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Abstract

Abrupt changes in system states and dynamical behaviors are often observed in natural

systems; such phenomena, named regime shifts, are explained as transitions between

alternative steady states (more generally, attractors). Various methods have been proposed

to detect regime shifts from time series data, but a generic detection method with theoretical

linkage to underlying dynamics is lacking. Here, we provide a novel method named Nested-

Library Analysis (NLA) to retrospectively detect regime shifts using empirical dynamic

modeling (EDM) rooted in theory of attractor reconstruction. Specifically, NLA determines

the time of regime shift as the cutting point at which sequential reduction of the library set

(i.e., the time series data used to reconstruct the attractor for forecasting) optimizes the fore-

cast skill of EDM. We illustrate this method on a chaotic model of which changing parame-

ters present a critical transition. Our analysis shows that NLA detects the change point in the

model system and outperforms existing approaches based on statistical characteristics. In

addition, NLA empirically detected a real-world regime shift event revealing an abrupt

change of Pacific Decadal Oscillation index around the mid-1970s. Importantly, our method

can be easily generalized to various systems because NLA is equation-free and requires

only a single time series.

Author summary

Abrupt shifts in system dynamics, referred to as regime shifts, are common in natural sys-

tems and pose significant challenges for system management and risk assessment. Accu-

rately detecting the change point that separates pre- and post-regime shift periods is

crucial, as the data collected after regime shift can be more informative to forecast future

system states. While numerous methods have been proposed to tackle this issue, identify-

ing change points in chaotic systems remains difficult, in which regime shift signals can

be concealed by chaotic dynamics. To address this issue, we propose Nested-Library Anal-

ysis (NLA), a machine learning method rooted in a data-driven, nonparametric
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framework for nonlinear dynamical systems, known as Empirical Dynamic Modeling

(EDM). NLA effectively identifies the change points from time series data, even when the

shifts in dynamics are nearly imperceptible due to chaotic behavior, surpassing the exist-

ing change point detection methods. As such, our method offers a generic solution for

revealing the timing of regime shifts in a various type of dynamical system.

1. Introduction

In the Earth’s history, abrupt shifts from one regime to another have often been recorded in

various ecosystems around the world [1], and such transition is difficult to reverse [2]. For

instance, kelp forests in Australia were replaced by seaweed turfs within just a few years, with

no sign of recovery despite of abating climate stressors [3]; nitrate concentrations in the River

Thames acutely increased and stayed intractably high in spite of sustained management inter-

vention [4]; biological communities in the Central Baltic Sea ecosystem have not recovered

from an abrupt shift occurred around 1990 [5]. Such abrupt shifts, termed as regime shifts, can

proceed very fast and bring devastating socio-economic impacts.

In essence, regime shifts bear the same dynamical mechanisms, from the viewpoint of bifur-

cation theory [6–9]. This viewpoint suggests that complex systems (e.g., ecosystems) have

alternative attractors [10,11]—the sets of system states possessing their own resilience (i.e., eco-

systems regimes). A transition can occur among these regimes, due to increased perturbation

(such as environmental stresses) that changes bifurcation parameters or creates shocks to sys-

tem variables [2,8,12–16]. Although this viewpoint has been suggested for decades [17] and

widely accepted as the origin of regime shifts with plenty of empirical and theoretical supports

[6–8,10–13,18–20], it has rarely been considered in existing methods used to detect the real-

world regime shifts.

A wide variety of approaches have been proposed to detect regime shifts in time series [21];

however, quantitative evaluation of the change point in dynamical system (i.e., the timing of

regime shift) remains highly uncertain in existing methods for three reasons. First, the existing

methods used to detect change points have unclear linkage with the theoretical viewpoint

regarding a regime shift as a transition between attractors in dynamical systems. A good pro-

portion of these methods are to determine change points according to shifts in statistical char-

acteristics, such as mean, skewness, information entropy, to name but a few (See [21] and

references therein). However, shifts in statistical properties are not necessarily caused by a

transition between attractors, vice versa. Second, not all the state variables exhibit clear shifting

patterns in time series observations during the regime shift [22]. That is, apparent shifts only

present in some variables in the complex systems, whereas clear bifurcation patterns might be

hidden in some system variables. In practical sense, it is possible that apparent shifts only pres-

ent in the variables that are not observable or out of consideration [23]. Last, many of the

methods are developed for the systems exhibiting equilibrium dynamics, but a challenging

aspect is that natural systems are often not in balance, i.e., non-equilibrium systems, of which

attractors are not necessarily fixed points [24–26].

To provide a generic regime shift detection method, we proposed a novel method called

Nested-Library Analysis (NLA). This method is developed based on a main argument that

observational data of one regime would interfere with the reconstruction of another regime.

Thus, our analytic framework is to monitor the quality of attractor reconstruction while

sequentially eliminating the data points collected from different regimes (as Fig 1). To realize

this idea in practice, we evaluate the quality of attractor reconstruction from the forecast skill

in Empirical Dynamic Modeling (EDM) [27,28], which is a data-driven modeling method for
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empirical attractor reconstruction based on Takens’ embedding theorem [29]. Indeed, EDM-

based methods have been applied in previous studies of regime shift [30]. For instance, a previ-

ous algorithm [31] was proposed to test whether a transition is significant between two pre-

chosen time series segments. However, applying this statistical test requires prior information

about existing change point that divides a time series into two segments, which differs from

the proposed NLA algorithm that aims to quantitatively determine the change point of regime

shift and circumvents the aforementioned problems of previous change point models (CPMs),

a class of algorithms that detect location and/or scale shifts based on shifts in statistical proper-

ties. Apparently, detecting regime shifts from the viewpoint of attractor reconstruction

strongly connects to the theoretical view regarding regimes as attractors in dynamical systems.

Moreover, attractor reconstruction by means of Takens’ embedding requires neither the full

information about the governing equation nor the complete data of the whole system, but only

needs the time series data of a single variable. Especially, EDM-based methods enable to ana-

lyze chaotic systems in general [32]. Overall, our analysis presents a novel analytical framework

to empirically detect the timing of regime shift (change point) based on attractor reconstruc-

tion. We first mathematically formalize the problem and specify the assumptions, then formu-

lating the process of NLA. Next, we test the efficacy of NLA in analyzing a synthetic dataset

from a chaotic food chain model coupled with nutrient cycling that underwent a regime shift,

and then compare the performance of NLA with CPMs. Finally, we empirically apply NLA in

revealing the change point of a real-world regime shift in Pacific Decadal Oscillation (PDO)

index occurred around the mid-1970s.

2. Methods

2.1. Background

We assume that there is a discrete-time system σω: X×ℕ0!X defined by the governing equa-

tion Xt+1 = f(Xt)2X, where the family ℕ0 of non-negative integers represents the timeline and

ω2O stands for external factors (e.g., environmental conditions). This setting does not lose the

generality, because a time series is always a discretized sequence of observation, and the time

unit of sampling can be scaled to exactly 1. Here, we say ω is a vector of external factors as its

evolution is independent of the system state X, i.e., ωt+1 = g(ωt) and
@g
@X � 0.

For the sake of argument, we suppose that the system experiences a regime shift in which

governing equation fω (i.e., the dynamics) abruptly changes. Therefore, our attempt is to detect

a change point τ that satisfies

Xtþ1 ¼ fot Xtð Þ ¼ f Xt;otð Þ with fot �
F0

F1

t < t

otherwise
; ð1Þ

(

Fig 1. The main idea of Nested-Library Analysis. We fix an end of a time series as the test set to evaluate the out-of-

sample forecast skill, and repeatedly chop off the data from the other end. Here, each dot represents the data point of a

time series observed at each moment. Observational data following a regime different from that of the test set is

colored in red, i.e., misleading data points to predict the test set.

https://doi.org/10.1371/journal.pcbi.1011759.g001
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where
@f
@o

is non-trivial and two functions Fi: X!X (i = 0,1) are distinct. This discontinuous

approximation of dynamical system aims to highlight the presence of regime shift and the

timing of its occurrence (i.e., change point τ). Moreover, the discontinuous approximation

requires the assumptions that variations in fω within regime are ignorable compared to the

substantial changes caused by regime shift despite of the continuous changes in fω and ωt

even within each regime. For simplicity, we assume that there exists either no or exactly one

change point in the time series data because multiple regime shift events rarely occur within

a short period of observation. Moreover, NLA algorithm is applied in a moving-window

manner in which each time window is so short that hardly includes more than one change

point. In brief, our goal is to detect an abrupt change point τ in fω given a chaotic time series

fxtgt2ℕ0
sampled from fXtgt2ℕ0

(namely, xt = ϕ(Xt) for some smooth observation function ϕ:

Xt2X 7!xt2ℝ).

2.2. The framework of Nested-Library Analysis

Our first task is to reconstruct the attractors for the underlying governing equations from the

time series data. A strategy that can be easily brought out is to use delay-coordinate embedding

approaches based on Takens’ theorem. Despite that the governing equation of the system var-

ies along time, the time series data are still embeddable in the light of a higher hierarchy as σ]:
(X×O)×N0!(X×O) of which governing equation is

Xtþ1

otþ1

� �

¼
f ðXt;otÞ

gðotÞ

� �

≕~f Xt;otð Þ ð2Þ

and fxtgt2ℕ0
is sampled from fðXt;otÞÞt2ℕ0

. In words, the time series can still be embedded

when considering the observations sampled from a larger dynamical system, which consists of

the interested system as well as external factors. However, this would require a larger embed-

ding dimension and thus be relatively unfavorable for kernel methods due to data noises [33].

The question in focus is that change in the governing equation (or parameters of the governing

equation) can lead to a regime shift; then, how to detect the change point? Our motivation is

to use performance of forecast skill as a criterion for detecting the change point τ. Specifically,

the attractor reconstructed from time series data within a single regime should exhibit better

forecast skill, in comparison to that from time series data across two regimes (Fig 1).

To detect the change point, we propose an algorithm named Nested-Library Analysis

(NLA). The main idea of NLA is to monitor the performance (i.e., forecast skill) of the

trained model while trimming the library dataset (i.e., the time series data used to recon-

struct the attractor for forecasting) to reduce those data points from different regimes/

attractors. A common way of evaluating out-of-sample forecasting performance is to divide

a dataset into a library (i.e., a training set) and a test set. However, the data points included

in the library set are not equally informative, and some data points can even interfere with

model training. In the case of regime shift, putting together the data points collected from

different attractors interfere with the reconstruction of distinct attractors. Therefore, if

these data that interfere with model training can be continuously removed from the library

set, then the performance of the trained model should be improved; in contrast, if data with

correct information diminishes, the prediction skill will decrease. In brief, the spirit of NLA

is to monitor the performance of the trained model while the library is shrinking. With the

above argument, we implement this idea to a prediction method assumed to have the fol-

lowing properties:

[A1] Richer data with correct information renders better prediction performance, and
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[A2] The more misleading information the training set contains, the worse the forecast skill is

obtained.

Here, a collection of data points (i.e., the library set) is said to offer correct/misleading infor-

mation if it helps/disturbs to train a model for the dynamics governing the test set. With prop-

erties [A1] and [A2], our framework of NLA aims to detect the dynamical change point τ in

time at which misleading information is completely removed but preserve the maximal

amount of correct information. We note that [A1] is an arguably property of many machine

learning methods [34], and thus the framework of NLA is more sensitive to incorporating pre-

diction methods that satisfies [A2].

Our algorithm can start the detection of change point τ from either of the end or the beginning

of the time series (cf. pseudocode given in S1 Text). To present the key idea, we may first suppose

that we have a time series fxtg
R
t¼0

and launch the NLA algorithm from the left-hand side (the algo-

rithm can be symmetrically employed as demonstrated in Sec. 3.2). For any l2[0, L], we can use

fxtg
L
t¼l as the library set to train a model and obtain the prediction fyðlÞt g

R

t¼Lþ1
for the test set

fxtg
R
t¼Lþ1

. One can notice that the library set shrinks from the left as l goes larger, and we can see

how the forecast skill varies with l by considering the root-mean-square error (RMSE)

ε0 lð Þ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XR

t¼Lþ1

ðxt � yðlÞt Þ
2

R � L

s

:

Then, according to the two properties [A1] and [A2], we can determine whether mislead-

ing or correct information is being eliminated by tracking the descendance or ascendance of

the prediction error, respectively. Hence, with τ being the change point, we have

d~ε0

dl ðtÞ < 0(
by½A2�

t < t

d~ε0

dl ðtÞ > 0(
by½A1�

t > t
Discriminantð Þ

where ~ε0 is a smoothed curve of ε0 created using a Gaussian filter (which involves convolution

with a Gaussian probability density function). This preserves a moving-average-like meaning

and ensures that ~ε0 2 C1ðRÞ. Consequently, we obtain the estimation t̂0 for τ according to

the discriminant. To alleviate the computation efforts, one can let l vary in an arithmetic

sequence (e.g., l = 0,3,6,9,. . .) of a larger common difference Dskipstep. Analogously, we can

derive an estimation t̂n by assuming the input time series to be fxtg
L
t¼n instead of fxtg

L
t¼0

; then,

in an ensemble fashion, we take the median of t̂n’s as the final output t̂.

According to the aforementioned argument, the library in NLA algorithm is required to

shrink, forming a nested sequence of library sets. The use of a nested sequence of library sets

enables NLA to quantitatively reveal the change point, which differs from general cross-predic-

tion framework applied across multiple time series without delicate arrangement of library sets

[35]. When any two libraries were not nested (i.e., one library is not a subset of the other), the

algorithm will not provide reliable results. For instance, suppose that we have two time series

segments, La; Lb � fxtgt2N0
such that ðLa n LbÞ 6¼ ; 6¼ ðLb n LaÞ, it is difficult to tell whether

their differences in prediction skill is a consequence of including more correct/misleading

information or simply because they capture distinct parts of the attractor.

To launch NLA, we choose S-map based on Empirical Dynamic Modeling (EDM) as the

prediction method [27,28], which is a delay-coordinate embedding approach satisfying [A1]

and [A2]. The idea of S-map is to train local weighted auto-regressive model around the pre-

dictee on the reconstructed attractor, where the weight of each library data point is negatively
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related to its distance from the predictee with an exponential decay manner [27,28]. Such a

method can usually be more powerful than simply averaging the evolution of k-nearest neigh-

bors [36]. In NLA, S-map is only used for one-step forward forecast (i.e., predicting the future

value at t+1) throughout the test set, which avoids long-term forecast that has been found

more challenging for chaotic dynamics [27]. Like most manifold-based learning methods, S-

map clearly possesses the property [A1] since an attractor is reconstructed better as the data

points get richer and denser, especially around the parts in which only a few data points origi-

nally located (e.g., rare extreme events). Moreover, S-map also satisfies [A2] because each data

point in the library set renders a weighted contribution to model forecast even if the data point

actually lies in another attractor (i.e., misleading information). More detailed S-map procedure

is provided in S2 Text.

3. Results

3.1. A food chain in a suddenly changed environment

To test NLA, we first examine a simulated model where a known shift in an external factor

(regime variable) triggers abrupt changes in the governing equation of a chaotic system

(Table A in S3 Text). For simplicity, we let the governing equation of this chaotic system line-

arly depend on the regime variable that manifests an abrupt shift in mean value. Specifically, a

three-species food chain given by [37] is selected as our target system,

_x ¼ xð1 � xÞ � f1ðxÞy

_y ¼ � d1y þf1ðxÞy � f2ðyÞz

_z ¼ � d2z þf2ðyÞz

ð3Þ

8
>><

>>:

with type II functional responses fi uð Þ ¼
piu

1þqiu
in the predator-prey interactions between species

y and x (i = 1) and between species z and y (i = 2), where pi and qi determine attack rate and

handling time, respectively. Here, d1 and d2 are natural mortality of consumer y and z, respec-

tively. To include a regime variable, we modify this three-species food chain to include lake

nutrient cycle [38]

_N ¼ a � bN þ
cNm

Nm þ 1
≕g Nð Þ ð4Þ

The three terms stand for the input from river loading (a), loss process (-bN), and recycling

from sediments or consumers, respectively, where c and m determine the scale and reversibil-

ity of eutrophication, respectively. In addition, we let the mortality rate d1 and the interaction

coefficient between x and y, i.e., p1 in type II functional response f1(u), linearly depend on the

value of N (Table A in S3 Text). When the bifurcation parameter, loading a, increases

smoothly, it triggers a regime shift in N. Such a shift was caused by local bifurcation with hys-

teresis property [39,40], which is consistent with the generic framework of critical transition

proposed previously [8]. As such, N is defined as a regime indicator of this model. To render

the synthesis data more verisimilitude, process errors (i.e., the stochastic perturbance) and

measurement errors are involved. Due to stochasticity, a shift in N does not always occur at a

certain moment. Hence, in each numerical experiment, we crop a 1000-step time series data

such that the maximal change rate of N reaches at t = 300, defined as τ (i.e., the change point).

Details of numerical simulations can be found in S3 Text.

An example of our pedagogical model is shown in Fig 2. Clear shift patterns are not visible

in the time series data of x and y, even though x and y receives direct influences from N
(Table A in S3 Text). In contrast, a shift in mean is presented in z, even though z is not directly
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affected by N; however, the time of the shift in mean is ambiguous to tell. To illustrate the effi-

cacy of NLA method, we may assume that we have nothing else but the time series data of the

variable y. Using the last quarter of the time series as the test set and the root mean square

error as the prediction error, letting the library shrink from the left side as l = 0, 10, 20, 30,. . .,

we obtain the result shown in Fig 3. The convex shapes of the curves indicate that there is an

abrupt shift in the dynamics of y, and the change point is given as t̂ ¼ 300 nicely. In addition,

NLA has reasonably low false negative and false positive rate in detecting the change point (0

and 0.08, respectively in S4 Text).

To further validate whether NLA outperforms traditional approaches designed to identify

shifts in statistical properties, we compare our NLA with a suite of methods known as the

Change Point Model (CPM). We use CPM as a representative of existing regime shift detection

methods because the framework of CPM incorporates a wide variety of test statistics [41,42].

All the CPM analyses were conducted using the R package cpm (version: 2.2). Here, we pres-

ent two parametric CPMs based on Student-t test and Bartlett test for detecting shifts in mean

and variance, respectively. In addition, two nonparametric CPMs, Mann–Whitney test and

Kolmogorov–Smirnov test, are also applied to detect changes in the mean and probability dis-

tribution of the time series data. Then we applied both NLA and CPM analysis in 200 time

series replicates obtained from the simulations stated in S3 Text. Our analysis (Fig 4) clearly

indicates that the change points detected by NLA are closer to the desired τ = 300 than those

derived from any of the CPMs. Analyzing the distribution of detected change points reveals

that CPM easily pulls the false alarm, especially in the beginning of the time series (t<100), or

even fail to detect any change point in many cases. NLA also outperformed the CPMs on ana-

lyzing the variable x and z (see details in S5 Text), suggesting that the performance of NLA is

robust to the choice of system variable (Table 1).

Fig 2. An example of simulated model time series with settings described in S3 Text. The shift pattern is clearly exhibited by N whereas

the timing is not quite distinguishable in z. It is even harder to tell that the variables y and x experience a regime shift from their time series,

despite that they are exactly the variables of which equations directly depend on the regime indicator N. The process errors and

measurement errors are set with ρ = 0.05 and σ2 = 0.05.

https://doi.org/10.1371/journal.pcbi.1011759.g002
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3.2. Detection of regime shift in the Pacific Decadal Oscillation

To demonstrate our approach for empirical data, NLA is applied to the Pacific Decadal Oscil-

lation (PDO) index, which is a key indicator of climate variability. Many studies have indicated

the presence of a regime shift in PDO in mean or the positive/negative phases around the

1970s; however, we would like to investigate whether there is a structural change in the under-

lying dynamics of the climate system. The monthly reanalysis PDO data are publicly available

from National Oceanic and Atmospheric Administration (NOAA) [43], and we take the one-

year moving average of the time series from 1875 to 2000 prior to the analysis (Fig 5). Note

that the presence of secular trends in empirical time series, in any, likely biases the result of

tracking prediction error, and thus needs to be removed prior to NLA (i.e., detrending time

series [28]). However, due to lack of clear trend, detrending was not performed for the analysis

of PDO and model data.

Fig 3. NLA applied to the model time series obtained in the simulation shown in Fig 2. The input time series fytg
999

t¼0

together with the unobserved regime indicator N (red line) is shown in the upper panel. The last quarter fytg
999

t¼750
is used as the

test set, and the rest part of the time series is used as the shrinking library sets. The scatter plot in the lower panel illustrates the

forecast RMSEs with the smoothened green curves ~E l obtained by applying Gaussian filters (with the Gaussian function σ2 = 3)

to E l
0s for l = 0, 10, 20, . . .., respectively. NLA is terminated at l = 500 at which the valley-shapedness of RMSE curve has been

clearly displayed. To better visualize the sign of the derivative of ~E l
0s at each time point t, a grid triangle is plotted in the lower

panel. Each row of grids represents the sign of the derivative of ~E l
0s along time, with dark gray and light blue indicating for

negative and positive derivatives, respectively. Namely, the t-th grid (counted from the left) of the l-th row (counted

downwardly) denotes whether
d~E l
dt tð Þ is positive or negative. Results show that NLA succeeds to detect the change and estimate

the change point as t̂ = 300.

https://doi.org/10.1371/journal.pcbi.1011759.g003
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For the purpose of detecting the change in its dynamics during the second half of the 20th

century, time series data before 1920 are reserved as the test set, and the rest of the data are

used as the library set from the right. When the data points are sequentially removed from the

library from the right-hand side, the RMSE decreases until the right boundary of the library set

reaches the mid-1970s (Fig 5). According to our argument, the forecast skill improved in spite

of the decreasing amount of historical data points, indicating that the removed data points

were generated by another governing equation. Based on the result of NLA, we conclude a

shift in the dynamics of the PDO index around t̂ = 1973. This finding is supported by the

empirical evidence of the change in the climatology of Alaska [44], South America [45], central

equatorial Pacific [46], and the properties of El Niño [47]. Compared to CPMs, only Mann-

Whiteny method obtained the change point estimate around mid-1970s (change point esti-

mates, Student-t: 1957; Bartlett: 1950; Mann-Whitney: 1976; Kolmogorov-Smirnov: 1952).

4. Discussion

Natural systems in the changing environment may undergo abrupt changes in dynamics. It is

demanding to identify regime shifts that are often concealed due to chaos, data noises, or the

unobservable variables, etc. Here, we have provided a data-driven method called Nested-

Fig 4. The comparison between NLA and other methods. The left panel illustrates the distributions of change points determined by NLA

and CPM based on Student-t test, Bartlett test, Mann–Whitney test, and Kolmogorov–Smirnov test, when analyzing the y time series using

200 replicates generated from the food-chain model. The right panel presents empirical cumulative distributions of the estimated change

point obtained by NLA and CPM methods.

https://doi.org/10.1371/journal.pcbi.1011759.g004

Table 1. Summary of results from different methods. The true change point is fixed as τ = 300 for each experiment. Each method is applied to each of variables for 200

times.

On X On Y On Z

count median mean std count median mean std count median mean std

NLA 193 300.0 276.347 92.697 200 320.0 312.100 50.979 197 280.0 280.381 71.119

Student-t 161 44.0 118.478 114.243 165 39.0 61.000 98.871 200 328.5 324.770 29.767

Bartlett 182 46.5 195.363 213.673 190 276.0 227.489 198.999 200 367.5 274.385 206.202

Mann-Whitney 195 46.0 128.697 133.036 185 36.0 54.503 83.345 200 328.5 325.135 28.957

Kolmogorov-Smirnov 198 61.5 170.606 158.139 200 47.5 145.535 144.649 200 175.0 167.700 82.456

https://doi.org/10.1371/journal.pcbi.1011759.t001
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Library Analysis based on EDM. Our numerical experiment on a chaotic food chain coupled

with nutrient cycling shows that NLA accurately detects the occurrence of regime shifts from

any one of the system variables. Such robustness shall be attributed to the generality of Takens’

embedding theorem, which guarantees attractor reconstruction from any of system variables.

For comparison, CPMs as conventional detection methods targeting the changes in statistical

properties give decent estimates only for the variable z, the only system variable not directly

affected by the regime variable N but exhibiting a clear shift in its empirical distribution. In

contrast, CPMs provide poor estimates of change point for variables x and y, as x and y do not

exhibit noticeable changes in statistical properties (Fig 2). Our example shows that abrupt

changes in the governing equation might not be necessarily accompanied with apparent shift

patterns in the empirical distribution, i.e., shifts in mean and variance cannot serve as a generic

signal of regime shifts. In other words, the existing CPMs confirm the significance of shifting

patterns that have been observed; while NLA, by leveraging its theoretical linkage with

attractor identification, enables to unveil those hidden shifts in dynamical systems and serve as

a generic regime shift detection method regardless of the presence of shifting pattern in time

series. Indeed, NLA can be applied to a generic framework of regime shift [8] that considers

not only abrupt shift but also flickering in variable states (S6 Text).

It is noteworthy that the analytical framework NLA can potentially be extended to detect

multiple change points by implementing moving-windows computation used in general CPM

methods. Specially, the curve of prediction error shown in Fig 3 can move along the time axis

by applying NLA to the moving library and test sets. As such, multiple change points can be

revealed by the appearance of multiple prediction optima at different times. Nevertheless,

implementing moving-window computation requires more delicate parameter selection (e.g.,

Fig 5. A demonstration of NLA with monthly PDO index data shows that a shift occurs in its dynamics around t̂^ = 1973. Data points of the time

series before 1920 are set as the test set, and the rest of the data points are used as the library set. When the library set shrinks from the right, the RMSE

becomes lower until historical data points after the mid-1970s are excluded; in comparison, the model performance gets worse when the algorithm starts

to remove data points before the mid-1970s.

https://doi.org/10.1371/journal.pcbi.1011759.g005
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[30]), and thus requires more detailed investigations when applying NLA to analyze long time

series underwent multiple regime shifts, e.g., multiple glacier periods revealed in paleoclimatic

records.

For practical purposes, we also investigate the efficacy of NLA in the presence of data noise.

We find that the performance of NLA is optimized in the presence of minor data noises (Fig

6). In details, we repeat the numerical experiment of the food chain model and incorporate the

simulated dataset with different levels of measurement errors, i.e., white Gaussian noises

εt � N ð0; s2Þ, based on the detailed procedure provided in S3 Text. It is not surprising that

the performance deteriorates as the signal-to-noise ratio declines. Interestingly, however, the

performance of NLA is not optimal when applying it to a noise-free dataset. The suboptimal in

noise-free condition can be explained upon better understandings of the S-map method imple-

mented in NLA. Specifically, detecting the change point by NLA requires the inclusion and

then exclusion of the impacts of misleading data collected from the regime differing from test

set (i.e., false neighbors in state space). However, if the contribution of misleading data can be

down-weighted very effectively by S-map, which usually happens in noise-free condition, the

prediction errors caused by including misleading data in library set can be greatly reduced and

leads to a less accurate change point estimation in NLA. Nonetheless, the case of too-weak

data noise is less of a problem in practice as real-world data are generally noisy and minor

white noises can be additionally introduced as shown in the previous method [48]. However,

Fig 6. To investigate the sensitivity of our detection method to data noises, we repeat the experiment as described in the

Section 3.2 but with measurement errors in different levels. The violin plot on the left panel suggests that NLA performs better

when the data are slightly noisy. In particular, the accuracy and the precision are optimized when the measurement error scale σ2

is 0.15 and 0.1 respectively. The right panel presents empirical cumulative distributions of the estimated change point obtained

under different noise levels.

https://doi.org/10.1371/journal.pcbi.1011759.g006
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strong noise reduces the efficacy of NLA in empirical cases because noise blurs the identifica-

tion of neighborhood structures (namely, the topology) of reconstructed attractors. Conse-

quently, strong noise leads to unclear valley-shapedness of ~E , resulting in a less accurate

estimation of change point. A possible solution for analyzing noisy data is to apply multiview

embedding (i.e., an ensemble learning of S-map) that is known to be more effective in analyz-

ing noisy data, but this approach requires multivariate time series data. In addition, consider-

able error margin of change point estimates shown in Fig 6 is likely caused by the uncertainty

in determining the valley of prediction error. In most cases, the valley can be well-identified

from the sign changes in the first derivative of smoothened error curve. However, such crite-

rion also results in a few extremities in noisy systems, especially when the error curve is less

sharp and contains certain noise.

A problem one may come across in practice is the choice of the test set. The test set should

be long enough to capture the topological structure of an attractor, so that the forecast skill can

be evaluated over the entire attractor. Nonetheless, a longer test set means the less room for

the library set in conducting the sequential elimination of nested library in NLA. There is yet

to be an answer for what is the best trade-off. Whereas, a rule of thumb is to have the test set

not less than two cycle times (or, more generally, the Poincaré recurrence statistics [49]). One

should keep in mind that the existence of a test set is required to evaluate the performance of

out-of-sample forecasts, which is associated with the choice of the test set. To circumvent the

problem of choosing a test set, one may consider alternative approaches that does not necessi-

tate a test set. For example, methods based on unsupervised learning can infer the quality of

attractor reconstruction by judging the level of attractor collapsing, e.g., the waving product

method and the filter-factor algorithm. Nevertheless, the NLA algorithm implemented by

EDM can be applied to the time series data without long record or dense sampling interval.

Indeed, our results based on half of the sample size in model time series (S7 Text) remains

qualitatively similar as the findings based on full sample size, indicating the advantage of

EDM-based methods on analyzing sparser time series [50]. Moreover, the result of NLA is also

robust to the selection of test set based on either the first or last quarter (S8 Text), provided

that the change point is included in the library set. If the potential change point is difficult to

be recognized in chaotic systems, we suggest applying the NLA twice, taking each of ends of

time series data as the test set.

Insights into historical events are vital to studying the underlying mechanisms of a natural

system. Being able to detect the timing of regime shifts is a pressing concern. To overcome the

problems and limitations of existing approaches that rely on analyzing statistical properties of

time series data, we have proposed a new data-driven method Nested-Library Analysis (NLA).

NLA performs better than the existing methods at determining the timing of abrupt changes

of dynamical systems even in the problematic case, in which the changes in time series are hid-

den by noises or complex chaotic dynamics. We anticipate the development of this novel

detection method can unveil the critical events that threaten system sustainability and thus

facilitate the management and restoration of natural systems.
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14. Ibáñez C, Alcaraz C, Caiola N, Rovira A, Trobajo R, Alonso M, et al. Regime shift from phytoplankton to

macrophyte dominance in a large river: top-down versus bottom-up effects. Science of the Total Envi-

ronment. 2012; 416:314–22. https://doi.org/10.1016/j.scitotenv.2011.11.059 PMID: 22178026

15. Hempson TN, Graham NA, MacNeil MA, Hoey AS, Wilson SK. Ecosystem regime shifts disrupt trophic

structure. Ecological Applications. 2018; 28(1):191–200. https://doi.org/10.1002/eap.1639 PMID:

29035010

16. Filbee-Dexter K, Wernberg T. Rise of turfs: a new battlefront for globally declining kelp forests. Biosci-

ence. 2018; 68(2):64–76.

17. Zeeman EC. Catastrophe theory. Scientific American. 1976; 234(4):65–83.

18. Rietkerk M, Dekker SC, De Ruiter PC, van de Koppel J. Self-organized patchiness and catastrophic

shifts in ecosystems. Science. 2004; 305(5692):1926–9. https://doi.org/10.1126/science.1101867

PMID: 15448261
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