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Abstract

Understanding the ecological mechanisms associated with the collapse and restoration is

especially critical in promoting harmonious coexistence between humans and nature. So far,

it remains challenging to elucidate the mechanisms of stochastic dynamical transitions for

ecological systems. Using an example of plant-pollinator network, we quantified the energy

landscape of ecological system. The landscape displays multiple attractors characterizing the

high, low and intermediate abundance stable states. Interestingly, we detected the intermedi-

ate states under pollinator decline, and demonstrated the indispensable role of the intermedi-

ate state in state transitions. From the landscape, we define the barrier height (BH) as a global

quantity to evaluate the transition feasibility. We propose that the BH can serve as a new

early-warning signal (EWS) for upcoming catastrophic breakdown, which provides an earlier

and more accurate warning signal than traditional metrics based on time series. Our results

promote developing better management strategies to achieve environmental sustainability.

Author summary

Exploring the evolutionary characteristics of complex ecological networks is an important

issue. Here, using a plant-pollinator network as an example, we investigate the stochastic

dynamical mechanism of the ecological system. The multistable energy landscape charac-

terizes high, low, and intermediate abundance stable states. Interestingly, we observe the

intermediate states during pollinator decline and reveal their vital role in state transitions.

The barrier height calculated from landscape provides a global measure to quantify the

feasibility of transitions. We propose that the barrier height can serve as a new early warn-

ing signal (EWS) for anticipating catastrophic breakdown, which is more accurate and

prompt than traditional metrics based on time-series. Our findings highlight the need for

improved management strategies to achieve environmental sustainability.
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Introduction

Current ecosystems are under grave and unprecedented threat, due to combined effects of

worse external conditions and weaker internal interactions [1, 2]. The damage can result in the

extinction of some species, which has particularly negative impacts on both biodiversity and

stability [3, 4]. The sudden collapse, also known as a regime shift phenomenon, can occur

unpredictably [5]. It is an irreversible changeover in relation to the survival of all species [6, 7].

To describe the process of evolution, deterministic models have proved to be valid tools [8, 9],

while the stochasticity is also vital, since the noise plays an essential part in transitions between

healthy state and degraded state [10, 11]. However, how to interrogate the stochastic transition

dynamics for a complex system has been a challenging problem. The concept of energy land-

scape provides a way to quantify stochastic dynamics and relative stability [12, 13]. It brings us

with valuable opportunities for quantitative calculation, global representation and discovery of

the states unnoticed in the deterministic model [14], and is extensively utilized in gene regula-

tory networks [15, 16], computational neuroscience [17, 18] and ecological systems [14, 19].

An important example in ecosystems is plant-pollinator mutualistic network, in which pol-

linators play significant functional roles in maintaining biological diversity and enhancing cru-

cial pollination services to plants. Field studies have shown widespread and accelerating losses

in pollinator richness and abundance [20, 21], as well as parallel decay in linked plants [22].

Underlying drivers include pesticide use, alien species, land loss and climatic change [23–26].

Several research efforts reveal the fact that most pollinators are prone to faster extinctions in

comparison to plants [27, 28]. Pollinator decline deeply disrupts reproductive behaviors of

plant populations [29, 30], which in turn further reduce pollinator densities as a result of

decreased pollen quality and quantity [31]. This positive feedback causes a vicious circle of

attenuation in many species. To model the uncertain extinction risk in pollinators, a common

operation is to randomly select and remove a certain proportion of them in observational net-

works [8, 32, 33]. What’s more, two frequently studied states, the high-abundance stable state

and the alternative low-abundance stable state, are truly widespread and coexisting with each

other owing to the presence of a hysteresis loop in both low-dimensional and high-dimen-

sional models [8, 10, 32]. A growing body of literature recognizes the importance of bistability,

including prediction of tipping points [8, 33], managing strategies of influential pollinators

[32, 34], and resilient network structures [35, 36]. Nevertheless, it remains challenging to

quantify the stochastic transition dynamics for ecological networks, especially when multi-

stability phenomenon emerges. Besides, previous studies were mostly concentrated on low-

dimensional mean-field models [8, 14, 33], where information may be lost, such as the hetero-

geneity in species interactions.

In this work, to quantify the effects of perturbation and clarify the mechanisms of evolution,

we studied the stochastic transition dynamics of ecological networks using the landscape and

transition path theory, by taking the plant-pollinator mutualistic network as an example. Inter-

estingly, we identified new intermediate states in the context of pollinator loss. Next, an in-

depth analysis was performed for the network that exhibits tristability (three stable states). We

calculated the kinetic transition paths between coexisting attractors, which provide the order

information of species extinction and recovery. We found the irreversible transitions caused

by the probabilistic flux that measures the extent of detailed balance broken in non-equilib-

rium systems. More importantly, by comparing the direct and indirect paths, we proposed

that the intermediate state can be treated as an indicator of impending sudden collapse. As an

extension of previous dimension reduction approach for landscape [37], we projected the

high-dimensional landscape onto new coordinates inspired by hierarchical principal compo-

nent analysis [38, 39], which is more applicable to this bipartite system. Calculated from the
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landscape topography, the barrier height (BH) measures relative stability of each attractor.

Under conditions of environmental decline, the BH demonstrates similar patterns with transi-

tion action and mean first passage time (MFPT), both of which directly portray the difficulty

of state transitions. Remarkably, we found that the BH provides a new early-warning signal

(EWS) of final collapse, which performs significantly earlier and more accurate than tradi-

tional metrics derived from time series, including autocorrelation and variance. We also con-

ducted global sensitivity analysis and interpreted ecological management strategies. To

mitigate the collapse process, we only need to protect the pollinators surviving in the interme-

diate state. However, it is not far enough in terms of full recovery. Our model predicts that one

should produce more favorable conditions to achieve recovery to the high state. The conclu-

sions regarding BH as EWS and ecological strategies hold for multiple networks by consider-

ing the heterogeneity of the reciprocal interaction. We also demonstrated that a

multidimensional model is necessary for the appearance of the intermediate states. Overall,

our approach provides a general framework for understanding stochastic transition dynamics

and sustainability in ecological systems.

Results

Appearance of multistability in the plant-pollinator network

We obtained plant–pollinator mutualistic networks from the Web of Life database (www.

Web-of-Life.es) and focused on a widely studied network consisting of 17 plants and 61 polli-

nators from Hickling, Norfolk, UK [40], where we have already known the network structure

and parameter range for bistability (Fig 1A). Based on generalized Lotka-Volterra dynamics,

the ith plant Pi and the jth pollinator Aj conform to the following non-linear ordinary differen-

tial equations (ODEs) respectively [8, 35]:

dPi

dt
¼ a

ðPÞ
i Pi � b

ðPÞ
ii P2

i �
XNP

k¼1;k6¼i

b
ðPÞ
ik PiPk þ
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PNA
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g
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1þ h
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where αi represents the intrinsic growth rate, βii and βik represent the rate for intraspecific

competitions and interspecific competitions, respectively. κ is the average decay rate of polli-

nators affected by environmental deterioration. h denotes the half-saturation constant and the

immigration rate is denoted by μ. The reciprocal strength g
ðAÞ
il is defined as g

ðAÞ
il ¼ g0εil=½g

ðPÞ
i �

d
,

among which γ0 is the per capita strength, εil indicates whether a link exists between the ith

plant and the lth pollinator, gðPÞi is the degree of the ith plant and δ is a trade-off parameter (see

Methods for details).

Meanwhile, to model how the progressively worsening conditions disturb the system, we

carried out common operations for random removal of a certain percentage of pollinators, as

well as their links to plants [8, 32, 33]. Hence, for each removal percentage, we randomly gen-

erated 1000 sub-networks. Then we obtained stable state results by simulations of ODEs, and

showed the frequency distributions of different types of stable states in each case (Fig 1B). It

reveals a marked fall in the proportion of high monostable (single stable) state while rise in

that of low monostable state with soaring removal rate. The percentage of the high-low bistable

state increases firstly and decreases afterward, predominating in removing 50% to 80% of polli-

nators. What surprises us is the appearance of multistability, like tristability and tetrastability
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that involves one and two intermediate states respectively. The intermediate states are identi-

fied in some networks from which more than half of pollinators are removed (Fig 1B). The

characteristics of the intermediate states are that less than half of (or even only one) pollinator

species remain alive and plants are generally present in moderate abundance. This phenome-

non derives from the strong nonlinearity induced by the mutualistic interactions in dynamics,

endogenous positive plant-pollinator feedbacks, as well as underlying topological structures of

networks.

Without loss of generality, we used a sub-network exhibiting tristability as an example, and

performed further analysis. It is composed of 17 plants and 13 pollinators, generated by

removing 80% of pollinator nodes (Fig 1C and Table A in S1 Text). Importantly, we propose

that this plant-pollinator system can generate tristable state (three stable states), that is, the

high, low and intermediate states, and the naming for states is based on the ranking of species

abundance. For the high state, the abundance of both plants and pollinators is ample. For the

low state, all pollinators go extinct and plants are also rare (Fig 1D). For the intermediate state,

most plants are still alive but with an intermediate level of abundance, and the most generalist

pollinator (Bombus pascuorum) is the only surviving pollinator (Fig 1D). Considering the

coexistence of stable states, seven possible stable state scenarios are displayed (Fig 1E). Each

scenario can be found in this system, and varying different parameters results in the phase

change. Noise can also induce a phase transition of the system, and thus affect species abun-

dance (see Section A and Fig A in S1 Text for details). In particular, the appearance of the

Fig 1. Multistability in the plant-pollinator network. (A) Raw network structure of an empirical mutualistic network from actual observation data

[40]. (B) The proportion of different stable states (y-axis) with random removal of a certain percentage of pollinators (x-axis). Total 1000 sub-networks

are simulated in each column except for the first (0% represents the original network). (C) A typical plant-pollinator network after removing 80% of

pollinators, in which tristability occurs. (D) The abundance of 17 plant species and 13 pollinator species (indicated by each column) in low,

intermediate and high stable states using default parameters. The default values are set as follows: a
ðPÞ
i ¼ a

ðAÞ
j ¼ 0:3, b

ðPÞ
ii ¼ b

ðAÞ
jj ¼ 1,

b
ðPÞ
ik ¼ b

ðAÞ
jm ¼ 0:01ði 6¼ k; j 6¼ mÞ, κ = 1.07, γ0 = 1, δ = 0.5, h = 0.2, μ(P) = μ(A) = 0.001. (E) Illustration of seven possible stable states, including

monostable state, bistability and tristability. H: high state, HI: high-intermediate bistability, HL: high-low bistability, HIL: high-intermediate-low

tristability, IL: intermediate-low bistability, L: low state, T: tetrastability.

https://doi.org/10.1371/journal.pcbi.1011766.g001
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intermediate state allows the system to exhibit distinct patterns that were rarely reported

previously.

Multistable landscape and transition path reveal the role of intermediate

state

To explore the impacts of two critical parameters (κ and γ0) on the system dynamics, we plot-

ted the phase diagram over a broad range of parameters: κ=0.5*1.5, γ0=0.75*1.25 (Fig 2A

Fig 2. Multistable landscape and transition path reveal the role of intermediate state. (A) The phase diagram under parameter variation

(κ=0.5*1.5, γ0=0.75*1.25). The same notations apply as in Fig 1E. I: intermediate state. (B) Landscape and transition paths after projection onto new

coordinates in the tristable system (κ = 1.1, γ0 = 1). The white lines indicate the collapse process while the magenta lines represent the recovery process.

The solid and dashed lines correspond to direct and indirect transition paths, respectively. (C) Multidimensional transition paths between different

attractors after normalization, where two left pictures are indirect paths (through the intermediate state) from high to low state (top) and low to high

state (bottom); conversely, the two on the right are direct paths. Each row represents one of 30 species in the network and the upper 17 rows are plants

while the lower 13 rows are pollinators.

https://doi.org/10.1371/journal.pcbi.1011766.g002
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and see Section B in S1 Text for details). Intuitively, large κ (decay rate of pollinators) leads to

population declines but large γ0 (per capita mutualistic strength) enhances the abundance of

both plants and pollinators. We discovered that the system exhibits the intermediate mono-

stable state at smaller κ and smaller γ0, but tristable state when κ and γ0 both increase along

the diagonal (Fig 2A). This is reasonable, since larger κ and larger γ0 promote the generation

of the low state and high state respectively, and their simultaneous increase promotes the

appearance of multiple stable states.

To study the stochastic transition dynamics involved in tristable state, we quantified the

energy landscape of the plant-pollinator network in the tristability region. The landscape takes

into account not only the stability from a global perspective, but also stochastic effects includ-

ing noise-induced transitions. Additionally, through a dimension reduction approach for

landscape, we are able to display the high-dimensional landscape in reduced coordinates, with

good interpretability (see Methods and Section C in S1 Text for details). The potential energy

U is quantified through: U(x) = −log(pss(x)), where pss(x) is the stationary probability density

(see Methods for details). Here an attractor represents stable-state abundance of each species,

and the state transition process is viewed as the barrier-crossing process.

To explore the dynamical switching processes, based on the principle of least action, we cal-

culated transition paths which reflect the most likely pathway from one attractor to another,

and projected them onto the reduced dimensions (Fig 2B). Here we added the physical con-

straint that the abundance of each species must be non-negative within the paths. We roughly

observed that the indirect and direct paths are exactly alike during switching process from

high to low state, that is, the system tends to proceed through the intermediate state before

final collapse. The multidimensional transition paths confirm this observation as well. The

abundance of each species is linearly normalized to the range [0, 1], where 0 and 1 correspond

to its respective minimum and maximum (Fig 2C). We evaluated the similarity between indi-

rect and direct paths using the squared Euclidean distance in high-dimensional space. The

path distance (PD) is defined as PD ¼
PL

i¼1

�
�
�yðdirectÞi � yðindirectÞi

�
�
�

2

2

, where L is the number of

nodes in the path, and we chose L = 20 (see Fig B in S1 Text for how L is chosen). yðdirectÞi and

yðindirectÞi represent each species abundance at the ith node in direct and indirect paths respec-

tively. We found two paths from high to low state are closer (PDhigh!low = 8.5811) than those

from low to high state (PDlow!high = 15.6319). Previous studies have demonstrated that eco-

systems abruptly disrupt from a healthy state to an alternative state at a tipping point [5, 8, 35].

Here the existence of the intermediate state provides a new perspective on early indicators for

critical transitions in ecology. Transition from the high state to the intermediate state signifies

that a collapse is in progress, which can remind people to implement the associated environ-

mental strategy to mitigate the collapse.

We also noticed that some plants have relatively higher abundance in the low state while

lower abundance in the high state (Fig 2C). We examined that they have no connections with

pollinators, thus the interspecific competitions become dominant and lead to such phenome-

non. In addition, it is apparent that the attenuation starts at pollinators, identified both in pro-

jected and multidimensional paths (Fig 2B and 2C). Therefore, pollinators are regarded as the

cause of collapse transition, which are consistent with previous studies [30, 41, 42]. It suggests

that effective interventions for pollinators could inhibit ecosystem breakdown to a certain

extent. But for recovery, it first occurs in plants, which is also corroborated in simulated sto-

chastic trajectories (Fig A in S1 Text). With regard to direct path, other pollinators are recov-

ered earlier and the system moves away from the low state faster than that for indirect path
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(Fig 2C). The understanding about possible causal mechanisms provides key insights into eco-

logical strategies.

In addition, we also considered the scenario of colored noise (including red noise and blue

noise) and used Langevin simulations to construct the energy landscape (Fig C in S1 Text).

We found that the red noise promotes the occurrence of state transition behavior due to the

positive correlation of noise between adjacent time points. When there is a transition trend in

a certain direction, the noise at the next time point intensifies this tendency. Conversely, blue

noise has the opposite effect.

Landscape changes with parameter variation

While previous studies mostly focused on simulation of individual trajectories [10, 34, 43], the

landscape picture provides a global description for attractor stability and state transitions. We

can quantify the landscape through truncated moment equation approach (see Methods for

details). For the high-dimensional landscape, how to visualize it is a challenging problem. We

have developed different ways to deal with it.

We developed a dynamical model-based dimension reduction approach for the landscape

[37]. However, the top two principal components (PCs) selected as coordinates do not display

good biological meanings (see Fig D in S1 Text for details), which hardly visualize the changes

of abundance in plants and pollinators. Also, the reduced landscape shows instability as shown

from changes in weights and corresponding attractor positions after a small perturbation of

parameter κ (see Figs D and E in S1 Text for details). Here, for the bipartite system, we pro-

posed a new dimension reduction approach for the landscape (see Methods and Section C in

S1 Text for details). Inspired by hierarchical principal component analysis [38, 39], we sepa-

rately selected the first PC (PC1) of plant covariance matrix and PC1 of pollinator covariance

matrix for projection, which endows the coordinates with good biological meanings and

interpretability. Meanwhile, we also demonstrated the robustness of the coordinates under

parameter perturbations (see Figs D and E in S1 Text for details), allowing us to casually deter-

mine the reference coordinates to ensure comparability.

With the aim of showing every possible stable state scenario, we displayed a series of land-

scapes on 12 pairs of parameters which include κ=0.95, 0.99, 1.07 and γ0=0.89, 0.94, 0.98, 1.06,

respectively (Fig 3). To ensure mutual comparability, all coordinates are taken from those cal-

culated under κ=0.99, γ0=0.94. In the framework of Waddington, the abundance of all species

can be regarded as a ball residing on the surface of landscape, always going downhill in the lack

of outside interventions. The initial condition affects the stable state position when there are

multiple basins. External forces or noise can trigger transitions between multiple states, but has

little effect on monostable case. As κ increases or γ0 decreases, the system progressively transits

from high state to low state, probably via high-intermediate bistable state, high-low bistable

state, intermediate monostable state, high-intermediate-low tristable state, and intermediate-

low bistable state (Fig 3). Different ways to adjust parameters influence the process of collapse,

but the intermediate state always appears in the process. For full restoration, the environmental

condition required is weaker when the mutualistic strength is larger, and vice versa. We also

noticed the intermediate state is close to the low state in the landscape, because the system at

such a transition state is facing a precarious situation when only one pollinator remains alive.

Quantification of barrier height, transition action and mean first passage

time

Ecological resilience is concerned with the amount of perturbation that a system can tolerate

without shifting to an alternative state [5]. Here the problem corresponding to resilience is to
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precisely quantify the difficulty of transition from an attractor to another. We concentrated on

the impact of parameter perturbation, and demonstrated the continuing change across stable

states with environmental degradation. To measure the relative stability of attractor xi and

attractor xj, we firstly define the barrier height (BH) as BHsi = Usaddle − Ui, i.e., the potential

energy difference between the saddle point and local minimum (corresponding to xi). Then,

the relative barrier height (RBH) is defined as RBHij = BHsj − BHsi, which quantifies the rela-

tive transition feasibility between state xi and state xj. In the bistable or tristable region, we

reported the variations of RBH between pairs of stable states in the case of changing κ (Fig 4A,

4B and 4C). What stands out is the general pattern of dramatic decline which suggests the

rapid rise in potential energy of high state. In other words, the high state is increasingly unsta-

ble. Nevertheless, the low state shows an opposite trend, i.e., becoming more and more stable.

It is interesting that the potential energy of intermediate state first decreases and then increases

as κ soars. Then we deduced that the change can be broadly divided into two stages. As for the

two-stage collapse process, the system first transits from the high state to the intermediate

Fig 3. Landscape changes with parameters κ and γ0. All pictures share the coordinates of κ=0.99 and γ0=0.94, which are uniquely labelled for

simplicity. For each landscape, small and large values of plant PC1 / pollinator PC1 correspond to low state (lower left corner) and high state (upper

right corner) respectively, and moderate value is related to the intermediate state. Blue color indicates the basin of attraction corresponding lower

potential energy or higher probability, while yellow color indicates high potential energy or lower probability. The transition paths between different

stable states are also displayed, as in Fig 2B.

https://doi.org/10.1371/journal.pcbi.1011766.g003
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state, until the high state disappears at around κ� 1.12 (Fig 4A and 4B). Afterwards (approxi-

mately 1.12� κ� 1.17), the intermediate state progressively shifts toward the low state, but

the former keeps more stable until approaching the tipping point (Fig 4C). The entire process

further confirms the sudden collapse of ecosystem and supports the real existence of interme-

diate state as well as the hypothesis of going through it.

Moreover, the minimum transition action, corresponding to the most likely transition path

between attractors, is a direct representation for transition feasibility. It tends to be more com-

putationally expensive since its calculation is based on original multidimensional system (see

Methods for details). We showed the differences of the transition actions between the forward

and backward paths (ΔS) (Fig 4D, 4E and 4F), which also measure the relative stability of

attractors. Then we found that, in the early first stage (around κ� 1.11), it is easier to transit

from intermediate to high state, and in the late first stage (around 1.11� κ� 1.12), the reverse

is more likely to occur (Fig 4D). Also, transition from high to low state does not occur easily in

the first stage (Fig 4E). In the second stage, it is not until close to the critical point that interme-

diate to low transition is easier than the opposite direction (around 1.16� κ� 1.17) (Fig 4F).

The results consistent with those of RBH reflect the fact that the transition from high-potential

state to low-potential state is easier than the reverse (see Fig F in S1 Text for details). Addition-

ally, we marked the turning points (defined as RBH = 0 and ΔS = 0 respectively), and their cor-

responding κ values are very similar. They further illustrate that the RBH holds sufficient

information about the original system, and it can quantitatively elucidate the change.

Besides, the mean first passage time (MFPT) provides another indicator of state transitions.

It can be obtained from multidimensional trajectory simulation of noisy species abundance.

We applied the corresponding Langevin equations under fixed parameters (see Methods and

Section D in S1 Text for details). Based on Euler-Maruyama method, we recorded each first

Fig 4. Consistency among barrier height, transition action and MFPT. (A-C) A line graph of RBH between stable-state pairs with varying κ (A:

intermediate and high state; B: low and high state; C: low and intermediate state). We also label the turning point (purple point), where two stable states

have the same potential energy value (RBH = 0). (D-F) The difference for the minimum actions between the forward and backward transitions (ΔS)

vary with κ (D: intermediate and high state; E: low and high state; F: low and intermediate state). (G) Approximate linear relationships between RBH

and log(MFPT) (blue line), as well as between ΔS and log(MFPT) (green line).

https://doi.org/10.1371/journal.pcbi.1011766.g004

PLOS COMPUTATIONAL BIOLOGY Landscape quantifies ecological transition dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011766 January 5, 2024 9 / 23

https://doi.org/10.1371/journal.pcbi.1011766.g004
https://doi.org/10.1371/journal.pcbi.1011766


passage time from one attractor to the other. The average was taken to approximate the MFPT

(see Fig F in S1 Text for details). With different κ, we selected the direction where the transi-

tion is likely to occur, and all clarified the approximate linear relationships between RBH and

the logarithm of MFPT (log(MFPT)), as well as ΔS and log(MFPT) (Fig 4G and see Fig F in S1

Text for details). The above three quantitative metrics give us the opportunity to properly

describe the dynamics in system change.

Barrier height as a new EWS to predict collapse

By simulating species abundance fluctuations as κ increases or decreases linearly with time, we

found that the system undergoes transitions between attractors to achieve complete collapse

(Fig 5A) or recovery (Fig 5B). The trajectories in abundance were calculated from multidimen-

sional Langevin equations with parameter κ varying, and were then projected onto plant PC1

and pollinator PC1 obtained previously. We used k�
1

and kþ
1

to denote the collapse and recov-

ery thresholds between high and intermediate states respectively, as well as k�
2

and kþ
2

to repre-

sent those between intermediate and low states analogously. Regarding the collapse process

(Fig 5A), the system stayed in the high state despite subsequent appearance of tristability. It

did not transit to the intermediate state until the high state was no longer a stable attractor

(k�
1
� 1:11). Confronted with the progressive decay, the system shifted toward the low state

(the complete collapse occurred) when the intermediate state disappeared (k�
2
� 1:18). We

found that, for collapse, the system transits to a new stable state when its current state disap-

pears as parameters change.

As for the recovery from the low state (Fig 5B), the system required better environmental

conditions (smaller κ) while transiting to the intermediate state (kþ
2
� 1:16, kþ

2
< k�

2
). For fur-

ther restoration, it was stuck in the intermediate state longer (even if the high state emerged),

and returned to the high state once more under better conditions (kþ
1
� 1:07, kþ

1
< k�

1
). By

Fig 5. Barrier height serves as a new EWS to predict collapse. (A and B) The process of system collapse (A) and recovery (B) is simulated from the

Langevin equation. We present two-dimensional landscape, in which the same coordinates are used to ensure comparability. The left arrow indicates

the proportion of each state (H: blue, I: green, L: gold). The transitions between attractors are marked by thick arrows. (C) Calculated RBH between low

and intermediate states with increasing κ. We regard the point as an EWS when the BDS statistic for the sequence up to this point is significant (blue:

p<0.05, gold: p<0.01, red: p<0.001). (D) For complete collapse to the low state, the RBH can serve as the earliest warning signal compared with other

metrics based on time series, such as AR(1), variance (Var), coefficient of variation (CV) and fano factor (fano). The color in RBH has the same

meaning as (C), indicating the predicted critical κ value based on different p-values.

https://doi.org/10.1371/journal.pcbi.1011766.g005
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comparing kþ
1

with k�
1

and kþ
2

with k�
2

, we explored the emergence of hysteresis loops, which

has been extensively mentioned in previous bistability studies [5, 10, 44, 45]. The system tends

to remain in its current stable state. The transition to the new state occurs when the current

state gradually becomes unstable and the system is driven by some noise, rather than transi-

tioning as soon as the new state appears.

Unlike trajectory-based metrics, the landscape portrays the relative stability. As species

abundance can exhibit strong nonlinear structures before tipping points [45, 46], we propose

that RBH showing similar patterns can serve as an early-warning signal (EWS) of final col-

lapse. To guarantee comparability, we selected the RBH between low and intermediate states

(Fig 5C). With increasing κ, their corresponding RBHs can be seen as a sequence. We aimed

to find the critical κ, when the sequence after adding a new point of RBH shows a nonlinear

structure. We used the Brock-Dechert-Scheinkman (BDS) test on residuals after eliminating

the effects of linear trends [47], and the null hypothesis is rejected at the critical point. Corre-

sponding to three types of significance (p< 0.05, p< 0.01, p< 0.001), we marked three critical

κ. In fact, after the disappearance of the high state, the RBH changes more drastically com-

pared to that under smaller κ, which suggests that the earlier warning can be achieved.

Then we compared the results of RBH with traditional metrics (AR(1), variance, coefficient

of variation and fano factor) derived from time series. Remarkably, RBH can act as the earliest

warning signal, which is confirmed in multiple networks (Fig 5D and see Section E and F, Figs

G, H and T in S1 Text for details). Since RBH is evaluated from a landscape picture, its corre-

sponding critical κ is a definite value, not depending on individual species. Whereas traditional

metrics rely on the individual trajectory, we took their median value for each species in com-

parison with RBH. The smaller the κ is, the earlier the warning is given. Moreover, the RBH is

global and stable. It is not necessary to consider the selection of specific species, the choice of

time windows and possible differences in each simulation. As for traditional metrics, we evalu-

ated their ability to anticipate transitions based on multidimensional Langevin simulation tra-

jectories after Gaussian filtering [45] (see Fig I in S1 Text for details). Our goal is to find the

smallest possible κ, after which (i.e. for larger κ) the metrics continue to increase up to the tip-

ping point of collapse. We also noticed that not all species can give accurate warnings in

advance (Fig 5D and see Fig I in S1 Text for details), because most pollinator species (mainly

specialists) suffered earlier extinctions before the intermediate state, as already mentioned in

our multistability analysis (Fig 2C). Previously these species were confirmed to provide valu-

able information in predicting collapse [46, 48]. However, here we present a distinct perspec-

tive that those surviving in the intermediate state (mainly generalists) should be monitored,

and their time series provide relatively accurate and early predictions (see Fig I in S1 Text for

details).

Besides, when κ exhibits nonlinear increase, the predictive effectiveness of RBH remains

significantly better than traditional indicators (Fig J and K in S1 Text). We also explored the

situation when κ exhibits weakly autocorrelated fluctuations. We found that there was no sta-

tistically significant point in the RBH sequence to reject the BDS test (Fig L in S1 Text). This

implies that there won’t be prediction of critical points when the transition does not occur,

indicating that our EWS can to some extent address the issue of false positives.

Global sensitivity analysis for parameters identifies the key role of

pollinators surviving in the intermediate state

To see which parameters are critical to the state transitions in the plant-pollinator network,

we perturbed each parameter by decreasing and increasing 10% from the default value under

which the system exhibits tristability, and assessed the change of transition actions between
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states. What’s more, a strategy for ecological management is pinning the decay rate of the

maximum degree pollinator at zero [32]. It inspires us to individually perturb the parameters

related to this pollinator which survives alone in the intermediate state, denoted by

a∗; b
∗
; k∗; g0

∗. It turns out that the intermediate state is retained after all perturbations except

that rising γ0 generates only high state. Since perturbing the system towards collapse may

cause the disappearance of high state, we quantified the relative change of transition actions

between intermediate and low states when α(P), α(A), γ0 decreases or β(P), β(A), κ, h, δ
increases for simplicity and consistency (Fig 6 left). Likewise, the same analysis is done

between high and intermediate states when α(P), α(A), γ0 increases or β(P), β(A), κ, h, δ
decreases (Fig 6 right).

On the whole, the reciprocal interaction parameters, γ0, δ and κ, have a strong influence on

the evolutionary process. The system significantly shifts to the low state with greater δ, κ or

less γ0 but to the high state with less δ, κ or greater γ0. An unanticipated finding is that sepa-

rately perturbing the relevant parameters of the surviving pollinator (a∗; b
∗
; k∗; g0

∗) has similar

effectiveness compared with perturbations on all species α(A), β(A), κ, γ0 during the transition

between intermediate and low states. This clarifies the conclusions of [32] from a quantitative

perspective, and again reminds us that promoting ecological management of the pollinators

surviving in the intermediate state can effectively slow down the transition to low state so as to

avoid sudden collapse without warning signals. However, as for high-intermediate transition,

the role of this pollinator is relatively diminished. We realized that controlling a single pollina-

tor is not sufficient to restore the system to high state, unless more favorable conditions are

created. We should mention that pollinators surviving in the intermediate state are not always

with larger degrees. Indeed it is more effective to protect these surviving pollinators than

selected pollinators according to degree, discovered in other networks (see Section G, Fig M

and N in S1 Text for details).

Fig 6. Global sensitivity analysis for parameters identifies the key factors. The parameters are perturbed 10% from the default value. The left panel

corresponds to the transition between intermediate and low states, with parameter perturbation in the direction of system collapse, and the right panel

represents the opposite perturbations. α*, β*, κ* and g0
∗ denote perturbations of the only surviving pollinator in the intermediate state on the intrinsic

growth rate, intraspecific competitions, average decay rate and per capita mutualistic strength respectively. Since rising 10% of γ0 makes the system

exhibit high state only, the action is 0 for intermediate to high state transition, but infinity conversely. The corresponding relative changes are -1 and

infinity (denoted as 2.5).

https://doi.org/10.1371/journal.pcbi.1011766.g006
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Necessity of multidimensional models for generating intermediate state

There exists a general paradigm of dimensionality reduction for complex systems [5, 33]. The

reduced model for plant-pollinator network is governed by two-dimensional (2D) dynamic

differential equations, which has an excellent predictive efficacy of tipping points [8]. How-

ever, there is always a tradeoff between more detailed descriptions and more simplified analyz-

ing approaches. Here, we argued for the necessity of multidimensional modelling in plant-

pollinator networks, since we cannot discover the intermediate state in the 2D plant-pollinator

equations by scanning the whole parameter space. We performed a linear stability analysis of

the 2D reduced model in detail.

Firstly, we stated the reduced equations with two variables written in terms of P0 and A0 [8]:

dP0

dt
¼ aP0 � bP02 þ

hgPiA0

1þ hhgPiA0
P0 þ m;

dA0

dt
¼ aA0 � bA02 � kA0 þ

hgAiP0

1þ hhgAiP0
A0 þ m:

ð2Þ

We made the right-hand side of Eq 2 be zero to solve stationary points and obtained simpli-

fied forms with μ� 0. We have (P1, A1) = (0, 0), P2;A2ð Þ ¼ 0; a� k
b

� �
, P3;A3ð Þ ¼ a

b
; 0

� �
, and

P∗;A∗ð Þ ¼ 1

b
aþ

hgPiA0

1þhhgPiA0

� �
; 1

b
a � kþ

hgAiP0

1þhhgAiP0

� �� �
: The linear stability analysis is equivalent to

investigating the Jacobian matrix, in fact, the system is stable if and only if all of Jacobian

eigenvalues are with negative real parts. Because the intrinsic growth rate α is positive, (P1, A1)

and (P2, A2) are always unstable. (P3, A3) is stable when k > aþ
hgAi

a
b

1þhhgAiab
, corresponding to our

so-called low state (see Section H in S1 Text for details).

As for (P�, A�) (P�>0, A�>0), we first point out its explicit solution is two pairs of points:

(P4, A4) and (P5, A5) (assume A5� A4). Specifically, by substituting A0 for P0, A0 satisfies the

following quadratic equation:

q1A02 þ q2A0 þ q3 ¼ 0; ð3Þ

where

q1 ¼ b
2hhgPi þ h2hgPihgAiabþ hbhgPihgAi;

q2 ¼ bðhhgAiaþ bÞ � ahhgPihgAi � hgPihgAiþ

ðk � aÞðhhgPibþ h2hgPihgAiaþ hhgPihgAiÞ;

q3 ¼ ðk � aÞðhhgAiaþ bÞ � hgAia:

Here we focus on the change of κ, and analyses for other parameters are included in Section

H, Fig O and Table B in S1 Text for details. As κ rises from zero, Eq 3’s axis of symmetry shifts

to the left and the product of two roots A4A5 gradually increases to a positive value. A5 gradu-

ally becomes smaller but remains positive, and A4 grows larger from negative to positive, until

they overlap at D ¼ q2
2
� 4q1q3 ¼ 0. If κ keeps soaring, Eq 3 will not exist a real solution.

Therefore, the number of positive roots is from 1 to 2, then back to 1, and finally to 0. At Δ = 0,
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we can directly solve for the specific form of A0:

A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hgAihgPi
3

q

� bhgPi � ahhgAihgPi

hhgAihgPi
2
þ bhhgPi

2
þ ah2hgAihgPi

2
: ð4Þ

We discarded the larger solution of κ because the corresponding calculated A0 is negative.

Besides, (P4, A4) and (P5, A5) become stable under the condition that

p1A02 þ p2A0 þ p3 > 0; ð5Þ

where

p1 ¼ ðbhhgPi þ h2hgPihgAiaþ hhgPihgAiÞ
2
;

p2 ¼ 2ðhhgPibþ h2hgPihgAiaþ hhgPihgAiÞðbþ hhgAiaÞ;

p3 ¼ ðhhgAiaþ bÞ
2
� hgAihgPi:

Considering the negative axis of symmetry, we attained the positive solution of Eq 5 with

ecological meaning:

A0 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hgAihgPi
3

q

� bhgPi � ahhgAihgPi

hhgAihgPi
2
þ bhhgPi

2
þ ah2hgAihgPi

2
: ð6Þ

Interestingly, the right-hand side of Eqs 4 and 6 is exactly the same. Owing to the impact of

κ changes on the system, when Eq 3 has two positive roots, A5 is always stable but A4 is always

unstable, whatever the value of κ. It is also possible to exist only one positive (not multiple)

root A5, which must be stable. So Eq 3 corresponds with a unique stable state (P5, A5) all the

time, namely the high state.

In conclusion, at most two stable states, high state (P5, A5) and low state (P3, A3) mentioned

above, are discovered in the 2D model based on linear stability analysis. It is somewhat surpris-

ing that the intermediate state is not detected here, which makes us lose the opportunity for

deeper analysis of possible mechanisms. Therefore, we propose that a multidimensional model

is necessary for exploring the dynamics in plant-pollinator network, where intermediate state

may play critical roles in state transitions.

Discussion

Transient phenomena in ecology have long aroused wide concern, but the precise underlying

ecological mechanisms have yet to be fully explored [5, 8, 49]. The intermediate state, uncov-

ered by simulating species dynamics in multidimensional systems, reveals a new perspective

concerning the evolution of plant-pollinator networks. For a representative network that

exhibits tristability, we leverage the landscape framework to characterize its relative stability

and transient behaviour [12, 50]. Our major findings include: (i) During the transition from

high to low state, the system tends to go through the intermediate state, discovered both in cal-

culated transition paths within the tristable range and in simulated trajectories under environ-

mental degradation. (ii) The BH, calculated from the landscape, has the best performance in

predicting final collapse compared with traditional metrics based on time series. (iii) The spe-

cies that survive in the intermediate state play a central role in keeping the ecosystem away

from collapse, but a limited role in full recovery.

We propose that the system proceeds through the intermediate state before collapse. At

such a transition state, more than half pollinators suffer extinctions (defined as abundance
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below 1e-3) and the remaining species reluctantly maintain the ecological functionality. Under

fixed parameters within the tristable domain, we discovered the indispensable role of interme-

diate states based on both projected and multidimensional transition paths between attractors

(Fig 2B and 2C). The paths also indicate that collapse first occurs in pollinators, which can

help to guide ecological management. As a non-equilibrium system with non-gradient forces,

the plant-pollinator network is susceptible to external perturbations [51, 52]. The environmen-

tal degradation not only straightforwardly makes some species (mainly pollinators) vulnerable

to extinction [20, 21, 53], but also triggers declines in pollinator abundance for a given net-

work. The latter is modelled by a linear term in the dynamic equations that pollinators satisfy

(Eq 1). For the case of variable parameters, we mainly focused on κ, as well as γ0. Following

previous work [8, 10, 32, 35], we assume that the κ is the same for all pollinators. Considering

κ to be different for each pollinator would result in more complex analysis, which warrants

further investigation. We found that the system goes through the intermediate state either

from the landscape change (Fig 3) or from the trajectory simulation (Fig 5A). The re-emer-

gence of the hysteresis loops reflects the irreversibility of transitions once again. The restora-

tion from the low state requires more favorable conditions (smaller κ) by comparison to

tipping points of collapse, both recovering to intermediate state and to high state (Fig 7).

Resilience is a central concept in ecology [5], and currently we use quantitative tools to por-

tray it. The classic ball and cup explanation intuitively illustrates the difficulty of transitions

between two alternative attractors [44, 54]. The reduced-dimensional approach for landscape

we proposed is essentially a more detailed and adequate description of the system state, where

we selected two interpretable and robust coordinates. Our generalized approach is particularly

applicable to multistable systems, and here the coordinate value can roughly reflect population

changes in plant and pollinator abundance. We conclude that either degrading the environ-

ment or decreasing the reciprocal strength allows the system to collapse along different path-

ways (Fig 3). It depends on specific parameters, for example, larger κ inevitably generates a

low stable state. The reduced landscapes globally portray the change of each attractor, which is

quantified by the BH. BH can quantitatively characterize the stability and resilience of the eco-

system. With changing κ, BH shows consistent tendency with transition action and MFPT

that both are derived from multidimensional models (Fig 4).

We aim to find an EWS for final collapse, allowing for the anticipation of ecosystem col-

lapse, identification of potential biodiversity loss risks, and the implementation of preventive

measures to mitigate the collapse. The well-known critical slowing-down phenomena appear

prior to the phase transition, manifested by increased autocorrelation and variance in species

abundance [45, 55]. Consistent with previous studies [46, 48], we also noticed specialist polli-

nators become extinct sooner, so they are believed to anticipate critical transitions earlier.

However, due to massive extinction of pollinators in the intermediate state, they probably give

false warnings of complete collapse (see Fig I in S1 Text for details). The BH, as a global mea-

sure of landscape, exhibits a nonlinear structure in the pre-collapse period (Fig 5C). Remark-

ably, with particular regard to complete collapse, it has the best early warning effectiveness

than time-series metrics (Fig 5D). In addition, we propose that the pollinators that survive in

the intermediate state, should be monitored as keystone species, which means they enable ear-

lier and more accurate warnings. From a global sensitivity analysis, we pointed out pinning

the relevant parameters of these surviving pollinators can effectively mitigate the collapse, but

it does little to full recovery (Fig 6). Besides, we explained why a multidimensional model is

necessary. The collective behaviors in biological communities can hardly be described by indi-

vidual variable, since it inhibits understanding of potential biological mechanisms [56]. Based

on the theory of linear stability, we underlined that the heterogeneity in species interactions

should be fully considered, which is necessary for the discovery of intermediate states.
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Overall, the intermediate state suggests that, apart from sudden ecosystem collapse after

crossing a tipping point, there remains another possibility that the collapse is a gradual process.

It may pass through a ‘bridge’, which has been found and experimentally confirmed in micro-

bial communities [56] and gene regulation networks [57, 58]. Regarding the reasons for the

emergence of intermediate states here, inspired by the gene regulatory network studies where

positive feedbacks promote the emergence of multistability [59], we argue that plant-pollinator

system exhibits the intermediate state due to the presence of more positive feedback loops in

the multidimensional model.

Remarkably, the BH quantified from the landscape, serves as a prospective EWS to antici-

pate final collapse. We need to stress that, currently the barrier height is obtained from the

Fig 7. Changes in ecosystem state from ongoing environmental degradation illustrated by potential energy landscape. The global decay in

pollinators caused by the damage results in landscape topography changes, and further leads to transitions between stable states. The ecosystem state is

represented by the value of plant PC1, and the true potential energy is obtained from actual simulations. The phase diagram versus κ is also shown.

https://doi.org/10.1371/journal.pcbi.1011766.g007
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quantified landscape, which requires a dynamical model. However practically, what we are

provided with is the raw experimental or observational data, which requires us to reconstruct

the landscape according to the data without the need for prior model assumptions. In princi-

ple, the landscape can be obtained from the observational time series data through the collec-

tion of the joint statistics or using other data-driven approaches [60, 61]. By integrating data

collected from multiple plots with frequent sampling [53, 62, 63], we can obtain available sam-

ples to reconstruct the landscape. Just as applying time windows to calculate traditional indica-

tors, we can estimate the landscape using observational data of each species within the time

window. By sliding the time window along long-term trajectories, we can separately recon-

struct the landscape at multiple time points, and then calculate their BH to achieve early

warning.

Except the typical trisable state case, we also studied different network scenarios for consid-

ering the heterogeneity of the reciprocal interaction in different networks (see Section I in S1

Text for details). Our claims regarding BH as EWS and indispensable role of species in inter-

mediate states also hold for other tristable networks (see Fig G, M, P-U and Tables C, D in S1

Text for details) and tetrastable networks (see Fig H, N and Table E in S1 Text for details). The

landscape and transition path approach provides a general framework to study stochastic tran-

sition dynamics in ecosystems, and our results help to develop better management strategies to

achieve environmental sustainability.

Methods

Model of plant-pollinator mutualistic networks

We assume that an ecological network consists of N = NP + NA species in total, including NP

plants and NA pollinators. All parameters in Eq 1 except γ are set to be node-independent

(except for the perturbations in global sensitivity analysis). The intrinsic growth rate a
ðPÞ
i ða

ðAÞ
j Þ

excludes the effects of mutualism and competitions. We regard the intraspecific competitions

b
ðPÞ
ii ðb

ðAÞ
jj Þ are substantially stronger than the interspecific competitions b

ðPÞ
ik ðb

ðAÞ
jm Þ [9, 35]. The

environmental degradation causes global pollinator decline expressed through average decay

rate κ. The mutualistic interaction is modelled through the nonlinear functional response as a

particular case of the Hill function with the power exponent of 1. If both plants and pollinators

exhibit high abundance, the saturation effect will be manifested. It is denoted by half-satura-

tion constant h and also interpreted as handling time [64], which corresponds to Holling sec-

ond type functional response [65]. The reciprocal strength g
ðPÞ
jn is similarly defined as

g
ðPÞ
jn ¼ g0εjn=½g

ðAÞ
j �

d
. Here εjn indicates whether a link exists between the jth pollinator and the

nth plant, gðAÞj is the degree of the jth pollinator. Meanwhile, the tradeoff between reciprocal

intensity and number of interactions should be taken into account by δ(0� δ� 1). For δ = 0,

all links share the same average strength without considering network topology. For δ = 1, the

strength is strongly dependent upon the connection number, when it is weakened in the spe-

cies with more links. Here we choose δ = 0.5 which follows the same value as previous work

[8, 10, 32]. The immigration rate μ is close to zero and neglected in our network dynamics.

Landscape quantified through Truncated Moment Equation (TME)

The evolution trajectory of ecosystem can be described by the Langevin equation, in which the

drift term does not depend explicitly on time t and the random term ζ is included to depict the
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fluctuation:

dxðtÞ
dt
¼ f ðxÞ þ ζðtÞ;

where xðtÞ ¼ ½P1; . . . ; PNP
;A1; . . . ;ANA

�
T
, f ðxÞ ¼ ½F1; . . . ; FNP

;G1; . . . ;GNA
�
T

corresponding to

the right-hand side of Eq 1, and ζ = [ζ1(t), . . ., ζN(t)]T. We preset hζ(t)i = 0 since nonzero

mean can be absorbed into f(x), as well as the element of covariance matrix hζi(t), ζj(t0)i =

2dδijδ (t − t0) in which no correlation is revealed between different times or components. d
represents the diffusion coefficient (noise intensity), δij is an indicator function and δ
denotes the Dirac Delta function. Furthermore, as x(t) has continuous sample paths, Fokker-

Planck equation (FPE) could also reflect the dynamic change of probability as an equivalent

form. The probability density function p(x, tjx0, t0) satisfies

@tpðx; t j x0; t0Þ ¼ �
X

i

@i½fiðxÞpðx; t j x0; t0Þ� þ d
X

i;j

@i@ j½pðx; t j x0; t0Þ�: ð7Þ

We choose the initial condition given by p(x, t0 j x0, t0) = δ(x − x0) and the boundary con-

dition as a reflecting barrier, i.e.~n � Jðx; tÞ ¼ 0 for x 2 boundary, where~n is the normal vec-

tor of the boundary, and the component of probability current J is defined as Ji(x, t) = fi(x)

p(x, t j x0, t0) − d ∑j @jp(x, t j x0, t0). It guarantees zero net flow of probability across the

boundary.

On account of the nonlinear term in drift force, it is unrealistic to derive the analytic solu-

tion of Eq 7. Based on the O expansion theory [66, 67], we have developed a truncated moment

equation approach to approximately solve FPE, where we ignore the impact of the third and

higher order moments on probability function under the condition of d<< 1. Hence the

actual evolution of system is approximated by Gaussian distribution along a deterministic tra-

jectory, whose mean xðtÞ and covariance matrix S(t) satisfy the following ordinary differential

equations [13, 15, 68]:

_x ðtÞ ¼ f ðxÞ;
_SðtÞ ¼ SðtÞATðtÞ þ AðtÞSðtÞ þ 2d � I;

in which A(t) is the Jacobian of f(x) at x ¼ xðtÞ, whose element is calculated by

AijðtÞ ¼ @

@xj
fiðxÞ

�
�
�
x¼xðtÞ

. Thus we obtain the approximate solution of Eq 7:

pðxðtÞ; tÞ ¼
exp � 1

2
ðxðtÞ � xðtÞÞTS� 1ðtÞðxðtÞ � xðtÞÞ

� �

ð2pÞ
N
2 jSðtÞj

1
2

:

Then each attractor’s stationary density pss(x) is acquired when convergence is reached at

sufficiently large t. Furthermore, for a system with multistability, we will assume that the global

stationary density function is a sum of weighted Gaussian mixtures, i.e. pssðxÞ ¼
PM

j¼1
�

jpj
ssðxÞ;

where pj
ssðxÞ is the stationary solution of xj, its weight ϕj is evaluated by the frequency after

sampling multiple random initial conditions, and M is the number of stable states. As
PM

j¼1
�

j
¼ 1, pss(x) is also a probability density function. Ultimately, the potential energy land-

scape is quantified through U = −ln pss(x) [13, 15].
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Generalized dimension reduction approach for landscape

First, we denote plants by P ¼ ½P1; . . . ; PNP
�
T

and pollinators by A ¼ ½A1; . . . ;ANA
�
T
. After the

TME method, we obtain the multidimensional stationary probability density function

pssðP;AÞ ¼
PM

j¼1
�

jpj
ssðP;AÞ; where pj

ssðP;AÞ follows a multivariate Gaussian distribution N
(μj(P, A), Sj(P, A)).

Through integrating A or P, we get the marginal probability density function of P or A.

To avoid redundancy, we write X to express P or A. So pssðXÞ ¼
PM

j¼1
�

jpj
ssðXÞ, mðXÞ ¼

PM
j¼1
�

j
mjðXÞ and SðXÞ ¼

PM
j¼1
�

j
ðSjðXÞ þ mjðXÞmjðXÞTÞ � mðXÞmðXÞT (see Section C in S1

Text for details). Then we use the singular value decomposition of S(P) and S(A) indepen-

dently, with the aim of finding their own first PC. It is also referred to as the eigenvector cor-

responding to the largest eigenvalue and written as w1(P) and w1(A). Afterwards, we project

the original high-dimensional system onto the two new directions, among which the x-axis

is defined as z1 = w1(P)TP and the y-axis is defined as z2 = w1(A)TA. Both of them obey

Gaussian distributions which are calculated from z1 * N(w1(P)Tμ(P), w1(P)TS(P)w1(P))

and z2 * N(w1(A)Tμ(A), w1(A)TS(A)w1(A)) respectively. In other words, if we denote W ¼

w1ðPÞ 0NP�1

0NA�1 w1ðAÞ

" #

N�2

and z = [z1, z2], we can attain the joint probabilistic density function

after dimension reduction, which is a two-dimensional Gaussian distribution z * N(WTμ
(P, A), WTS(P, A)W). The reduced energy landscape can be computed from U = −ln (pz)

accordingly.

This framework is particularly powerful for systems in which variables from two classes

separately satisfy two different forms of equations, while equations of the same type are ful-

filled for variables within class. An advantage of this approach is that new coordinates has their

concrete practical meaning, since x-axis is a linear combination of plants and y-axis is a linear

combination of pollinators. Instead of generating the second PC which contributes little to the

total variance, our approach is more reliable and valid, and weights in coordinates remain rela-

tively robust in our searching parameters. Simultaneously, we further confirm that the first PC

is significantly superior to other PCs in S(P), S(A) and S(P, A) (see Fig D in S1 Text for

details).

The transition action calculation

The transition action between xi and xj quantitatively characterizes the transition feasibility

from one attractor to another. With specified final time T, we denote a transition path by

xijðtÞ ¼ ½xij
1ðtÞ; . . . ; xij

NðtÞ�
T

for t 2 [0, T], which follows the boundary conditions xij(0) = xi and

xij(T) = xj. Then, for each path, its transition action is defined as

Sij xijð Þ ¼
1

2

Z T

0

�
�
�
�
�

dxij
1ðtÞ
dt

; . . . ;
dxij

NðtÞ
dt

� �T

� f xijðtÞð Þ

�
�
�
�
�

2

2

dt:

According to the Wentzell-Freidlin theory [69], the action is proportion to the negative log-

arithm of the probability of x(t). Therefore, all we need to do is to minimize the transition

action over all possible paths in the original high-dimensional system. The adaptive minimum

action method [70, 71] is used to optimize this problem.
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