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Abstract 
This article explores the comparison between the probability method and the 
least squares method in the design of linear predictive models. It points out 
that these two approaches have distinct theoretical foundations and can lead 
to varied or similar results in terms of precision and performance under cer-
tain assumptions. The article underlines the importance of comparing these 
two approaches to choose the one best suited to the context, available data 
and modeling objectives. 
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1. Introduction 

Predictive modeling is an essential step in data analysis and data science, aimed 
at developing models capable of predicting future events or behaviors based on 
historical data [1]. In other words, it represents the process by which a 
mathematical model synthesizing a reality is found. This model can then be used 
to make decisions in the face of new data, which would not normally have been 
used to develop it [2]. 

It is used in many fields such as finance, healthcare, marketing, education and 
many others. 
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The choice of an efficient algorithm in the process of designing a model can 
sometimes be very time-consuming. Knowledge of the general properties of 
algorithms and of problems can be a major asset in choosing the right algorithm. 
Today, there are several algorithms available for setting up models. These can be 
grouped into two approaches especially in the case of linear models: the maximum 
likelihood approach and the Bayesian approach. The choice of a linear model is 
often motivated by the need to understand the relationship between the factors 
influencing a phenomenon and the phenomenon itself [3].  

These two approaches offer distinct theoretical frameworks for modeling and 
predicting phenomena based on observed data. This can often lead to debate as 
to which is more effective at predicting future outcomes. The probabilistic 
method relies on concepts of statistics and probability to estimate the parameters 
of a model [4]. In this perspective, the parameter is considered as a random 
variable whose probability distribution must be estimated [5], whereas the 
least-squares method is based on minimizing the differences between observed 
and predicted values. Some authors, such as Legendre, describe it as an algebraic 
method for solving an incompatible system of n equations with m unknowns 
[6]. 

The comparison between the two approaches will enable us to highlight the 
assumptions that would lead to the choice of one algorithm over another to solve 
a given problem. In this article, we will explore these two approaches in detail, 
highlighting their theoretical foundations, strengths, limitations and application 
in the design of predictive models to enable researchers and practitioners to 
choose the most appropriate method for their specific needs.  

2. Least Squares Method 

The method of least squares was introduced by Karl Gauss in 1809. It is used to 
estimate the parameters of a mathematical model by minimizing the sum of the 
deviations between the observed values and the values predicted by the model [7]. 
In other words, it seeks to find the best approximation to a linear relationship 
between variables by adjusting the model coefficients so that the mean square 
error is minimal.  

2.1. Principle 

First, let’s remember that a model is said to be linear if it is linear with respect to 
its parameters [4]. This means it can be represented either by a straight line or 
by a curve. This is the case, for example, with a polynomial model, which is 
classified as a linear model. In this case, the general form of a linear model is 
given by the following formula:  

 ( ) ( )
1

,
p

i i
i

g z w w f z
=

= ∑                        (1) 

where the functions ( )if z  are non-parametric functions of the variables. We 
can replace them with ix  and we obtain the form:  
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 ( ),g x w w x= ⋅                          (2) 

In the formula (2), w represents the parameter vector and x represents a row 
of data. If we have n rows of data, we can define the observation matrix X, which 
will have n rows and p columns. Thus, the linear model becomes:  

 ( ),g X w X w= ⋅                         (3) 

Notation Given the data matrix X and y vector of data representing the 
phenomenon to be modeled, the problem therefore comes down to estimating 
the parameters w of the linear model of the g function. Least squares proposes 
the function to be minimized  

( ) ( )( )2

1
,

AN
p
k k

k
J w y g x w

=

= −∑  

où AN  is the data sample size, kx  is the vector of variables for the data k, 
and p

ky  is the value of the quantity to be modeled for the data k. To find 
parameter values w for which this function is minimal, it suffices to write that its 
first derivative is zero:  

( ) 0w
J w

J
dw

∂
∇ = =  

which take a set of p equations, whose p unknowns are the parameters iw , 
1i = ? p. These equations are called normal equations. We show that  

 ( ) 1T T p
mcw X X X y

−
=                       (4) 

When X has a large dimension, recursive least squares is used [8]. The 
numerical method to be used can be either singular value separation or gradient 
descent [9].  

2.2. Geometric Interpretation of the Least-Squares Solution 

This solution can be obtained using a geometric method, which is an elegant 
interpretation of the method of least squares [10]. Determining the w coefficients 
of formula 3 is equivalent to solving the system X w y⋅ = . This system is 
incompatible because it has more equations than unknowns. Since a solution 
cannot be found because y ImX∉ , we’re forced to settle for finding a w’ such 
that X w y′ ′⋅ =  with y’ as close as possible to y. This means that ,y y′′ ′∀ ∃  of 
ImX , Xw y Xw y′ ′′ ′ ′− > − . From a geometric point of view, y’ closest to y is 
that which is the orthogonal project of y in the image of the matrix X. Therefore, 
all column vectors of X are orthogonal to the vector y y′− . Thus,  

( )T 0X y y′− =  

( )T 0X Xw y′ ′− =  

T T 0X Xw X y′ ′− =  

T TX Xw X y′ ′=  

( ) 1T Tw X X X y
−

′ =                        (5) 
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We note that the solution of the formula 4 is the same as that obtained by the 
formula 5.  

However, most of the time, researchers manipulate very limited data in the 
form of a sample, tainted by noise. The fact that a sample is drawn at random 
means that the solution may vary with respect to the sample drawn. Hence the 
need to formulate the problem of estimating the parameters of a model from a 
probabilistic point of view. 

3. Probabilistic Approach 

Probability is defined according to two schools of thought [11]: 
• The frequentist approach, according to which the probability of an event is 

the relative frequency with which this event occurs when an experiment is 
repeated a large number of times under identical conditions.  

• The Bayesian approach, in which probability is seen as a measure of subjec-
tive belief or uncertainty about an event. It represents the degree of belief as-
sociated with the occurrence of an event. 

3.1. Parameter Estimation Using the Frequentist Approach 

The frequentist method for estimating model parameters is maximum likelihood 
estimation [12]. It seeks to find the parameter values that make the observed 
data more probable within the framework of the model under consideration.  

Thus the probability density of y knowing x is given by: 
Let kε  be the deviation between the predicted value of the model for data k 

in the sample and the observed value of the measurement to be modeled ky  i.e 
( ),k ky g w xε = − . Suppose that kε  follows a normal distribution with mean 0 

and variance 2δ  i.e. ( )2~ 0,Nε δ  et ε  are independent. 
This implies that y knowing x follows a normal distribution with mean 
( ),g x w  and variance 2σ .  

 ( ) ( )( ) ( )( )2

2 2
22

,1, , , , exp
22

y g x w
P y x w N g x wσ σ

σσ

 −
 = = −
π  

    (6) 

The maximum likelihood function L for n independent observations following 
a normal distribution of ( ),g w xµ =  with variance 2σ  will be written as the 
product of the individual probability density of each observation.  

 ( ) ( )( )2 2

1
, , , ,

N

k
k

L y X w N g x wσ σ
=

 =  ∏               (7) 

To simplify the calculation, we introduce the logarithm into the likelihood 
function, and obtain:  

 
( ) ( )( )2 2

1

221

ln , , ln , ,

1ln exp
22

N

k
k

N
k k

k

L y X w N g x w

y wx

σ δ

σσ

=

= π

 =  

 − = −  
  

∏

∑
          (8) 
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Let 2
1β
σ

=   

( ) ( ) ( ) ( )( )22

1
ln , , ln 2 ln ,

2 2 2 k
k

N NL y X w N y f x wβσ β
=

 = −π − −
 ∑  

 ( ) ( )( ) ( ) ( )22

1
ln , , , ln 2 ln

2 2 2k
k

N NL y X w N y f x wβσ β
=

 − = − +π−
 ∑   (9) 

Since ( )ln 2π  and ( )ln β  are constant, formula (9) can be written as:  

 ( ) ( )( )22

1
ln , , , constant

2

N

k
k

L y X w y f x wβσ
=

 − = − +
 ∑       (10) 

Now, maximizing (-y) is equivalent to minimizing (y). This being the case, 
formula (10) corresponds exactly to the minimization of deviations obtained by 
the algebraic approach to formula (4). So the least squares method is the result of 
the frequentist approach to solving the problem of estimating the parameters 
of a linear model under the assumption of a normal noise distribution [12]. 
But maximum likelihood estimation of the variance of noise sigma2 is often 
underestimated or overestimated [13]. If the number of parameters and data 
evolve simultaneously, or if the density function is not convex, this phenomenon 
is at the root of overlearning or underlearning, a key property of this approach. 

Having determined the optimal value of the parameters w and β , we can 
now make a prediction for a new value of x. The probability distribution of y 
knowing , ,x w β  can then be formulated as follows:  

 ( ) ( )( )* * * 1| , , | , ,P t x w N t y x wβ β −=              (11) 

This approach provides good results when we have a large quantity of data 
and the relationship between the variables x and y are linear. But when the 
sample size is very small, it can lead to overlearning and poor prediction results 
[1]. That’s why another approach is possible in such circumstances. 

In practice, we’ll be using python’s scikit-learn package for least-squares 
parameter estimation.  

3.2. Hypothesis and Limitations of Using Least Squares 

The least-squares approach produces good results when the properties contained 
in the data exist, including linearity, independence of observations, constant 
variance of the error term and normality of the latter. However, this method can be 
ineffective if the data sample contains outliers, multicollinearity between variables 
and small data size. The latter characteristic results in overfitting. 

3.3. Parameter Estimation Using the Bayesian Approach 

We can also take a Bayesian approach to parameter estimation. In this case, it is 
important to define an a priori probability for the parameters and an a posteriori 
probability obtained by Bayes’ theorem. The maximum a posteriori method will 
be used to incorporate the a priori distribution into parameter estimation. 

The a priori probability distribution on the parameters is the probability on 
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the parameters before having observed the data. It will be denoted by  

( ) ( )1| alpha 0,P w N Iα−= . 

The a posteriori distribution is an update of the beliefs or parameter 
distribution after taking into account the a priori distribution and the observed 
data. Using Bayes’ theorem, we can express it as follows:  

( ) ( ) ( )
( )

1
1

, , |
| , ,

L Y X w P w
P w X

P Y X
β α

α β
−

−
⋅

=  

The a posteriori distribution is directly proportional to the a priori distribution 
and likelihood.  

( ) ( ) ( )1 1| , , , , |P w X L Y X w P wα β β α− −∝ ⋅  

We can thus determine w by looking for the most probable value of w given the 
observed data, i.e. by maximum a posteriori (MAP). By introducing the logarithm 
into formula (11), we obtain: 

( ) ( )* 1ln | , , |w L Y X w P wβ α− =    

( ) ( )* 1 1ln | , , 0,w L Y X w N Iβ α− − =    

( ) ( )( )* 1 1ln | , , ln 0,w L Y X w N Iβ α− − = +   

( )( )2* T

1
,

2 2

N

k
k

w y g x w w wβ α
=

= − − +∑  

If we refer to Equation (1), Formula (13) becomes:  

( )( )2T T

12 2

N

k
k

y w x w wβ αφ
=

− − +∑  

With ( )xφ  a basis function that transforms the initial sample data so that a 
linear model can be used in the problem formulation. We also note that 
maximizing the posterior probability is equivalent to minimizing the sum of 
squared regularized errors.  

This has the effect of reducing the phenomenon of overfitting observed in the 
frequentist approach. Probabilities thus prove to be a powerful tool for estimating 
the parameters of a linear model. 

Formula (15) is used to make a point estimate of the w parameter values. It 
corresponds to the Ridge regression of L2. When the error distribution follows a 
Laplace distribution in formula 14, we obtain the Ridge regression of L1 [3]. But 
if we want to make an estimate in terms of an interval, we’ll use Bayes’ approach 
in all its completeness, taking into account the multiplication and sum rule in 
probability.  

This involves representing (15) as a probability distribution. This distribution 
is the predictive distribution. Consider X and y  the training data. Given a new 
point x, the task is to predict the value y. We need to formulate and calculate the 
expression ( )| , ,P y x X y . The parameters α  and β  are known in advance, 
as they can be calculated from the data. 
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The predictive probability distribution is given by applying Bayes’ theorem 
using the multiplication and sum rule in probability theory:  

 ( ) ( ) ( )| , , | , | , dP y x X P y x w P w X w= ∫y y              (12) 

This expression can be calculated analytically by:  

 ( ) ( ) ( )( )2| , , | ,P y x X N y m x s x=y                (13) 

The probability distribution ( )| , ,P y x X y  is equivalent to ( )|P w y .  

 ( ) ( ) ( )T

1

N

n n
n

m x x S x yβφ φ
=

= ∑                   (14) 

 ( ) ( ) ( )T2 1=s x x S xβ φ φ− +                    (15) 

With the matrix S equal to:  

 ( ) ( )T1

1

N

n n
n

S I x xα β φ φ−

=

= + ∑                   (16) 

Applying Bayes’ approach to estimating the parameters of a linear model 
yields the same results as minimizing the variance of the regularized errors. But 
the Bayes approach has the advantage of using only the training sample [1]. 
Given a small sample size and prior knowledge of the parameter distribution, it 
gives excellent results. Minimization by the regularized error function requires 
another validation sample for hyper-parameter optimization [14]. 

In practice, the Monte Carlo Chain Markov algorithm and the variational 
inference algorithm, which we won’t be presenting here, are available for estimating 
the probability a posteriori. These two algorithms can be used to approximate the 
integral of formula (16). In Python, they are contained in the pycm3 and Bayepy 
packages respectively.  

3.4. Hypothesis and Limitations of Using the Bayesian Approach 

The following assumptions must be met in order to use the Bayes approach:   
• Probabilities are considered as measures of subjective belief or uncertainty.  
• Before observing the data, the assumption of an a priori distribution on the 

parameters of the model.  
• The assumption of a likelihood function that describes the probability of ob-

serving the data given the parameters.  
• The assumption of an a posteriori distribution that incorporates both initial 

beliefs and information from the data.  
• The assumption of updating beliefs: unlike the frequentist approach, which 

treats parameters as unknown constants, the Bayesian approach allows initial 
beliefs about model parameters to be updated in the light of observed data.  

The results of the Bayesian approach can be sensitive to the choice of a priori 
distributions. Inappropriate a priori specifications can lead to biased estimates. 
This approach is also influenced by outliers if the a priori specifications are not 
well chosen. 
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3.5. Comparative Summary of the Two Approaches 

Table 1 presents the advantages and disadvantages of the two approaches, after 
having elucidated the characteristics of each of them.  
 
Table 1. Comparative summary of the two approaches. 

 Advantages Disadvantages 
Bayesian 
approach 

When data size is reduced [10]; 
Model inference can be 

time-consuming; 

 
When a priori knowledge of 
parameter distributions is 

available [11]; 

The Bayesian method can lead to 
poor results if a wrong choice has 

been made on the a priori 
distribution. 

 
To quantify the uncertainty of 

estimates [8]; 
 

 
When data is heterogeneous or 

has complex structures; 
 

 
Suitable for e-learning that 

doesn’t require full data storage 
[13]. 

 

Frequentist 
approach 

When data size is large [9]; 
Overfitting in the case of small 

amounts of data; 

 Suitable for batch learning [13]; 
Based solely on data and not on 

other sources of knowledge; 

 
When errors follow a normal 

distribution. 

Makes a point estimate and does 
not quantify uncertainties in the 

estimated values. 

4. Méthodologie 

Predictive analysis is the final step in a modeling study. To get there, there are 
several other preliminary steps, such as cleaning, transformations, visualization, 
etc., which are carried out on the data [14]. For this reason, we will use a 
simulation example to randomly generate a sample of data with two input 
variables ix  and one output variable y. The two variables must follow different 
laws of probability for them to be decorrelated.  

The values of y will be obtained from the assumption of a linear model 
existing between the latter and the input variables, to which a small random 
value will be added.  

[language = Python]  
np.random.seed (0)  
X1 = np.linspace (0, 10, 500)  
X2 = np.random.normal (2, 10, size = 500)  
true_beta0 = 4  
true_beta1 = 2  
true_beta2 = 5  
Y = true_beta0 + true_beta1 * X1 + true_beta2 * X2+ np.random.normal (0, 1, 

size = 500)  
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X = pandas. DataFrame (‘X1’: X1, ’X2’:X2, columns = [‘X1’, ’X2’])  
Then we’ll proceed in two stages:   

• First, we’ll consider a small sample size and estimate the model parameters 
using both approaches;  

• Secondly, we will consider a large sample size and estimate the model pa-
rameters using both approaches. 

Each time, the calculated parameter values will be compared with the true 
known values, which are assumed to have generated the sample. 

Consider the following model:  

0 1 1 2 2i iy x xβ β β ε= + + +                     (17) 

with 0 1 24, 2, 5β β β= = = , ( )~ 0,1ε  . 
Formula (21) can be implemented using previous python code and generates a 

sample of the data. 
On the other hand, we’ll take the same approach by considering the 

estimation of the function sin x ε+  by a polynomial function, which is also a 
linear form with respect to its parameters. This example can also be found in 
[13]. 

5. Comparison of the Two Approaches 
5.1. Results Presentation 

We’re going to estimate the parameters of a linear model using least squares on 
the one hand, and the Bayesian approach on the other. To do this, we have chosen 
to use the Python language. The sklearn package will be used to implement least 
squares, while the pymc3 and Bayespy packages will be used to implement the 
Bayesian approach.  

Let’s consider formula (21) and estimate the parameters. Here are the results:   
• Case 1, small sample size, with 0 4β = , 1 2β = , 2 7β = . 

 
Table 2. Comparison results with reduced size. 

Least squares Regression Ridge MCMC BayesPy 
Size 0β  1β  2β  0β  1β  2β  0β  1β  2β  0β  1β  2β  

N = 5 4.63 1.88 6.98 4.89 1.85 6.97 4.55 1.90 6.98 4.63 1.88 6.98 
N = 15 3.83 2.01 7.02 3.98 1.99 7.01 3.84 2.01 7.02 3.83 2.01 7.02 
N = 30 4.15 2.02 7.00 4.20 2.01 7.00 4.14 2.02 7.00 4.15 2.02 7.00 

 
• 2nd case, large sample size, with 0 4β = , 1 2β = , 2 7β = . 

 
Table 3. Comparison results with large size.  

Least square Regression Ridge MCMC BayesPy 
Taille 0β  1β  2β  0β  1β  2β  0β  1β  2β  0β  1β  2β  

N = 75 4.04 1.99 7.01 4.06 1.98 7.00 4.04 1.99 7.01 4.04 1.99 7.01 
N = 120 4.10 1.97 6.99 4.11 1.97 6.99 4.10 1.97 6.99 4.10 1.97 6.99 
N = 300 4.18 1.97 6.99 4.18 1.97 6.98 4.18 1.97 6.99 4.18 1.97 4.18 
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Let’s now consider the function sin x ε+  with ( )~ 0,0.3ε   having 
generated the data sample. This function can be estimated using a polynomial 
function of degree 3. This degree is obtained after a model selection step such as 
cross-validation, etc., which we won’t go into here. We will now evaluate the 
different methods on the function 2 3

0 1 2 3a a x a x a x+ + + .   
• Case 1, small sample size 

 
Size Least square Regression Ridge BayesPy 

N = 5 

   

N = 15 

   

N = 30 

   

Figure 1. Estimation of sin x  by different approaches with reduced size. 
 

• 2nd case, large sample size 
 

Size Least square Regression Ridge BayesPy 

N = 75 
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Continued  

N = 120 

   

N = 300 

   

Figure 2. Estimation of sin x  by different approaches with large size. 

5.2. Interpretation of Results 

• Looking at Table 2 and Figure 1, we see that as the data increases, the esti-
mated values converge towards the true values for both approaches. But infi-
nitely increasing the data, as shown in Table 3, does not significantly im-
prove the model found.  

• In the case of linear estimation, few data are needed to obtain a model close 
to reality. Indeed, for a problem involving the estimation of a line in a 
two-dimensional space, two points are needed to estimate the line. This means 
that at least three points would be sufficient to limit the overfitting effect.  

• All methods have more or less similar results when it comes to linear estima-
tion. In fact, a linear form does not have to be checked for variations in order 
to derive its true representative form from the data; hence the problem of 
overfitting will not be frequent in this case. We note in Table 2 that even 
with a size of 15 for our case, we reach the true values. 

So the Bayesian approach doesn’t seem to be very effective compared with least 
squares when faced with reduced data, since only the generated data doesn’t have a 
complex structure. By contraposition, this may therefore confirm the hypothesis 
that the Bayesian approach is efficient in the face of reduced data that have a 
complex structure within them. 
• In addition, when the linear model starts to become complex (piecewise lin-

ear), as is the case with the parameter linear model, sin x  for example, the 
indefinite increase in data, as shown in Figure 2, tends to limit the ovefitting 
effect and improve the estimated model towards the true model.  

6. Conclusions 

In conclusion, it’s important to recognize that both the probabilistic approach 
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and the least squares method are powerful and complementary tools in the design 
of predictive models when the relationship between features and goal is linear. The 
probabilistic approach takes a more theoretical and rigorous view, quantifying the 
uncertainty associated with predictions. It represents the theoretical framework 
that makes it possible to obtain algorithms for estimating the parameters of a 
model by initially considering certain hypotheses. Least squares, for example, 
are a method obtained by calculating maximum likelihood while assuming 
independence of observations and normality of errors between calculated and 
estimated model values. 

From a technical point of view, the probabilistic approach requires a priori 
knowledge and sampling algorithms such as Monte Carlo Markov chain to 
calculate the a posteriori distribution. If a priori distribution is not known, these 
algorithms calculate the conjugates of a posteriori distribution, and this is fairly 
resource-intensive. In the case of linear predictive models, the least squares 
method stands out for its ease of application, making it a practically preferred 
choice. In our experience, both approaches lead to the same results when 
estimating the values of a linear model, assuming that we know the form of the 
estimated function. However, in most cases, this form will not be known 
initially. Other tasks may be useful beforehand, such as feature selection, data 
transformations, model selection, etc. 

It is therefore recommended to use least squares even with little data when the 
form of the function to be estimated is linear and known. However, when the 
function to be estimated has variations, a large amount of data is required. If the 
form of the function is not known in advance and we have information on a 
priori distribution of the parameters, the probabilistic approach will be preferred. 
If the form of the function to be estimated is not known in advance, and the 
probability distribution of the parameters is not known, it will be important to 
consider other techniques, such as neural networks, or to carry out certain 
processing operations on the data beforehand, if the linear model obtained is not 
satisfactory.  

Looking ahead, given that numerical methods for calculating a posteriori 
probability are based on the assumption of knowledge of the relationship between 
the features and the phenomenon to be predicted, it will also be interesting to 
study how the Bayesian approach can be integrated into the retroproputation 
algorithm to solve non-linear problems. On the other hand, a more in-depth 
study based on real data will be possible, as the artificially created data fulfilled 
all the assumptions for the use of least squares. This is why the two approaches 
led to almost similar results. This is just further evidence that the probabilistic 
approach provides a general framework for generating model design algorithms. 
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