pulse with ”δ3 = 0.03[ps3/km]” and
Fig. 4 shows the intensity of the pulse when

”δ3 = 0.09[ps3/km]”. The comparison shows
that when we inrease the third-order dispersive
term, the pulse shape exhibit oscillations. When
the propagation distance is larger the oscillation
of the envelope is stronger. Let’s point out that the
influence of the self-steepening effect is slighly
observed when its value is increased.

In the results obtained above, we may see the
impact that third dispersive and nonlinear effects
have on the propagation of the ultrashort pulses
in its whole importance. Under the influence of
these effects, the propagation of the ultrashort
pulses is much more complicated than in case of
short pulses.

Therefore, some higher-order effects such
as third-order dispersion, self-steepening play
important roles in the propagation of optical
pulses. The effect of self-steepening is due to the
intensity-dependent group velocity of the optical
pulse, which gives the pulse a very narrow width
in the course of propagation.
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Fig. 1. Gaussian-pulse envelopes as a function of propagation distance z: on top, ”z=0 [km]”;
and below, the output pulse with z = 10LD
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Fig. 2. Hyperbolic-sech pulse envelopes as a function of propagation distance z. On top:
”z=0 [km]”; and below, the output pulse with z = 10LD

Fig. 3. Evolution of the intensity of the Gaussian pulse. The parameters used are: ”δ3 = 0.03
ps3/km,s=0.8,τR = 0, T0 = 10 fs”
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Fig. 4. Evolution of the intensity of the Gaussian pulse. The parameters used are: ”δ3 = 0.09
ps3/km,s=0.8,τR = 0, T0 = 10 fs”

4 CONCLUDING REMARKS

We have applied Adomian decomposition
technique to solve analytically the nonlinear
Schrödinger equation for propagation of an
ultrashort optical pulse inside a nonlinear
medium. Our results illustrate the third order
dispersive effect in pulse distorsion with an
oscillatory structure. The self-steepening
factor reduces the width of the pulse during
propagation. The ultrashort pulses are widely
used nowadays, especially in the optical
telecommunication, so the results obtained in the
research of these pulses are of great practical
importance.
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