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Bénin.

bInternational Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), Université
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Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/PSIJ/2021/v25i930280
Editor(s):

(1) Dr. Bheemappa Suresha, The National Institute of Engineering, India.
(2) Dr. Roberto Oscar Aquilano, National University of Rosario (UNR), Rosario Physics Institute

(IFIR) (CONICET-UNR), Argentina.
Reviewers:

(1) Carlos Torres-Torres, National Polytechnic Institute, Mexico.
(2) El Akkad Abdeslam, CRMEF Fès Meknès, Morocco.

(3) Bhishma Karki, Tribhuvan University, Nepal.
Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are

available here: https://www.sdiarticle5.com/review-history/78122

Received 01 September 2021
Accepted 03 December 2021

Original Research Article Published 13 December 2021

ABSTRACT
In this work, the pulse propagation in a nonlinear dispersive optical medium is numerically
investigated. The finite difference time-domain scheme of third order and periodic boundary
conditions are used to solve generalized nonlinear Schrödinger equation governing the propagation
of the pulse. As a result a discrete system of ordinary differerential equations is obtained and
solved numerically by fourth order Runge-Kutta algorithm. Varied input ultrashort laser pulses
are used. Accurate results of the solutions are obtained and the comparison with other results is
excellent.
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1 INTRODUCTION

Theoretical and experimental research for the
propagation process of ultrashort laser pulses
in a medium have been the subject of intensive
research within the last few years [1-8]. Wave
propagation in an optical fiber is governed by
the nonlinear Schrödinger equation (NLSE).
This particular form of the Schrödinger equation
is obtained from the general set of Maxwell
equations taking advantage of a certain number
of assumptions made possible from the very
specific characteristics of (quasi-)monochromatic
wave propagation in a medium such as a fiber [2].

The nonlinear Schrödinger-type equations
are essential to describe the optical soliton
propagation in a variety of branches of fiber
communication sciences, e.g., nonlinear optics.
Additionally, these models have successfully
addressed the ultrashort pulses of the wave
dynamics, which will increase the power of high-
bit-rate transmission systems. Consequently,
understanding the dynamics of the soliton can
lead to an extensive improvement in technology
and industry. Therefore, there has been
significant progress in the development of diverse
schemes for treating NLSE and nonlinear partial
differential equations (NPDEs) in the general
case. For approximate schemes, we cite the
Adomian decomposition method, collocation
method, homotopy perturbation method,
homotopy analysis method, reduced differential
transform method, q-homotopy analysis method,
variational iteration method, reproducing kernel
Hilbert space method, iterative Shehu transform
method, and residual power series method [3]
(see also the references that appear therein).
While constructing an exact analytic solution
is of more importance since this can provide
the best understanding of the model’s nature to
be processed in an efficient way, researchers
have developed various powerful tools to analyze
NPDEs. Furthermore, these can be utilized
to estimate the boundary data that are used
in numeric and semi-analytic methods. Such
techniques include the Kudryashov method and

its modifications, functional variable method,
generalized Riccati equation mapping method,
Jacobi elliptic function method, sine-Gordon
expansion method, Hirota method, subequation
method, soliton ansatz method, G /G-expansion
method, new extended direct algebraic method,
extended trial function method, new generalized
exponential rational function method, integral
dispersion equation method, modified extended
tanh-function method, simple equation method,
and modified simple equation methods [3] (see
also the references that appear therein). Even
if the resolution of the generalized nonlinear
Schrödinger equation has been intense research
object the subject remains a matter of great
concern. Due to nonlinearity, the NLSE requires
some numerical solution and some of the
most popular numerical methods are: split-
step method, the spectral methods, the finite
difference time-domain method. One of the
most prevalent challenges in developing these
numerical schemes is that they satisfy the
conservation laws [4]. Based on different
techniques of discretization of own equations,
several differential numerical time domain
methods have efficiently simulated nonlinear
dispersive media. These approaches include
the linear and nonlinear properties and take into
account physical complexity of media such as
Kerr effects, Raman diffusion and/or photonic
absorption [5]. The FDTD method is one of
the most widely used methods for this purpose,
due to the simplicity of its implementation, its
applicability to arbitrary scattering media (e.g.,
media exhibiting anisotropic and/or nonlinear
responses), and the high accuracy of the
generated results [6]. As far as the finite
difference method is concerned, accurate and
stable schemes are often required to solve a
large-scale linear system. We solved generalized
nonlinear Schrödinger equation by using finite
difference time-domain scheme of third order with
periodic boundary conditions. The advantage of
using boundary periodic conditions is to avoid
the problems of discontinuities which could arise
during numerical treatment. The FDTD method
solves a discretized Schrödinger equation in
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an explicitly iterative process. The fourth order
Runge-Kutta algorithm is applied to the obtained
system of ordinary differential equations.

The present article is arranged as ensued. In
section 2, we describe the governing model of
the propagation of the pulse. In section 3,
we use the FDTD method with the boundary

periodic conditions to get the system of ordinary
differential equations. In section 4, we
accomplish the integration of the system of
differential equations by the fourth order Runge-
Kutta method. In section 5, we present the results
and discussions. For section 6, a brief conclusion
is given.

2 GOVERNING MODEL
We consider the generalized nonlinear Schrödinger equation with time z ∈ R∗

+, t ∈ Ω =]− T , T [ the
space variable in the case of one dimensional problem and A = A(z, t) the unknown function that
represents the slowly varying electric pulse envelope, in the form [7]:

ı
∂A

∂z
+ıδ3

∂3A

∂t3
+

1

2

∂2A

∂t2

+β0n2LD

[(
A2A

)
+ ıs

∂
(
A2A

)
∂t

]
= 0

∀(t, z) ∈ Ω×R∗
+

(1)

To this equation, we add the following initial conditions :

A(t, 0) = g(t), t ∈ Ω

The function g is a given function in the Hilbert space L2(R,C). The periodic boundary conditions
used are: 

A(−T, z) = A(T, z) z > 0
∂A

∂z
A(−T, z) =

∂A

∂z
A(T, z) z > 0

∂2A

∂z2
A(−T, z) =

∂2A

∂z2
A(T, z) z > 0

(2)

The parameter δ3 = β3/(6T0|β2|) takes into account the third order dispersion effects governed by
β3, s = 1/(ω0T0) is the parameter responsible for self-steepening. Let’s introduce γ = β0n2LD

and N2 = β0n2I0LD[6], I0 is maximum pulse intensity and N governs the soliton order; LD is the
dispersion length. As pointed out in [8], intrapulse Raman scattering is ignored in this work.

3 THE FINITE-DIFFERENCE TIME-DOMAIN SCHEME
We consider a uniform grid tj1≤j≤N step h in t. Let Aj(z) an approximation of Atjz for all z ∈
]0 , L[ and j = 1, 2, . . . , J .

Let’s use approximation with six points {tkz}j+2
k=j−3 to express the partial derivatives

∂A

∂t
tjz,

∂2A

∂t2
tjz

and
∂3A

∂t3
tjz

Let’s expand the partial derivatives in the following form:

Kj,rAz = aAj−3(z) + bAj−2(z) + cAj−1(z) + dAj(z) + eAj+1(z) + fAj+2(z)

such that for fixed r ∈ {1, 2, 3}, we have:

Kj,rAz =
∂rA

∂tr
tjz +O(h6−r) (3)
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This accuracy is desired heuristically that the leading term of the truncation error be
∂6A

∂t6
tjz and

does not bring a parasite dispersion. Assuming that A is regular and by the Taylor expansion up to
6th order of Kj,rAz at the tjz, we have:

Kj,rAz = (a+ b+ c+ d+ e+ f)Atjz

+h(−3a− 2b− c+ e+ 2f)
∂A

∂t
tjz

+
h2

2!
(9a+ 4b+ c+ e+ 4f)

∂2A

∂t2
tjz

+
h3

3!
(−27a− 8b− c+ e+ 8f)

∂3A

∂t3
tjz

+
h4

4!
(81a+ 16b+ c+ e+ 16f)

∂4A

∂t4
tjz

+
h5

5!
(−243a− 32b− c+ e+ 32f)

∂5A

∂t5
tjz

+
h6

6!
(729a+ 64b+ c+ e+ 64f)

∂6A

∂t6
tjz + . . .

(4)

Equation 3 becomes: 

a+ b+ c+ d+ e+ f = (0, 0, 0)
−3a− 2b− c+ e+ 2f = ( 1

h
, 0, 0)

9a+ 4b+ c+ e+ 4f = (0, 2
h2 , 0)

−27a− 8b− c+ e+ 8f = (0, 0, 6
h3 )

81a+ 16b+ c+ e+ 16f = (0, 0, 0)
−243a− 32b− c+ e+ 32f = (0, 0, 0)

(5)

Solving this system of equations we obtain:



a = (− 2

60h
,

0

12h2
,

1

4h3
)

b = (
15

60h
,− 1

12h2
,− 7

4h3
)

c = (− 60

60h
,

16

12h2
,
14

4h3
)

d = (
20

60h
,− 30

12h2
,− 10

4h3
)

e = (
30

60h
,

16

12h2
,

1

4h3
)

f = (− 3

60h
,− 1

12h2
,

1

4h3
)

(6)

One can deduce that

729a+ 64b+ c+ e+ 64f = (− 720

60h
,− 96

12h2
,
360

4h3
) (7)

then the leading term of the truncation error is:

Ep = (−h5

60
,−h4

90
,
h3

8
,
∂6A

∂t6
xjz. (8)

We have:
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∂A

∂t
tjz =

1

60h
(−2Aj−3(z) + 15Aj−2(z)− 60Aj−1(z)

+20Aj(z) + 30Aj+1(z)− 3Aj+2(z)) +
h5

60

∂6A

∂t6
tjz + . . .

∂2A

∂t2
tjz =

1

12h2
(−Aj−2(z) + 16Aj−1(z)

−30Aj(z) + 16Aj+1(z)−Aj+2(z)) +
h4

90

∂6A

∂t6
tjz + . . .

∂3A

∂t3
tjz =

1

4h3
(Aj−3(z)− 7Aj−2(z) + 14Aj−1(z)

−10Aj(z) +Aj+1(z) +Aj+2(z))−
h3

8

∂6A

∂t6
tjz + . . .

(9)

In condensed form the previous system is equivalent to the following system:

∂A

∂t
tjz = Kj,1Az +

h5

60

∂6A

∂t6
tjz + . . .

∂2A

∂t2
tjz = Kj,2Az +

h4

90

∂6A

∂t6
tjz + . . .

∂3A

∂z3
xjz = Kj,3Az − h3

8

∂6A

∂t6
xjz + . . .

(10)

It follows that the system of ordinary differential equations:

dAj

dz
= δ3Kj,3Az +

ı

2
Kj,2Az − sγKj,1A

2Az + ıγAj
2Aj (11)

must be cast into the form:

dAj

dz
=

δ3
4h3

[Aj−3(z)− 7Aj−2(z) + 14Aj−1(z)

−10Aj(z) +Aj+1(z) +Aj+2(z)]

+
ı

24h2
[−Aj−2(z) + 16Aj−1(z)

−30Aj(z) + 16Aj+1(z)−Aj+2(z)]

− sγ

60h

[
−2Aj−3(z)

2Aj−3(z) + 15Aj−2(z)
2Aj−2(z)

−60Aj−1(z)
2Aj−1(z) + 20Aj(z)

2Aj(z)

+30Aj+1(z)
2Aj+1(z)− 3Aj+2(z)

2Aj+2(z)
]

+ıγ
[
Aj(z)

2Aj(z)
]

∀z ∈]0 , T [ et j = 4, . . . , J − 2

(12)

Through periodic boundary conditions, the system completed by the following equations 13, 14, 15
et 16:

dA1

dz
=

δ3
4h3

[AJ−3(z)− 7AJ−2(z) + 14AJ−1(z)

−10A1(z) +A2(z) +A3(z)]

+
ı

24h2
[−AJ−2(z) + 16AJ−1(z)

−30A1(z) + 16A2(z)−A3(z)]

− sγ

60h

[
−2AJ−3(z)

2AJ−3(z) + 15AJ−2(z)
2AJ−2(z)

−60AJ−1(z)
2AJ−1(z) + 20A1(z)

2A1(z)

+30A2(z)
2A2(z)− 3A3(z)

2A3(z)
]

+ıγ
[
A1(z)

2A1(z)
]

∀z ∈]0 , T [

(13)
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dA2

dz
=

δ3
4h3

[AJ−2(z)− 7AJ−1(z) + 14A1(z)

−10A2(z) +A3(z) +A4(z)]

+
ı

24h2
[−AJ−1(z) + 16A1(z)

−30A2(z) + 16A3(z)−A4(z)]

− sγ

60h

[
−2AJ−2(z)

2AJ−2(z) + 15AJ−1(z)
2AJ−1(z)

−60A1(z)
2A1(z) + 20A2(z)

2A2(z)

+30A3(z)
2A3(z)− 3A4(z)

2A4(z)
]

+ıγ
[
A2(z)

2A2(z)
]

∀z ∈]0 , T [

(14)

dA3

dz
=

δ3
4h3

[AJ−1(z)− 7A1(z) + 14A2(z)

−10A3(z) +A4(z) +A5(z)]

+
ı

24h2
[−A1(z) + 16A2(z)

−30A3(z) + 16A4(t)−A5(z)]

− sγ

60h

[
−2AJ−1(z)

2AJ−1(z) + 15A1(z)
2A1(z)

−60A2(z)
2A2(z) + 20A3(z)

2A3(z)

+30A4(z)
2A4(z)− 3A5(z)

2A5(z)
]

+ıγ
[
A3(z)

2A3(z)
]

∀z ∈]0 , T [

(15)

dAJ−1

dz
=

δ3
4h3

[AJ−4(z)− 7AJ−3(z) + 14AJ−2(z)

−10AJ−1(z) +A1(z) +A2(z)]

+
ı

24h2
[−AJ−3(z) + 16AJ−2(z)

−30AJ−1(z) + 16A1(z)−A2(z)]

− sγ

60h

[
−2AJ−4(z)

2AJ−4(z) + 15AJ−3(z)
2AJ−3(z)

−60AJ−2(z)
2AJ−2(z) + 20AJ−1(z)

2AJ−1(z)

+30A1(z)
2A1(z)− 3A2(z)

2A2(z)
]

+ıγ
[
AJ−1(z)

2AJ−1(z)
]

∀z ∈]0 , T [

(16)

4 INTEGRATION OVER SPACE USING FOURTH ORDER
RUNGE-KUTTA METHOD

This integration will be done by fourth order of classical Runge-Kutta method that will give us anyway
a precision in O(∆t4).

The system of ordinary differential equations is:

dAj

dz
= δ3Kj,3Az +

ı

2
Kj,2Az − sγKj,1A

2Az + ıγAj
2Aj pour j = 1, . . . , J (17)

Let’s denote
A(z) = Aj(z)

J
j=1 (18)

and
L = Lj

J
j=1 (19)
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where
Lj(A(z)) = δ3Kj,3Az +

ı

2
Kj,2Az − sγKj,1A

2Az + ıγAj(z)
2Aj(z) (20)

We’ll deal with Cauchy problem: 
dA

dz
= L(A)

A(0) = g(tj)
J
j=1

(21)

The classic fourth order Runge-Kutta method applied to the obtained system of ordinary equations
can be put in the form:

A(z +∆z) = A(z) +
1

6
(K1 + 2K2 + 2K3 +K4) (22)

avec 
K1 = ∆zL(A(z))
K2 = ∆zL

(
A(z) + 1

2
K1

)
K3 = ∆zL

(
A(z) + 1

2
K2

)
K4 = ∆zL(A(z) +K3)

(23)

The coupling of the fourth order Runge Kutta method and the finite difference method adopted above
leads to a discrete scheme globally consistent with the Schrödinger equation and accurate at fourth
order for the parameters s and δ taken strictly positive. This scheme is conditionally stable under the
constraint: 

γs max
1≤j≤J

Aj(z)
2∆z

∆t
< 1.7

∆z

∆t2
< 1

δ
∆z

∆t3
< 0.34

(24)

5 RESULTS AND DISCUSS-
ION

The results are presented in two parts:

The first part presents a comparison between our
method and another method;

The second part is devoted to the dynamics of
the pulse in the nonlinear media using varied
input pulses.

In Fig. 1, the intensity profiles of a sech
hyperbolic input pulse at normalized distances
z = 0 and z = 10 are presented. The following
parameters: β2 = −1[ps2/km], T0 = 10[fs],
which imply that LD =

T2
0

|β2|
is equal to 0.1[mm].

The propagation distance is equal to 10LD

equivalent to the normalized distance equal to
10. The input pulse envelope A = A0sech(t)
with A0 choosen so much so that N = 1. The
other parameters are: δ3 = 0.02[ps3/km], the
steepening parameter is s = 0.08. We compare

the intensity profile at the propagation distance
equal to 10LD corresponding to normalized
propagation distance z = 10 with the sech input
pulse profile. The calculated energy of input and
output pulse shows that energy is conserved.
The peak moves towards the trailing part and the
shape of the pulse remains virtually unchanged
with negligible temporal broadening [2]. It is
also seen that the shape of the output pulse
is slightly unchanged and peak pulse moves
as a solition. As pointed out in [7] the third
order dispersive effects are not strong enough
to break the balance between the self-phase
modulation and group velocity dispersion. In
this figure our results agree with those obtained
by Hile et al. [9-14], shown by GNLS equation
and the time transformation approach developed
in [2]. The time-transformation method directly
maps the electric field in the time-domain and
does not require the use of the slowly varying
envelope approximation. The authors use the
finite-difference time-domain method integrating
Maxwell’s equations directly.
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The second part is presented as follows. First of all, as pointed out by Van Cao et al. [15], the higher-
order dispersion and nonlinearity effects cannot be neglected. Under influence of these parameters,
the pulses changes in a more complicated way as we can see in Fig. 1, Fig. 2, Fig. 3, Fig. 4 and
Fig. 5. All the studied input pulses have symmetry with periodic boundary conditions, but during the
propagation, the symmetry is broken and the pulse become more asymmetric in a complicated way.
Let’s denote that δ3 < 1 and s < 1 so it convenient to treat the higher order effects as perturbation.

Fig. 1. Intensity profile of a secant hyperbolic input pulse at normalized distances z = 0
(solid black) and z = 10 (dotted black). The parameters used are: T0 = 10[fs], s = 0.08,

δ3 = 0.02[ps3/km]. Plot of our method, plot of GNLS equation are shown

Fig. 2. The input gaussian electric profile (solid black line) and the dash (z = 0.2) and solid
blue line (z = 0.7). The parameters used are s = 0.8, T0 = 10[fs], δ3 = 0.02[ps3/km].
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Fig. 3. The cosine modulated by sech function (solid black) and output electric profile
depicked the dash line (z = 0.2) and solid black line (z = 0.7). The pulse width T0 = 10[fs]

Fig. 4. The sech function (solid black) and output electric profile depicked the dash line
(z = 0.2) and solid black line (z = 0.7). The pulse width T0 = 10[fs]

Fig. 2 corresponds to the gaussian input pulse which is the most widely used, g(t) = exp
(
− t2

σ2

)
;

where σ is a constant.
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Fig. 5. The input pulse is a soliton pair enterring the medium. The output pulse for
propagation distances z = 0.2 (dashed line) and z = 0.7 (solid blue line)

The normalized propagation distances are (z =
0.2) and (z = 0.7). The other parameters used
are s = 0.8, T0 = 10[fs], δ3 = 0.02[ps3/km]. As
the propagation distance increases, the shape of
the pulse is deformed.

In Fig. 3 the input pulse is given by: g(t) =
A0sech(t) cos(t/s); where s is the self-steepening
parameter. As noted in Fig. 2 as the propagation
distance is increasing the pulse shape is
deformed significantly.

Fig. 4 presents the input sech pulse given by:A =
A0sech(t) whereas Fig. 5 we consider two
solitons hyperbolic secant used in the collision
models and is written: g(t) = A0sech(t − t1) +
rsech(t + t2) exp(iθ); where r is the relative
amplitude of the two solitons, θ is the relative
phase between them. The parameters are: r =
1, θ = 0 (equal amplitude and in phase case) and
t1 = t2 = 2 (initial spacing) [8].

6 CONCLUSION
We have performed a numerical study of
ultrashort optical pulses in nonlinear dispersive
optical media. We used FDTD scheme of third

order with boundary conditions to solve NLSE.
We have shown that comparisons with time-
transformation method and FDTD for Maxwell
equations are excellent. This can be interpreted
as the scheme used in the paper is accurate
and makes the method appropriate. The results
obtained in this paper exhibit the impact that
the higher-order dispersive and nonlinear effects
have on the ultrashort pulses propagation in
its whole importance. The role of the higher-
order terms in the stability and dynamics of the
solitons thus needs to be understood. Since
the ultrashort pulses are very used in optical
telecommunications, the interest of such pulses
will always attract. In our future work, we’ll use
the FDTD approach to solve partial derivative
equation with higher order and focus on the
stability of finite difference scheme.
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