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Impulsive radial transport events occurring in the radiation belts leave lasting
marks in the form of drift echoes, that is, energy-dependent drift phase
structures in the radiation belts that evolve at the drift frequency. Drift echoes
are known to be transient structures that dissipate due to phase mixing. The
objective of this paper is to discuss how much time it takes for drift echoes
to dissipate, and what drives this phase-mixing process. While any uncertainty
or perturbation in the variables controlling trapped particles’ drift frequency
contributes to phase mixing, we highlight two main drivers: the observational
uncertainty associated with the finite size of the instrument energy channels,
and the natural field fluctuations driving perturbations in trapped particles’
drift frequency. It is the combination of both instrumental and natural sources
of phase mixing that determines the observed dissipation and lifetime of
drift echoes. This means that the observed magnitude and lifetime of a drift
echo are always underestimations of the natural magnitude and lifetime of
the structure. This calls into question the applicability of the standard, drift-
averaged formulation of radial diffusion. The three key points of the study are
the following: First, the time it takes for particles initially localized in local time
to phase-mix is measured in hours in the Earth’s radiation belts. Second, phase
mixing at the drift scale is primarily due to uncertainties in measured kinetic
energy and field perturbations. Third, our analysis can be utilized to set an energy
resolution requirement for future particle instruments.

KEYWORDS

radiation belt, drift, phase-mixing, radial diffusion, energy diffusion, instrument
resolution

1 Introduction

Observations of drift phase structures in the radiation belts have multiplied over the
last decade, facilitated by the use of instruments with high energy resolution channels
(Krimigis et al., 2004; Sauvaud et al., 2006; 2013;Mitchell et al., 2013; Ukhorskiy et al., 2014;
Hartinger et al., 2018). They have been the object of statistical analyses in the Earth’s inner
belt (e.g., Lejosne and Mozer, 2020), in the outer belt (e.g., Zhao et al., 2022), and even at
Saturn (e.g., Sun et al., 2021). Drift phase structures in radiation belt measurements are
indicative of a transient magnetic local time (MLT) dependence in phase space density
(PSD). As such, they are a direct challenge to the purely diffusive framework commonly
utilized in radiation belt modeling and data analysis.

Indeed, the current picture for radiation belt acceleration (e.g., Jaynes et al., 2015)
relies on the assumption that the effect of radial transport on radiation belt intensity is
well captured by a diffusive equation (e.g., Lejosne et al., 2022a). That said, the validity of
the radial diffusion equation relies on the assumption that radiation belts are fully phase
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mixed at all scales, including at the drift scale (e.g., Lejosne
and Albert, 2023). As such, it excludes the possibility of any
MLT dependence along a drift shell. One could expect any
MLT-dependent PSD fluctuation to dissipate rapidly thanks to
some efficient phase-mixing process (e.g., Schulz and Lanzerotti,
1974). Yet, ubiquitous observations of drift phase structures in
the radiation belts suggest that: a) processes generating significant
MLT-dependent structures in radiation belt fluxes (i.e., non-
diffusive radial transport events) occur frequently and/or that b)
the characteristic time for phase-mixing at the drift scale can
be significant. Quantifying the latter is the object of this paper.
Determining the amount of time it takes for a drift phase structure
to dissipate and fully phase mix at the drift scale is important,
because it provides information on the amount of time duringwhich
the radial diffusion equation cannot fully represent the effect of
radial transport on radiation belt intensity once a MLT-dependent
perturbation has occurred.

In this paper, we propose a thorough analysis of the
characteristic time for drift phase mixing in the Earth’s radiation
belts. While drift phase mixing is usually viewed as an effect related
to the finite energy resolution of particle detectors at the drift scale
(e.g., Schulz and Lanzerotti, 1974), we show that field perturbations
also lead to natural phase mixing. The results of this analysis
have theoretical and practical implications. From the theoretical
standpoint, they contribute to clarifying the limits of the radial
diffusion framework. From the practical standpoint, they provide
analytical grounds to improve the analysis of measured drift phase
structures and to specify resolution requirements for future particle
detectors designed for radiation belt measurements.

2 General definitions and method
overview

Drift phase mixing at the drift scale corresponds to a process
by which trapped particles with similar characteristics (adiabatic
invariants, charge) initially located in a limited MLT sector along
a drift shell end up covering all MLT sectors uniformly. We
are interested in determining how long it takes for this phase
homogenization process to occur. This defines the characteristic
time for drift phase mixing, and the calculation of this time is the
focus of this work. Within this section, we describe the framework
by which fluctuations or uncertainties within the system drive phase
mixing and the procedure by which the resulting phase mixing time
can be extracted.

2.1 Processes generating drift phase mixing

Drift frequency perturbations are required for a population with
similar initial characteristics (adiabatic invariants, charge, MLT)
to start covering different MLT locations. Because drift frequency
varies with energy, pitch angle, radial location, and field magnitude,
any fluctuation in any of these quantities has the potential to drive
phase mixing. Specifically, the drift frequency of energetic particles
trapped in the Earth’s magnetic dipole field, ΩT/2π, is equal to
ΩT/2π = (Ω+ΩE)/2π, where ΩE/2π = 1/24hr−1 is the electric drift

frequency, equal to Earth’s corotation frequency, and Ω/2π is the
magnetic drift frequency, defined as:

Ω = − 3L
qBER

2
E

E(E+ 2Eo)
E+Eo

F(y) (1)

In this formula, L corresponds to the equatorial radial distance
of the magnetic field line, normalized in units of Earth radii, RE =
6371km is one Earth radius, q is the electric charge, BE = 30,000nT
is the equatorial magnetic field at the Earth’s surface, E is the kinetic
energy, Eo is the rest mass energy (0.511 MeV for electrons), and y =
sin α is the sine of the equatorial pitch angle, α. The function, F,
characterizes the relatively weak dependence of the magnetic drift
frequency on pitch angle. It increases monotonically from 1/3 for
field aligned particles (y = 0) to 1/2 for equatorial particles (y = 1).
Specifically, the function, F, is equal to (Schulz, 1991, p.211, 210 and
206):

F(y) =
5.520692− 2.357194y+ 1.279385y

3
4

12(1.380173− 0.639693y
3
4 )

(2)

In the following, we will divide the sources of variations
in drift frequency in two categories: 1. Variations associated
with observational uncertainties due to the finite resolution of
the instrument, and 2. Variations associated with natural field
fluctuations present in the space environment. The elements of
each category will be discussed individually (Section 3; Section 4)
before being combined (Section 5) to determine a realistic time
for phase mixing. The mathematical derivations of the formulas
provided in Sections 2–4 will be provided in Sections 7–10 for the
interested reader. In the remainder, we will consider that the Earth’s
magnetic field is well represented by a dipole to determine analytical
expressions for drift phase mixing.

2.2 Mathematical framework: phase mixing
characterization and definition of a
phase-mixed state

To quantify the characteristic time for phase-mixing, we need to
set a criterion that determineswhether a particle distribution along a
drift shell is homogeneous, i.e., phase-mixed. To quantify the spread
in MLT of the population, we propose to consider the variance of
the drift phase locations. The greater the variance, the more the
population is phase-mixed. If we assume that a) the distribution
of the drift phase locations along a drift shell is random, and that
b) the random distribution is well described by a wrapped normal
distribution, then it is possible to show that a phase-mixed state
is reached when the variance of the distribution is greater than
π2 radians2. This quantifies the intuitive and physically motivated
choice that the variance of the population should encompass the
entirety of the MLT coordinate. The derivation of this criterion is
detailed in Section 7. In the following, we set the critical variance
value above which the population is considered phase-mixed at the
drift scale, σ2

lim, as:

σ2
lim = π

2 (3)

Since the variance of the drift phase locations of the trapped
particles is expected to (strictly) increase with time, t, the objective
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is to compute the time evolution of the variance. We define the
characteristic time of drift phase mixing, tlim, as the time at which

σ2(tlim) = σ2
lim (4)

An efficient phase mixing process will reach a phase mixed state
after a relatively short time, tlim. In comparison, a long characteristic
time for phase mixing, tlim, will be indicative of a process whose
effect can be omitted.

While the choice of a Gaussian distribution to model the
distribution of drift phase locations may appear somewhat artificial,
in particular when it comes to characterizing instrumental drift
phase mixing (Section 3), it is consistent with the characteristics
of the field fluctuations assumed to characterize natural drift phase
mixing (Section 4). Since natural drift phase mixing is the process of
interest for theoretical analysis of radiation belt dynamics, we opt for
a Gaussian distribution as a first approximation. Other assumptions
would result in different analytical formulas, but we expect the order
of magnitude to be similar.

3 Instrumental drift phase mixing

3.1 Instrumental drift phase mixing
associated with the finite energy resolution
of the instrument

In radiation belt textbooks (e.g., Schulz and Lanzerotti, 1974),
phase mixing at the drift scale is usually attributed to the
instrument finite energy resolution: energy channels are sensitive
to a given energy range, E± dE, not just one kinetic energy
value. Since particles with slightly different energies have slightly
different drift frequencies (Eq. 1), the population measured by
one energy channel will spread in MLT. This process is further
described below.

3.1.1 Analytic expressions
We consider particles of the same charge starting from a single

location and with a Gaussian energy distribution. Specifically, the
variations in kinetic energy are randomly distributed around E, and
described by a Gaussian distribution of standard deviation, σE. The
variance in energy, σ2

E, causes an increasing spread in drift phase,
which increases with time. Indeed, we show in Section 8 that the
variance of the phase locations evolves as:

σ2(t) =
σE

2

E2 (
γ2 + 1
γ(γ+ 1)
)

2

Ω2t2 (5)

where γ = (E+Eo)/Eo is the Lorentz factor, with Eo the rest mass
energy, and Ω/2π is the magnetic drift frequency defined in Eq. 1.
The resulting induced drift angle distribution is also a Gaussian, of
variance, σ2.

Combining Eqs 3–5, the characteristic time for phase mixing
associated with the instrument finite energy resolution, tE, is:

tE =
τ
2
E
σE
(
γ(γ+ 1)
γ2 + 1
) (6)

where τ = 2π/Ω is the magnetic drift period.

To reformulate the standard deviation in energy, σE, in terms
of finite energy resolution of an instrument, r = dE/E, we consider
that 95% of the particles measured by the channel have an energy
between E− dE/2 and E+ dE/2. Applying the 68–95–99.7 rule,
or using the error function, this means that dE/2 = erf−1(0.95) ×
√2σE ≅ 2σE, thus σE ≅ rE/4. In that case, the expression of the
characteristic time for phase mixing, tE, becomes:

tE =
τ
r
(

2γ(γ+ 1)
γ2 + 1
) (7)

The characteristic time for phase mixing, tE, is proportional
to the magnetic drift period, τ, and inversely proportional to the
instrument resolution. Thus, the higher the energy resolution of the
instrument, the longer it takes to phase mix. For an instrument with
a typical energy resolution of r = 20%, the characteristic time for
phase mixing, tE, is of the order of 10 drift periods, while for an
instrument with high-energy resolution, r = 5%, the characteristic
time for phase mixing, tE, is much longer, of the order of 40
drift periods.

Let us mention that the characteristic time for phase mixing
associated with the finite energy resolution of the instrument
is usually defined as 2π/∆Ω, where ∆Ω/2π corresponds to the
difference in drift frequency between the slowest and the fastest
particles of the energy channel considered. In that case, it is
straightforward to show that the resulting characteristic time for
phase mixing associated with finite energy resolution is τ

r
( γ(γ+1)

γ2+1
).

In other words, this alternative analytic expression depends on the
same variables, but it is two times faster than the quantification
provided Eq. 7. This model is equivalent to assuming a uniform
distribution in particles’ energy over the energy channel, thus, a
uniform instrumental response over the entire energy channel.
In the model underlying Eq. 7, we assumed that the instrument
response depends on particles’ energy, that it is more sensitive to the
central energy of the channel, and that it is symmetrical. Considering
a skewed response, characterized by a lognormal distribution for
instance, would increase the characteristic time for phase mixing
even more.

3.1.2 Illustration and quantification
With a theoretical estimate in hand, we now turn to a numerical

investigation of the problem from a particle-based description.
Figure 1A shows the dissipation of a drift echo, measured from
L = 3, MLT = 00±0.5 h, associated with equatorial electrons of
energies distributed normally around 250 keV, with σE = rE/4, and r
= 20% (i.e., 95% of the particles are between 225 keV and 275 keV).
The particles are launched from L = 3 and MLT = 00 and drift
in stationary fields at a frequency equal to ΩT/2π = (Ω+ΩE)/2π.
A phase-mixed state is reached when the normalized number of
particles located at MLT = 00±0.5 h reaches an asymptote equal to
1/24 ≅ 0.04. According to Eq. 7, the characteristic time for phase
mixing, tE, is tE = 13.02hr.We define the distance to the phasemixed
state as the maximum relative distance between the normalized
number of particles, n, and the phase-mixed value over all 24 MLT
bins, i. e., d = max(|n(∙,σ2) − 1/24|) × 24. Figure 1B shows that the
distance, d decreases with time until it reaches a plateau, at d ∼ 5%,
once the particle distribution, n, is phase mixed. While the distance,
d, could theoretically decrease even further (see Section 7), this is
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FIGURE 1
(A) Time evolution of the normalized number of particles situated at L = 3 and MLT = 00±0.5 h. We launch 30,000 equatorial electrons with average
energy 250 keV and a standard deviation in energy of rE/4 = 12.5keV from L = 3, MLT = 0 at t = 0. The phase mixed state is represented by a black
dashed line located at y = 1/24 ≈ 0.04. (B) Time evolution of the distance to the phase-mixed state, d (see text for definition).

FIGURE 2
Characteristic time for phase mixing, in hours, due to the finite resolution in particles’ measured kinetic energy. The information is provided as a
function of kinetic energy, E, and dipole L value. The uncertainties in measured kinetic energy are described by a Gaussian distribution of standard
deviation, σE = rE/4. The panels represent (A) a very high energy resolution energy instrument (r = dE/E = 5% ) and (B) a typical energy resolution
( r = 30%)

not the case here because of themargin of error induced by the finite
number of particles used in this numerical experiment.

Figure 2 presents a quantification of the characteristic time for
phase mixing, tE, as described in Eq. 7, for equatorial electrons and
two different instrument resolutions: A) high energy resolution, r =
5%, and B) typical energy resolution, r = 30%. It shows that the
characteristic time for phase mixing ranges from hours (at MeV
energies in the outer belt) to several days (at low energies in the inner
belt). In practice, every instrument differs in its notion of resolution,
so the analysis and quantification could be redone assuming another
definition for the energy resolution of the instrument, but we expect
the order of magnitude to be similar.

3.2 Instrumental drift phase mixing
associated with the finite pitch angle
resolution of the instrument

Because particles with different pitch angles have slightly
different drift frequencies (Eq. 1), the finite pitch angle resolution
of an instrument can also play a role in phase mixing. Since the
dependence of the drift frequency on pitch angle, F, is relatively
weak, the phasemixing process associatedwith this effect is expected
to be less significant than the phase mixing associated with the
instrument finite energy resolution. Regardless of this fact, and
for completeness, a discussion of the characteristic time for phase
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mixing associated with the finite pitch angle resolution of the
instrument is presented below.

3.2.1 Analytic expressions
Let us now consider a cluster of particles with normally

distributed equatorial pitch angles, with a mean sine equal to yo.
Because the magnetic drift frequency is directly proportional to
the function, F, the variance of the phase locations is directly
proportional to the variance of the function, F, Var(F), and it is
straightforward to show that it evolves with time, t, as:

σ2(t) =Ω2Var(F)
F2(yo)

t2 (8)

As a result, combining Eqs 3, 4, 8, the characteristic time for
phase mixing associated with the instrument finite pitch angle
resolution, tA, is:

tA =
τ
2

F(yo)

√Var(F)
(9)

This expression is again directly proportional to the drift period,
as was the case for the energy resolution mixing time (Equation 7).
Its dependence on F demonstrates a weak dependence of this time
on the choice pitch angle, suggesting the main influence on this
time will be the variance and thus the mixing time due to pitch
angle aperture will be sensitive only to its resolution.We explore this
briefly below.

3.2.2 Quantification
The expression 9) permits us to explore the impact of an

instrument’s pitch angle resolution on the phase mixing process.
To best do so, let us first consider a particularly coarse resolution
where the pitch angles are normally distributed around 45° with
an instrumental aperture of 90 °, meaning that 99% of the values
are between 0° and 90°. In this case, F(yo) = F(sin (45°)) ∼ 0.45 and
√Var(F) ∼ 0.03, yielding the characteristic time for phase mixing
associated with the instrument finite pitch angle resolution, tA, to
be of the order of 9 drift periods. Comparatively, this mixing time
increases substantially to the order of 50 drift periods when this
aperture is instead 15°. We summarize this aperture effect on mixing
time in Figure 3, demonstrating that the ratio between mixing time,
tA, and drift period, τ, decays algebraically with increasing aperture
size (as expected by Eq. 9).

Figure 3 suggests that phase mixing due to the finite pitch
angle resolution of the instrument is not a significant process to
account for when dealing with unidirectional measurements (with
an aperture of < 10° ). The characteristic time for phase mixing,
tA, is indeed expected to be greater than 50 drift periods when the
aperture is smaller than 15°. On the other hand, phase mixing may
become a significant process for wide apertures, including when
dealing with omnidirectional measurements.

That said, in practice, the distribution of the drift phase locations
along a drift shell may not always be very well described by
a wrapped normal distribution when dealing with a population
with a variety of pitch angles. Assuming a pitch angle distribution
peaked around 90° in equatorial pitch angles for instance, the
bulk of the population will also be the fastest, and the rest
of the population will trail behind, creating a wrapped skewed

FIGURE 3
Ratio between the characteristic time for phase mixing associated with
the finite pitch angle resolution of the instrument, tA, and the drift
period of the particles considered, τ, as a function of instrument
aperture. It is assumed that the particles have their equatorial pitch
angles normally distributed around 45°, with 99% of the pitch angles
located within aperture.

distribution. In that case, the approach detailed in Section 7
and the criteria for phase-mixing defined in Eq. 3 need to be
revised. Preliminary numerical simulations accounting for more
realistic distribution functions suggest that the analytic expression
for the characteristic time for phase, tA, provided in Eq. 9, may
actually be an underestimation of a more realistic value for the
characteristic time for phase mixing associated with the instrument
finite pitch angle resolution. Given these limitations, and the fact
that phase mixing associated with the instrument finite pitch
angle resolution appears to be a minor process in the case of
unidirectional measurements (i.e., with an aperture of < 10°),
this process will be omitted thereafter, and we will focus on
equatorial particles.

4 Natural drift phase mixing

In the theoretical case of a perfectly resolved instrument
(measuring one exact set of kinetic energy and pitch angle values),
the characteristic times for phase mixing computed in Section 3,
tE and tA, would both be infinitely long (tE = tA = +∞). Yet, we
still expect the drift echoes to dissipate. This is because field
fluctuations naturally present in space generate perturbations in
drift frequency, and ultimately, phase mixing. We present a first
quantification of these characteristic times for natural drift phase
mixing in the following.

4.1 Analytic expressions associated with
perturbations in radial location

The omnipresence of small, slow, electric and magnetic field
fluctuations means that the radial location of radiation belt particles
is constantly disturbed.We show in Section 9 that the variance of the
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phase locations along a given drift shell is, as a first approximation
for equatorial particles:

σ2(t) = 2
3
(1

4
+ 3

4γ2)
2DLL

L2 Ω2t3 (10)

where DLL is the radial diffusion coefficient. What is apparent at
this stage is that we now have cubic, rather than quadratic, growth
of the variance. This may appear unusual in the first instance but
it is a consequence of the Brownian motion of particles radially
contributing to the higher power of t. It also is the first instance
of particle (radial) diffusion influencing the mixing process, and
although these diffusion coefficients can be small in size they can
increase by orders of magnitude thanks to magnetic activity (see
Brautigam and Albert, 2000), unlike the instrumental phase mixing
times.This hints to the possibility that natural mixingmay dominate
in most scenarios, only being eclipsed by instruments with large
apertures or low energy resolutions. Combing Eqs 3, 4, 10, the
characteristic time for phasemixing associated with radial diffusion,
tF, is:

tF = (
3
8
)

1
3(1

4
+ 3

4γ2)
− 2

3
( L2

DLL
)

1/3
τ

2
3 (11)

Thus, the characteristic time for phase mixing, tF, is
representative of the intensity of the field perturbations, with higher
levels of radial diffusion yielding a shorter lifetime for the drift
echoes. This means that, in the theoretical case of a perfectly
resolved instrument (measuring one exact set of kinetic energy
and pitch angle values), drift echoes’ finite lifetime could be used
to quantify radial diffusion magnitude–in the absence of other
significant sources of drift frequency perturbations.

4.2 Analytic expressions associated with
perturbations in energy

Wave-particle interactions driving diffusion in energy and/or
pitch angle, can also contribute to natural drift phase mixing. That
said, because the dependence of the drift frequency in pitch angle is
relatively weak (see also Section 3.2), we expect the effect of pitch
angle diffusion on phase mixing time to be a secondary process.
Regarding energy diffusion, we show in Section 10 that the variance
of the phase locations when considering a constant energy value is,
as a first approximation for equatorial particles:

σ2(t) = 1
6
(

γ2 + 1
γ(γ+ 1)
)

2DEE

E2 Ω2t3 (12)

And the characteristic time for phase mixing associated with
energy diffusion, tw, is:

tW = (
3
2
)

1
3(

γ(γ+ 1)
γ2 + 1
)

2
3
( E2

DEE
)

1
3
τ

2
3 (13)

Comparing the effects of energy diffusion (Eqs 12, 13) and radial
diffusion (Eqs 10, 11) on phase mixing, we see that they are of
similar magnitude when DEE/E2 ≈ DLL/L2. To obtain a significant
difference between the two effects, resulting in a difference of at
least a factor 10 between the respective characteristic times for phase

mixing, tW and tF, for instance, we would need a difference of at least
103 between DEE/E

2 and DLL/L
2. In the following, we will consider

DEE/E2 ≈ DLL/L2 in the outer belt (L > 3), and DLL/L2 ≫ DEE/E2 in
the inner belt for the sake of simplicity (e.g., Wong et al., 2024). In
other words, we will consider tw ≈ tF in the outer belt, and tF ≫ tw in
the inner belt.

4.3 Illustration and quantification

4.3.1 Numerical experiment using electrostatic
radial diffusion

Particle injections have been observed even at very low L values
(e.g., Turner et al., 2015), down to the inner belt and below (e.g.,
Selesnick et al., 2019). In our numerical experiment, we launched
30,000 equatorially mirroring electrons with 250 keV in the inner
belt, from L = 3, MLT = 00. The particles are trapped in a
magnetic dipole field and their driftmotion is perturbed by a special
case of random electric potential fluctuations, identical to the one
described in the article by Lejosne et al. (2023). Specifically, we
model the total electric potential,V, as the sum of a well-determined
corotation potential, and some ad hoc fluctuations proportional to a
random variable, w, so that: V = −ΩEBER

3
E/r+w(t)rcosφ, and the

electric field is defined as E = −∇V. We assume that the variable,
w, is a piecewise constant function: the value stays constant for
a set amount of time, T = 200s, and it updates instantaneously
and unpredictably at the end of every time interval. We set the
standard deviation of the perturbation, w, to a realistic value of
about 0.5 mV/m. That way, the magnitude of the radial diffusion
coefficient is DLL = 2.2× 10−2day−1 at L = 3, an order of magnitude
that is consistent with previous estimates for radial diffusion in
the inner belt and slot region (e.g., Selesnick, 2012; Obrien et al.,
2016, their Figure 4). The phase mixing time provided by Eq. 11,
is tF = 23.9hr. Figure 4 shows the phase mixing of the population,
by A) representing the time evolution of the normalized number of
particles at L = 3,MLT = 00 ±0.5 h and B) quantifying themaximum
relative distance to the phase-mixed value. It suggests that drift phase
structures could live up to a day after their generation in the Earth’s
inner belt and slot region for 250 keV electrons.

4.3.2 Quantification using electromagnetic radial
diffusion

To provide a first quantification of the characteristic time for
phase mixing associated with fluctuations in trapped particles’
radial location, tF, we leverage the model for electromagnetic radial
diffusion proposed by Brautigam and Albert (2000), in which the
magnitude of radial diffusion is a function of magnetic activity,
parameterized by the Kp magnetic index:

DLL = 10−9.325+0.506×KpL10 (day−1) (14)

In order to get information on the range of values for
the characteristic time for phase mixing associated with field
fluctuations, tF, we implement the formula for very quiet times
(Kp = 0) and active times (Kp = 6). Figure 5 shows that phase
mixing due to field fluctuations can become a significant process
during active times, with a characteristic time, tF, that can be
smaller than the characteristic time for phase mixing associated
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FIGURE 4
(A) Time evolution of the normalized number of particles situated at L = 3 and MLT = 00±0.5 h. We launch 30,000 equatorial electrons with kinetic
energy 250 keV from L = 3, MLT = 00 at t = 0 and we assume a radial diffusion coefficient DLL = 2.2× 10−2day−1. (B) Time evolution of the distance to
the phase-mixed state, d (see text for definition).

FIGURE 5
Characteristic time for phase mixing due to radial diffusion, tF, in hours, for (A) Kp = 0 and (B) Kp = 6. The information is provided as a function of
kinetic energy, E, and dipole L value. Radial diffusion magnitude is parametrized according to Brautigam and Albert’s (2000) formula for
electromagnetic radial diffusion.

with the instrument finite energy resolution, tE (especially in the
case of high resolution instrument–Figure 2A). This reinforces the
observation that the t3 growth of the variance seen in Eq. 10 can
have a significant role in effective MLT mixing. We can also see
evidence of the role which magnetic activity plays in Figure 5B,
where the mixing time decreases by around an order of magnitude
in all cases. This is highly suggestive that natural mixing will be
the most likely process for MLT homogenization in storm times.
Regarding the first estimates provided in Figure 5, it is important
to keep in mind that: a) the model by Brautigam and Albert
(2000), provided in Eq. 14, was parameterized in the outer belt
(interpolating experimental information provided at L = 4 and L =
6.6), and b) it is thought to underestimate radial diffusion in the
inner belt (e.g., Selesnick, 2012; Obrien et al., 2016). With higher

radial diffusion coefficients in the inner belt, the characteristic
time for phase mixing, tF, could be significantly shorter than the
estimates provided in Figure 5, as is the case in Section 4.3.1 for
instance.

5 Combining all processes

Although we have explored and characterized each mixing
process individually, it is clear that in practice none of them operate
in isolation. The “true” mixing time, therefore, is the cumulative
effect of all operating in tandem. The focus of this section will be to
use the analytic expressions for each individual process to construct
an overall mixing time for the particles in MLT.
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5.1 Combining instrumental and natural
phase mixing processes

5.1.1 Analytic expressions
When all processes discussed in Sections 3, 4 coexist, we expect

the resulting characteristic time for phase mixing, tT, to be smaller
than the smallest of all characteristic times for phase mixing
obtained for each individual process, as discussed below.

Because the sources of perturbations are independent from each
other, we can consider that the variance of the drift phase locations
resulting from the combination of all instrumental and natural
processes is the sum of the variances associated with each process:

σ2
T (t) = ∑

i
σ2
i (t) (15)

where the indices i label every process associated with phase-
mixing–namely, the finite energy resolution of the instrument, radial
diffusion, energy diffusion, and to second-order, the finite pitch
angle resolution of the instrument, as well as pitch angle diffusion.
In that case, a phase-mixed state is reached at a characteristic total
time, tT, defined as:

∑
i
σ2
i (tT) = σ

2
lim  (16)

By definition, the characteristic time for phasemixing associated
with each process, ti, is such that σ2

i (ti) = σ
2
lim . Thus, Eq. 16 can also

be written as:

∑
i

σ2
i (tT)

σ2
i (ti)
= 1 (17)

Assuming that every variance σ2
i increases with time, t, as a

power function, σ2
i ∝ tni , with ni > 0, we obtain that:

∑
i
(
tT
ti
)
ni
= 1 (18)

Thus, the characteristic time for phase-mixing due to the co-
existence of all processes, tT, is smaller than the smallest of all
the different characteristic phase-mixing times, ti. This means that
the mixing in the fastest variable is aided by the mixing in other
processes, thus shortening the mixing process altogether.

5.1.2 Quantification and numerical illustration
5.1.2.1 Natural time for phasemixing

Let us first focus on determining the total, natural time for phase
mixing in the outer belt in presence of both radial diffusion and
energy diffusion, to. Following Eq. 18, it is such that:

(
to
tF
)

3
+(

to
tW
)

3
= 1 (19)

Assuming tW = tF, this yields to ≅ 0.8tF. This shows that two
processes of similar characteristic time for phase mixing yield a
total characteristic time for phase mixing that is only slightly shorter
than each individual estimate. In the inner belt, with tF ≫ tw, to ≅
tF. These results, together with the estimates for tF provided in
Figure 5, suggest that the applicability of the standard, drift-averaged
formulation of radial diffusion is not theoretically supported for at
least an hour (up to days) after a MLT-dependent perturbation has
occurred in the Earth’s radiation belts.

5.1.2.2 Total time for phasemixing resulting from the
combination of observational and natural processes

Let us now consider equatorial particles, with a total phase
mixing time, tT, resulting from the combination of the finite energy
resolution of the instrument, and radial diffusion. The characteristic
time for phase-mixing associated with the finite energy resolution
of the instrument, tE, provided in Eq. 7, and the characteristic time
for phase-mixing due to radial diffusion, tF, provided in Eq. 11,
determine the total phase mixing time, tT:

(
tT
tE
)

2
+(

tT
tF
)

3
= 1 (20)

We solve numerically Eq. 20, to provide a quantification of the
total characteristic time for phase mixing, leveraging the model for
electromagnetic radial diffusion proposed by Brautigam and Albert
(2000) to quantify tF (see also Section 4.2.2; Eq. 14). Some results
are provided in Figure 6 for two different levels of magnetic activity
(low magnetic activity: Kp = 0, and high magnetic activity: Kp = 6)
and two different energy resolutions (very high energy resolution:
r = 5% and typical energy resolution: r = 30%). We note that the
characteristic time for phase mixing decreases when degrading
instrument resolution (i.e., increasing r value), and increasing
magnetic activity, as expected. That said, at a given instrument
resolution, the variation with magnetic activity is more noticeable
when working with a high-resolution instrument (Figures 6A, C)
than with a coarse resolution (Figures 6B, D). This suggests that the
characteristic time for phase mixing is dominated by instrumental
effects when the energy resolution is coarse.

Figure 7 compares and contrasts the time evolution of the same
drift echo, dissipating under the effect of slow field fluctuations
(radial diffusion), a) in the theoretical case of an instrument that
is perfectly resolved in energy (r = 0%), as was presented in
Section 4.3.1, and b) as observed by an instrument with a finite
energy resolution (r = 20%). Figure 7 contributes to explaining why
observations of drift phase structures have multiplied with the use
of instruments with higher energy resolution (e.g., Hartinger et al.,
2018). It suggests that the measured amplitude and lifetime of a drift
echo are always an underestimation of the real (r = 0%) magnitude
and lifetime of the drift echo. It also shows that the measured
amplitude is always an underestimation of the initial amplitude of
the drift echo. This further calls into question the applicability the
standard, drift-averaged formulation of radial diffusion.

It is interesting to compare the results of this numerical
experiment in presence of both radial diffusion and finite energy
resolution (r = 20%; DLL = 2.2× 10−2day−1, red line in Figure 7)
with the result of the numerical experiment in the case of drift
phase mixing exclusively due to the finite energy resolution of the
instrument (r = 20%; DLL = 0day−1, see blue line in Figure 1A).
Both simulations provide a similar evolution for the drift echoes.
With tE = 13.02hr and tF = 23.9hr, the characteristic time for phase
mixing associated with both radial diffusion and finite energy
resolution is estimated to be tT = 12.15hr, according to Eq. 20. This
estimate is comparable to tE. This indicates that the evolution of
the drift echoes is dominated by instrumental effect in both cases.
A resolution below r = 20% is required to observe the natural
dissipation of drift echoes.

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2024.1385472
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lejosne et al. 10.3389/fspas.2024.1385472

FIGURE 6
Characteristic time for phase mixing due to the combined effects of radial diffusion and the finite resolution in particles’ measured kinetic energy, tT, in
hours, for different levels of magnetic activity (top (A,B): low magnetic activity Kp = 0, bottom (C,D): high magnetic activity Kp = 6) and different energy
resolutions (left (A,C): very high energy resolution r = 5% and right (B,D): typical energy resolution r = 30%). The information is provided as a function of
kinetic energy, E, and dipole L value. Radial diffusion magnitude is parametrized according to Brautigam and Albert’s (2000) formula for
electromagnetic radial diffusion.

5.2 Instrumental calibration

In this section, we propose a way to determine the
energy resolution requirements needed to guarantee that
the observed dissipation of the drift echo is dominated by
natural processes, rather than observational artifacts. This is of
interest since the natural dissipation of drift echoes provides
information on the field perturbations sampled by the particles
(See Section 4.1).

In the case discussed in Section 5.1.2.2, in which total
phase mixing results from the combination of radial diffusion
and the finite energy resolution of the instrument, the
resolution, rc, for which the two processes contribute equally
is such that:

(
tT

tE(rc)
)

2
= (

tT
tF
)

3
= 1

2
(21)

Which occurs when

tE(rc) = 2
1
6 tF (22)

Combining Eqs 7, 11, 22, this means that:

rc ≅ 2(
γ(γ+ 1)
γ2 + 1
)(1

4
+ 3

4γ2)
2
3
(
τDLL

L2 )
1
3

(23)

This threshold resolution, rc, can be interpreted as theminimum
resolution needed to be able to detect the effect of field fluctuations
in the time evolution of drift echoes. Because a higher resolution
means a smaller parameter, r, when r≪ rc (meaning, with higher
instrument resolution), we expect the evolution to be dominated
by natural processes. When r≫ rc (meaning with lower instrument
resolution), we expect observational limitations to be the main
drivers of the drift echoes’ dissipation. In the case of our numerical
experiment (250 keV at L = 3 and DLL = 2.2× 10−2day−1), we find
that rc ∼ 10%. This explains why the evolution of the drift echoes
is dominated by instrumental effects when considering r = 20%
(Figure 7). A general quantification of the threshold resolution, rc, is
provided in Figure 8, using Brautigam andAlbert’s (2000) formula to
parametrize electromagnetic radial diffusion as a function of the Kp
index, and assuming moderate magnetic activity (Kp = 4). It shows
that drift echoes’ dissipation, as observed by directional detectors
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FIGURE 7
(In blue) Time evolution of the natural dissipation of a drift echo under
radial diffusion (similar to Figure 4A)), and (in red) as viewed by an
instrument with finite energy resolution (r = dE/E = 20%). The
measured amplitude and lifetime of a drift echo (in red) are an
underestimation of the real magnitude and lifetime of the drift echo
(in blue).

FIGURE 8
Minimum energy resolution required, rc, for the observed dissipation
of drift echoes to be dominated by natural phase mixing, rather than
observational artifacts, assuming Brautigam and Albert’s (2000)
formula to parametrize electromagnetic radial diffusion and moderate
magnetic activity (Kp = 4).

with high-energy resolution (r ∼ 5%), could potentially be leveraged
to sample field perturbations.

Therefore, this kind of analysis could be utilized to obtain
the energy resolution requirements of future particle instruments.
Reciprocally, when working with a known instrument resolution,
the same kind of analysis can be utilized to determine the minimum
magnitude of radial and/or energy diffusion needed to guarantee
that the observed dissipation of drift echoes is dominated by natural
phase mixing, rather than observational artifacts.

5.3 Accounting for a non-localized
injection

In practice, the initial injection may not be strictly localized in
MLT. In that case, the variance at the onset time, t = 0, corresponds
to the variance of the initial injection, σ2

o, and the criteria for phase
mixing, Eq. 3, becomes:

σ2(tlim) + σ2
o = σ2

lim (24)

which can also be written as:

σ2(tlim)
π2 = 1−

σ2
o

π2 (25)

In the presence of a rather localized injection, such that σ2
o/π2 ≪

1, we expect the estimates presented in this paper to not be
significantly different than in the case of an initial injection peaked
in MLT (σ2

o = 0).
In all cases, the estimates for the characteristic times for phase

mixing at the drift scale presented in this paper can be interpreted
as estimates for drift echoes’ lifetime. The presence of drift phase
structures with significantly longer lifetimes could be indicative of
the presence of a process maintaining phase coherence, such as
drift resonance.

6 Discussion

Physics-based radiation belt models usually consist of solving
a three-dimensional Fokker-Planck equation reduced to a three-
dimensional fully diffusive equation (e.g., Beutier and Boscher,
1995; Subbotin and Shprits, 2009; Su et al., 2010; Tu et al., 2013;
Glauert et al., 2014).

While first implemented in the case of the Earth’s radiation
belts, this theoretical framework has also been applied to the
radiation belts of Jupiter and Saturn (e.g., Woodfield et al., 2014;
2018; Nénon et al., 2017). All these models rely on the assumption
that radiation belts are fully phase mixed at all scales, including at
the drift scale.

When the theoretical framework underlying these models was
first put forward (e.g., Schulz and Lanzerotti, 1974), drift echoes had
already been measured by the ATS-1 satellite at the geostationary
orbit (e.g., Brown, 1968; Lanzerotti et al., 1971). Yet, it was assumed
that renderingMLT-dependences in radiation belts could be omitted
to first order. The radial diffusion framework was indeed designed
to render radiation belt dynamics on long timescales (longer
than the drift period). A new generation of particle instruments,
equippedwith very high-energy resolution channels, highlighted the
omnipresence of drift phase structures in the radiation belts. This
further challenged the validity of the radial diffusion approximation
to model the effect of radial transport on radiation belt dynamics,
a long-standing issue in radiation belt science which is currently
the object of renewed scientific interest (e.g., Riley and Wolf, 1992;
Ukhorskiy et al., 2006; Ukhorskiy and Sitnov, 2008; Degeling et al.,
2008; Obrien et al., 2022; Osmane et al., 2023).

The objective of this work was to quantify the time it takes for
a MLT-dependent structure to phase-mix at the drift scale, that
is, the time during which the (purely diffusive) radial diffusion
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equation does not provide an accurate description of the effect of
radial transport on radiation belt intensity once a MLT-dependent
perturbation has occurred. Using relatively simple first assumptions
to describe instrumental response and field perturbations, we found
that the time it takes for particles initially localized in local time
to phase-mix is measured in hours in the Earth’s radiation belts,
determining timescales during which drift remains an important
driver of the dynamics. Future studies could consist of describing
the effects of radial transport on radiation belt intensity using a drift-
diffusion model, following an approach similar to the one presented
by Lejosne et al. (2023) for instance, to determine the role played by
PSD’s radial gradients (e.g., Hartinger et al., 2020) in drift echoes’
lifetimes. Several analyses of electrostatic drift echoes present in the
Earth’s inner radiation belt (also known as “zebra stripes”) showed
that these structures can be observed up to 14 h after generation
(e.g., Lejosne and Roederer, 2016; Liu et al., 2016; Lejosne and
Mozer, 2020) by the Radiation Belt Storm Probes Ion Composition
Experiment (RBSPICE) instruments (Gkioulidou et al., 2023)
onboard the Van Allen Probes (r ≈ 6%). This is consistent with
the order of magnitude obtained in Section 4.3.1 (considering
tF ≪ tE and tT ≈ tF).

Regarding theoretical studies, the parameter of interest should
be independent of the instrument. Thus, it is the characteristic
time for natural phase mixing associated with radial diffusion and
energy diffusion, to. In general, it takes hours to phase-mix in the
Earth’s radiation belts, and this time is longer than the characteristic
time for phase mixing due to the finite resolution of the particle
instrument. This implies that non-diffusive radial transport events
could have a greater and longer lasting effect on radiation belt
dynamics than what was previously thought. Because the observed
magnitude of drift echoes is dampened by the finite resolution of
the instrument, this also means that care needs to be taken when
interpreting drift echoes’ magnitude in terms of radial transport
(e.g., Lejosne et al., 2022b;Obrien et al., 2022). Analysis ofmeasured
drift echoes’magnitude should consider correcting for observational
bias before interpreting drift periodic fluctuations in terms of
radial transport.

The validity of the radial diffusion equation relies on the
assumption that radiation belts are fully phase mixed at all scales,
including at the drift scale, even though in reality, this is not
necessarily the case. A more realistic implementation of the effects
of radial transport on radiation belt intensity using a drift-diffusion
model (e.g., Birmingham et al. (1967); Shprits et al., 2015; Lejosne
and Albert, 2023) will contribute to determining how different from
the radial diffusion paradigm the picture for large-scale radiation
belt dynamics is when non-diffusive radial transport events are
accounted for.

7 Derivation of a criteria on the
variance of the drift phase locations to
define a phase-mixed state

We assume that the drift phase locations of the trapped particles
along the drift shell are distributed randomly, and described by a
normal (Gaussian) distribution, N (μ,σ2) on the real axis. That is,
the probability distribution function is e−

1
2
( x−μ

σ
)2/σ√2π, with x ∈ ℝ

a random drift phase location. Because the MLT locations are 2π-
periodic, the resulting probability distribution is actually a wrapped
normal distribution. As a result, there exists a variance limit (σ2

lim)
for which the number of particles becomes uniform over all MLTs.
To determine the value of the minimum variance, σ2

lim, that defines a
phase-mixed state, we compute the normalized number of particles
at each hour MLT, h, (+/- 0.5 hr) assuming a constant average
location, μ, and different values of the variance, σ2.

For illustrative purposes, we set μ = π (in radians), or,
equivalently, noon in hour MLT. The quantity to compute is:

n(h;σ2) = 1
σ√2π

+∞

∑
k=−∞

(h+0.5)π
12

∫

y= (h−0.5)π
12

e−
1
2
( y+2kπ−π

σ
)
2

dy (26)

In terms of error function, with:

erf(z) = 2
√π
∫
z

0
e−t

2
dt (27)

The distribution, n, is also:

n(h;σ2) = 1
2

+∞

∑
k=−∞
(erf(

(h+0.5)π
12 + 2kπ− π

√2σ
)− erf(

(h−0.5)π
12 + 2kπ− π

√2σ
))

(28)

Introducing the notations:

{{{
{{{
{

νk = (
h
12
+ 2k− 1) π

√2σ
Δν = 1

24
π
√2σ

(29)

yields

n(h;σ2) = 1
2

+∞

∑
k=−∞
(erf(νk +Δν) − erf(νk −Δν)) (30)

When the standard deviation, σ, increases enough so that: Δν≪
1, a Taylor expansion of Eq. 30 to first order in Δν provides the
following approximation:

n(h;σ2) = 1
12σ
√π

2

+∞

∑
k=−∞

e−ν
2
k (31)

The contribution of the e−ν
2
k terms to the sum decreases rapidly

as |k| increases, indicating that the distribution converges towards a
limit. It is possible to approximate the expression of the distribution
function even further by conserving only the contribution of k = 0,
k = 1, and k = − 1, in that case:

n(h;σ2) ≅ 1
12σ
√π

2
(e−ν

2
−1 + e−ν

2
0 + e−ν

2
1) (32)

For a phase-mixed distribution, we expect the resulting
distribution, n, to be homogenous. In other words, we expect n =
constant = 1/24 at all 24 MLT bins.

Figure 9A represents the normalized number of particles per
MLT bin (with a size of one hour MLT), for three different
values of the variance, σ2. It shows that the distribution, n, tends
towards a phase-mixed state as the variance increases. Figure 9B
represents the maximum relative distance between the normalized
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FIGURE 9
(A) Normalized number of particles per hour MLT, for three different values of the variance, σ2, expressed in radians: (green) π2/10, (blue) π2/2 and (red)
π2, assuming a normal distribution on the real axis an average location at noon MLT. The phase-mixed state (n = constant = 1/24 ∼ 0.04) is represented
by a black dashed line. (B) Normalized distance to the phase-mixed state, as a function of the variance.

number, n, and the phase-mixed value over all 24 MLT bins,
i.e, d = max(|n(∙,σ2) − 1/24|) × 24, as a function of the value of
the variance, σ2. It shows that the convergence towards the phase
mixed state is exponential. For the sake of simplicity, we choose π2

radians as the minimum variance for which the resulting particle
distribution is homogenous over all MLTs (d < 2% for σ2 < π2). This
choice is independent of the average location, μ.

8 Variance of the drift phase locations
due to the instrument finite energy
resolution

In this section, we consider a population with kinetic energies
randomly distributed around E, and described by a Gaussian
distribution of standard deviation, σE. We show that the variance of
the drift phase locations is:

σ2(t) =
σE

2

E2 (
γ2 + 1
γ(γ+ 1)
)

2

Ω2t2 (33)

The average phase location of the population at time, t, [φ(t)], is:

[φ(t)] = 1
σE√2π
∫
t

u=0
∫
η
Ω(E+ η)e

−η2

2σ2E dηdu (34)

where the integral over η corresponds to the computation of the
population’s average angular drift velocity. It accounts for the fact
that the angular drift velocity depends on kinetic energy, and
the population’s kinetic energies are randomly distributed around
E. We describe the energy variable as E+ η, where η indicates
the random variation from the average energy, E. The probability
distribution function for the randomenergy variable,η, is aGaussian
distribution, and it is included in the averaging. The integral over u
from start time (u = 0) to time t converts velocity in location.

A first order Taylor expansion of Ω(E+ η), leveraging Eq. 1, is:

Ω(E+ η) =Ω(E) +Ω(E)
η
E
(

γ2 + 1
γ(γ+ 1)
) (35)

and Eq. 34 can be reformulated as:

[φ(t)] =Ω(E)t+
Ω(E)

EσE√2π
(

γ2 + 1
γ(γ+ 1)
)∫

t
∫
η
ηe
−η2

2σ2E dηdu (36)

Because the integral in Eq. 36 is 0, the square of the average phase
location is:

[φ(t)]2 =Ω2t2 (37)

To compute the average of the square of the phase locations, we
follow a similar approach. Given that:

Ω2(E+ x) = Ω2(E) + 2Ω(E)
η
E
(

γ2 + 1
γ(γ+ 1)
) +Ω2(E)

η2

E2(
γ2 + 1
γ(γ+ 1)
)

2

(38)

and

1
σE√2π
∫η2e

−η2

2σ2E dη = σ2
E (39)

[φ2(t)] =Ω2t2 +
σ2
E

E2(
γ2 + 1
γ(γ+ 1)
)

2

Ω2t2 (40)

The result Eq. 33 is obtained by subtracting Eq. 37 from Eq. 40.

9 Variance of the drift phase locations
due to field perturbations driving
radial diffusion

In this section, we show that the variance of the drift phase
locations associated with radial diffusion, is, to first order:

σ2(t) = 2
3
(1

4
+ 3

4γ2)
2DLLΩ2

L2 t3 (41)

for equatorial particles. For the sake of simplicity, let us first
consider particles at high enough energy that ΩT ∼ Ω≫ΩE. In
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the case of equatorial particles drifting in a background magnetic
field,

Ω = −3M
γqR2

EL
2 (42)

where M is the first adiabatic invariant. Any small and slow enough
(i.e., M conserving) field fluctuation generating a perturbation in
radial location, δL, leads to a perturbation in the angular drift
velocity, δΩ, due to the direct dependence of the angular drift
velocity with radial location, L, and due to the dependence of the
Lorentz factor with L, γ(L). Given that:

δγ
γ
=M

dB
dL

γ2Eo
δL =
−3MBEδL
γ2EoL

4 (43)

δΩ = −Ω
2L
(1+ 3

γ2)δL (44)

The variation in phase,Δφ, for a cluster of particles starting from
the same location, but that are scattered (including in the radial
direction) with time by random field fluctuations, is, after a time
interval, t:

Δφ(t) = ∫
t

0
δΩ(u)du (45)

Given Eq. 44, this is also:

Δφ(t) = −Ω
2L
(1+ 3

γ2)∫
t

0
δL(u)du (46)

In a first approximation, δL is a random process, which we
view as a random walk. Thus, on average over many scenarios, the
variation in phase is zero. For the variance, we focus on computing
the average of the square of the phase variation, i.e., the statistical
average of:

Δφ2(t) = Ω2

4L2(1+
3
γ2)

2
∫
t

0
∫
t

0
δL(u)δL(v)dudv (47)

The statistical properties of random walks (e.g., Brockwell and
Davis, 2002, p.14) are such that the autocovariance of δL is:

cov[δL(u),δL(v)] = 2DLL min (u,v) (48)

where min(u,v) is the minimum of the variables u and v.
Thus:

Var[Δφ] =
Ω2DLL

2L2 (1+
3
γ2)

2
∫
t

0
∫
t

0
min (u,v)dudv (49)

Because ∫t0∫
t
0 min (u,v)dudv = t3/3,

Var[Δφ] =
Ω2DLL

6L2 (1+
3
γ2)

2
t3 = 8

3
(1

4
+ 3

4γ2)
2 Ω2DLL

L2 t3 (50)

At this point in the derivation, it is important to realize
that the population of particles for which we are quantifying
the variance of the drift phase locations is scattering in radial
distance as it is scattering in azimuthal location. To compute
the characteristic time for phase mixing, it is preferable to
stay on the same drift shell instead, meaning, it is preferable
to focus on L constant. In that case, it is important to

account for the fact that there is a correlation between
variation in phase, Δφ, and variation in radial location, ΔL, as
quantified below.

Leveraging Eqs 46, 48, the covariance between ΔL and Δφ is:

cov[ΔL,Δφ] = −2
DLLΩ
L
(1

4
+ 3

4γ2)t
2 (51)

Given that the variance in radial location, Var[ΔL], is typically
defined as:

Var[ΔL] = 2DLLt (52)

the correlation coefficient, ρ, between ΔL and Δφ is (combining Eqs
50–52):

ρ =
cov[ΔL,Δφ]

√Var[ΔL]Var[Δφ]
= −
√3
2

q
|q|

(53)

And the variance of the drift phase locations at L = constant,
σ2, is related to the total variance, Var[Δφ], through the correlation
coefficient:

σ2 = (1− ρ2)Var[Δφ] =
Var[Δφ]

4
(54)

This relationship can be obtained by considering the joint
probability density function of a bivariate normal distribution (in
ΔL and Δφ) (e.g., Hogg and Craig, 1970, p. 111 and sq) and noting
that, for ΔL set to its average value (ΔL = 0), the distribution is still
normal, with a variance equal to (1− ρ2)Var[Δφ].The combination
of Eqs 50, 54 yields Eq. 41.

Small perturbations of the fields of electrostatic origin
do not yield first-order perturbations in ΩE. Thus, Eq. 41
remains valid even when considering ΩT =Ω+ΩE, in the
electrostatic case.

Finally, let us mention that this derivation relies on the standard
assumption that the variance in radial location grows linearly in
time (e.g., eq. (C-12)). While this is a typical assumption in radial
diffusion research (e.g., Ukhorskiy et al., 2005, their Figure 5;
Lejosne and Kollmann, 2020, their equation (5.19)), super-diffusive
and/or sub-diffusive regimes could also exist (e.g., Desai et al., 2021;
Osmane and Lejosne, 2021). Assuming different statistical models
for radial transport would of course lead to different results in
this analysis.

10 Variance of the drift phase
locations due to field perturbations
driving energy diffusion

In this section, we show that the variance of the drift phase
locations associated with energy diffusion, is, to first order:

σ2(t) = 1
6
(

γ2 + 1
γ(γ+ 1)
)

2DEE

E2 Ω2t3 (55)

for equatorial particles. Any perturbation in energy, dE, drives a
perturbation in drift frequency, δΩ/2π, given by Eq. 35:

δΩ = (
γ2 + 1
γ(γ+ 1)
)Ω
E
dE (56)

The variation in phase, Δφ, for a cluster of particles
starting from the same location, but that are scattered in
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energy with time by random field fluctuations, is, after a time
interval, t:

Δφ(t) = (
γ2 + 1
γ(γ+ 1)
)Ω
E
∫
t

0
δE(u)du (57)

In a first approximation, δE is a random process, which we
view as a random walk. Thus, on average over many scenarios, the
variation in phase is zero. For the variance, we focus on computing
the average of the square of the phase variation, i.e., the statistical
average of:

Δφ2(t) = Ω2

E2 (
γ2 + 1
γ(γ+ 1)
)

2

∫
t

0
∫
t

0
δE(u)δE(v)dudv (58)

By definition of energy diffusion and the random walk, the
autocovariance of δE is cov[δE(u),δE(v)] = 2DEE min (u,v). Because
∫t0∫

t
0 min (u,v)dudv = t3/3:

Var[Δφ] = 2
3
DEE

E2 (
γ2 + 1
γ(γ+ 1)
)

2

Ω2t3 (59)

At this point in the derivation, it is important to realize that the
population of particles for which we are quantifying the variance
of the drift phase locations is scattering in energy as it is scattering
in azimuthal location. To compute the characteristic time for phase
mixing, it is preferable to focus on a given energy, meaning, it is
preferable to focus E constant. In that case, it is important to account
for the fact that there is a correlation between variation in phase,Δφ,
and variation in energy, ΔE, as quantified below.

Leveraging Eqs 56, 57, the covariance between ΔE and Δφ is:

cov[ΔE,Δφ] =
DEE

E
(

γ2 + 1
γ(γ+ 1)
)Ωt2 (60)

Given that the variance in energy, Var[ΔE], is typically defined
as:

Var[ΔE] = 2DEEt (61)

The correlation coefficient, ρ, between ΔE and Δφ is, combining
Eqs 59–61:

ρ =
cov[ΔE,Δφ]

√Var[ΔE]Var[Δφ]
= −
√3
2

q
|q|

(62)

And the variance of the drift phase locations at E = constant,
σ2, is related to the total variance, Var[Δφ], through the correlation
coefficient:

σ2 = (1− ρ2)Var[Δφ] =
Var[Δφ]

4
(63)

The combination of Eqs 59, 63 yields Eq. 55.
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Glossary

BE Magnetic equatorial field at the Earth’s surface

d Distance to the phase mixed-state

DLL Radial diffusion coefficient

DEE Energy diffusion coefficient

E,η Kinetic energy

Eo Rest mass energy (511 keV for an electron)

F(y) Function that describes the pitch angle dependence of
magnetic drift frequency

φ Azimuthal location (i.e., magnetic local time, in
radians)

γ Lorentz factor

L Normalized equatorial radial distance

M First adiabatic invariant

n Normalized number of particles

ΩE
2π

Electric drift frequency

Ω
2π

Magnetic drift frequency

ΩT
2π

Total (=magnetic + electric) drift frequency

q Electric charge of a particle

r = dE/E Energy resolution of the instrument

rc Threshold energy resolution

RE Earth’s equatorial radius

σ2(t) Variance of the drift phase locations

σ2
o Initial variance of the drift phase locations

σ2
E Variance associated with the instrument finite energy

resolution (related to the energy resolution, r)

τ = 2π
Ω

Drift period

t Time

tE Characteristic time for phase mixing associated with
the instrument finite energy resolution

tA Characteristic time for phase mixing associated with
the instrument pitch angle resolution

tF Characteristic time for phase mixing associated with
radial diffusion

tW Characteristic time for phase mixing associated with
energy diffusion

tT Perceived total characteristic time for phase mixing
(associated with both instrumental and natural
processes)

to Natural total characteristic time for phase mixing
(associated with natural processes only)

y,yo Sine of the equatorial pitch angle
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