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ABSTRACT 
 

In the evolving landscape of industrial control systems (ICS), the sophistication of cyber threats has 
necessitated the development of advanced anomaly detection mechanisms to safeguard critical 
infrastructure. This study introduces a novel anomaly detection model based on the Isolation Forest 
algorithm, tailored for the complex environment of ICS. Unlike traditional detection methods that 
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often rely on predefined thresholds or patterns, our model capitalizes on the Isolation Forest's ability 
to efficiently isolate anomalies in high-dimensional datasets, making it particularly suited for the 
dynamic and intricate data generated by ICS. Leveraging the HAI dataset, which encompasses 
operational data from a realistic ICS testbed augmented with a Hardware-In-the-Loop (HIL) 
simulator, this research demonstrates the model's effectiveness in identifying both known and novel 
cyber threats across various ICS components. Our findings reveal that the Isolation Forest-based 
model outperforms traditional anomaly detection techniques in terms of detection accuracy, false 
positive rate, and computational efficiency. Furthermore, the model exhibits a remarkable ability to 
adapt to the evolving nature of cyber threats, underscoring its potential as a robust tool for 
enhancing the security posture of ICS. Through a detailed analysis of its application in detecting 
sophisticated attacks represented in the HAI dataset, this study contributes to the ongoing 
discourse on improving ICS security and presents a compelling case for the adoption of machine 
learning-based anomaly detection solutions in industrial settings.  
 

 
Keywords: Anomaly detection; industrial control systems (ICS, isolation forest algorithm, cyber-

physical systems (CPS); hardware-in-the-loop (HIL) simulation; adaptive threat detection. 
 

1. INTRODUCTION  
 
In the modern era, Industrial Control Systems 
(ICS) have emerged as the backbone of critical 
infrastructure, enabling the automation and 
efficient management of industrial processes 
across a diverse range of sectors. These 
systems integrate devices, networks, and 
controllers into cohesive frameworks that control 
complex operations from power generation to 
water treatment and transportation systems [1]. 
The evolution of ICS has been pivotal in 
advancing operational efficiency, reliability, and 
safety in industrial operations, making it an 
indispensable element of contemporary society. 
 
At the core of ICS architecture are various 
control systems, including but not limited to 
Supervisory Control and Data Acquisition 
(SCADA) systems and Distributed Control 
Systems (DCS). SCADA systems are designed 
to collect and analyze data in real-time, 
facilitating remote monitoring and control over 
large geographical areas [2]. This capability is 
crucial for utilities and critical infrastructures, 
such as power grids and water distribution 
networks, where operational integrity and 
reliability are paramount. On the other hand, 
DCS are typically employed in manufacturing 
plants and process industries, like chemical 
processing and oil refining, to regulate production 
processes and ensure consistency and quality. 
These systems' distributed nature allows for 
centralized control room management while 
supporting local process control, enhancing both 
operational flexibility and system redundancy [3]. 
 
The intricate networks and systems that 
comprise Industrial Control Systems are not just 

critical; they are the lifelines of modern 
infrastructure, supporting everything from 
electricity distribution to water purification and 
transportation. The inherent complexity and 
interconnectedness of these systems mean that 
a single point of failure can trigger a cascade of 
failures across the network, leading to 
widespread operational disruption, economic 
losses, and potential harm to public safety and 
the environment. This domino effect underscores 
the paramount importance of fault detection 
within ICS. Fault detection in ICS is not merely 
about identifying malfunctions or breakdowns in 
hardware; it's about recognizing any deviation 
from normal operation that could indicate a 
potential security threat or system vulnerability 
[4]. The capability to detect these faults promptly 
ensures that corrective measures can be taken 
before minor issues escalate into major system 
failures or, worse, full-blown disasters. However, 
the challenge of fault detection in such complex 
and dynamic environments is significant. 
Traditional security mechanisms, while 
foundational to system security, offer limited 
protection against sophisticated cyber threats. 
 
The integration of ICS into critical infrastructures 
signifies their importance but also highlights the 
potential risks and vulnerabilities associated with 
their operation. The reliance on digital networks 
and computer-based control logic exposes these 
systems to cyber threats, ranging from data 
breaches to targeted attacks aimed at disrupting 
industrial operations [5]. The consequences of 
such incidents are far-reaching, potentially 
leading to operational downtime, economic 
losses, environmental damage, and even 
endangering human lives. Therefore, the security 
of ICS is not just a technical issue but a national 
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security concern, necessitating robust and 
resilient protective measures. In light of the 
increasing complexity and sophistication of cyber 
threats, traditional security mechanisms such as 
firewalls, intrusion detection systems, and regular 
patching practices, though necessary, are no 
longer sufficient to guarantee the security of ICS. 
The dynamic and evolving nature of cyber 
threats requires a proactive and adaptive 
approach to ICS security, emphasizing the 
importance of advanced anomaly detection 
techniques capable of identifying and mitigating 
previously unknown threats [6].  
 
Conventional security measures, such as 
authentication protocols and encryption, are 
designed to secure networks and systems 
against unauthorized access. While these 
measures are crucial for the foundational security 
of ICS, they are not infallible. Cyber attackers 
continually evolve their strategies and methods, 
developing malware and other malicious 
activities that can bypass these traditional 
defenses. The static nature of such conventional 
security mechanisms means they are often ill-
equipped to identify or mitigate novel or 
sophisticated attacks that do not match known 
threat patterns. Moreover, the reliance on 
authentication and encryption does little to 
address the insider threat, where individuals with 
legitimate access intentionally or unintentionally 
cause harm to the system. This vulnerability 
highlights the need for security measures that go 
beyond perimeter defense and access control, 
advocating for a more dynamic and adaptive 
approach to ICS security. In response to the 
limitations of traditional security measures, 
anomaly detection emerges as a critical 
component of modern ICS security strategies. 
Unlike conventional methods that focus on 
preventing unauthorized access, anomaly 
detection aims to identify unusual patterns                 
or behaviors within the system that could     
indicate a security threat or system malfunction 
[7]. 
 
The isolation forest algorithm represents a 
significant advancement in the field of anomaly 
detection [8]. This algorithm is particularly well-
suited for identifying outliers in data, operating on 
the principle that anomalies are data points that 
are few and different. By isolating these points, 
the algorithm effectively identifies potential 
threats with a high degree of accuracy and 
efficiency. The isolation forest algorithm's ability 
to detect anomalies without the need for a 
detailed profile of normal operation makes it an 

invaluable tool for enhancing ICS security. Its 
implementation can serve as a dynamic and 
adaptive layer of defense, capable of detecting a 
wide range of threats, from sophisticated cyber-
attacks to subtle system malfunctions that 
conventional measures might overlook. As 
industries continue to integrate advanced 
technologies and digital solutions into their 
operational frameworks, the role of ICS in 
managing and controlling industrial processes 
becomes increasingly critical. The need to 
ensure the security and reliability of these 
systems is paramount, driving the development 
of innovative security solutions designed to 
protect critical infrastructures from the ever-
present threat of cyber-attacks [9]. The adoption 
of anomaly detection models, such as the 
Isolation Forest-Based Anomaly Detection 
Model, offers a promising path forward, 
enhancing the resilience of ICS against a wide 
range of cyber threats and ensuring the 
continued safe and efficient operation of critical 
infrastructures worldwide [10].  
 

The integration of isolation forest algorithm, into 
ICS security frameworks represents a paradigm 
shift in how threats are identified and mitigated. 
By focusing on the detection of anomalies as 
indicators of potential threats, this approach 
offers a more flexible and responsive strategy for 
securing complex and dynamic industrial control 
systems. The implementation of such advanced 
detection methods complements traditional 
security measures, providing a comprehensive 
defense mechanism that enhances the resilience 
of ICS against both known and emerging cyber 
threats. 
 

Incorporating anomaly detection into ICS security 
not only addresses the limitations of conventional 
mechanisms but also introduces a proactive 
stance in system defense. This proactive 
approach is crucial for anticipating and mitigating 
threats before they can cause significant 
damage, ensuring the continued safe and 
efficient operation of critical infrastructures. As 
such, the exploration and adoption of isolation 
forest-based anomaly detection models                     
stand at the forefront of efforts to fortify ICS 
against the multifaceted landscape of cyber 
threats. 
 

Implementing anomaly detection in ICS faces 
significant challenges, particularly in the 
development and training of machine learning 
models. A critical obstacle is the difficulty in 
generating labeled datasets that are essential for 
training these models. In real-world ICS 
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environments, simulating cyber-attacks or 
system failures to create these datasets poses a 
considerable risk of causing actual system 
failures, thereby compromising the integrity and 
safety of the systems involved.  
 

A novel solution to this challenge is the use of 
Hardware-in-the-Loop (HIL) simulation. HIL 
simulation integrates real system components 
with simulated environments, allowing for the 
safe generation of labeled datasets that 
accurately reflect various operational scenarios, 
including attack patterns. This approach 
mitigates the risks associated with direct testing 
on operational systems, providing a robust 
platform for developing and refining anomaly 
detection models without compromising system 
integrity.  
 

The evolving domain of Industrial Control 
Systems (ICS) security has garnered significant 
research interest, particularly in the development 
of robust anomaly detection mechanisms to 
mitigate the sophisticated cyber threats these 
systems face. The literature presents various 
approaches to this challenge, each contributing 
unique insights and methodologies pertinent to 
the field. 
 

Zou et al. provided a practical perspective 
through a real case study in an industrial 
environment, highlighting the process of virus 
spread and worm propagation [11]. Their work 
emphasized the effectiveness of anomaly 
detection techniques in identifying malicious 
activities and aiding security administrators in 
enhancing ICS security. This case underscores 
the necessity of practical, real-world validations 
for theoretical models and approaches. Li et al. 
addressed the scarcity of attack data in power 
ICS by proposing a cross-domain anomaly 
detection method [3]. Utilizing the TrAdaBoost 
algorithm, they successfully transferred 
knowledge from related domains to the power 
ICS context, achieving lower error rates 
compared to using Long Short-Term Memory 
(LSTM) networks alone. Their approach is 
particularly relevant in scenarios where historical 
attack data is insufficient or non-existent. Wang 
et al. focused on the in-depth detection of 
abnormal behavior in power ICS, capturing and 
analyzing protocol-specific data packets to detect 
anomalies [12]. Their methodological framework 
for syntactic and semantic analysis, along with 
business command analysis, provides a 
comprehensive approach to identifying irregular 
behaviors and traditional network attacks such as 
malware and Trojan horses. 

Zhao et al. introduced an anomaly detection 
model for ICS that combines the Gaining-sharing 
knowledge (GSK) algorithm with LSTM networks 
[13]. They utilized the GSK algorithm for feature 
selection, enhancing the accuracy and reducing 
the computational burden of the LSTM classifier. 
Moreover, they refined the GSK algorithm with 
the Taguchi method to optimize feature selection, 
further improving the model's efficiency and 
robustness as demonstrated on a real gas 
pipeline dataset. Zhang et al. proposed a control 
flow anomaly detection algorithm that operates 
by examining the business programs' control flow 
within ICS [14]. By creating a standard path set 
and matching current flows against this 
benchmark, their Control Flow Checking Path 
Matching (CFCPM) algorithm effectively detects 
deviations indicative of system anomalies, 
highlighting the algorithm's potential in 
recognizing concealed intrusion attacks. 
 
The collective insights from these studies inform 
the current research, which seeks to enhance 
ICS security through an Isolation Forest-Based 
Anomaly Detection Model. The literature 
underscores the importance of addressing the 
unique challenges of ICS environments, such as 
high-dimensional datasets and the need for real-
time detection capabilities. The proposed model 
builds on these foundations, aiming to deliver a 
solution that is not only accurate and efficient but 
also capable of adapting to the dynamic threat 
landscape of ICS. This model serves as a 
second layer of defense, complementing 
traditional security measures with a dynamic and 
adaptive approach to threat detection. This 
model leverages the isolation forest algorithm's 
efficiency in identifying data anomalies, offering a 
promising solution to detecting sophisticated 
cyber threats in ICS environments. The adoption 
of HIL simulation for generating labeled datasets 
enables the training of supervised machine 
learning models under realistic yet controlled 
conditions, ensuring the reliability and 
effectiveness of the anomaly detection model 
[15]. By incorporating data from various ICS 
components and levels, the proposed model 
achieves a comprehensive understanding of 
normal and anomalous system behaviors, 
enhancing its accuracy and sensitivity in threat 
detection. 
 
The motivation behind this research is rooted in 
the growing vulnerability of ICS to cyber-attacks, 
including insider threats and stealthy, 
sophisticated attacks that conventional security 
measures fail to address. The critical nature of 



 
 
 
 

Mahmud et al.; J. Eng. Res. Rep., vol. 26, no. 3, pp. 161-173, 2024; Article no.JERR.114125 
 
 

 
165 

 

ICS and their role in supporting essential 
services and infrastructure makes them attractive 
targets for cybercriminals, posing significant risks 
to national security, public safety, and economic 
stability. The development of advanced anomaly 
detection models, such as the proposed Isolation 
Forest-Based Anomaly Detection Model, is 
driven by the urgent need to enhance the 
resilience of ICS against these evolving cyber 
threats, ensuring the continuity and reliability of 
critical infrastructures. The remainder of this 
paper is organized as follows: Section 2 
describes the model architecture, including the 
HAI dataset, the Isolation Forest algorithm, and 
the evaluation metrics. Section 3 discusses the 
implementation of ICS test bed and data forming.  
Section 4 presents the results of our 
experiments, performance analysis. Finally, 
Section 5 concludes the paper with a summary of 
our contributions and the broader significance of 
our work. 
 

2. MODEL ARCHITECTURE  
 

2.1 Dataset Analysis  
 

In Fig. 1. presented illustrates a comprehensive 
method for securing Industrial Control Systems 
(ICS) against cyber threats through advanced 
data analysis and machine learning. It begins 
with data collection from SCADA systems [16] 
and Hardware-in-the-Loop (HIL) simulations, 
creating a rich dataset that includes both normal 
operational data and simulated anomaly events. 
This dataset undergoes data engineering to 
refine features and normalize the data scale, 
ensuring optimal input for model training. 
 

Isolation algorithm then trained on this curated 
dataset. The trained models are tasked with 
classifying system behavior into normal or 
malicious activities, enhancing the ICS's ability to 
detect and respond to anomalies and potential 
cyber threats effectively. This structured 
approach leverages the strengths of both 
empirical data and simulated scenarios to bolster 
the ICS's defensive capabilities without 

compromising the system's operational integrity. 
This open access dataset is available in [17]. 
 

2.2 Feature Engineering  
 

The critical task of feature selection for Machine 
Learning Intrusion Detection System within an 
Industrial Control System environment [18], we 
adopted a methodical approach to isolate the 
most significant predictors for our model. Our 
methodology was anchored in the utilization of a 
filter-based feature selection technique, 
leveraging the Pearson correlation coefficient as 
a metric to discern the linear relationship 
between potential features and the target 
variable. This step was instrumental in identifying 
features with a strong correlation to the target, 
thereby enhancing the predictive power of the 
model while concurrently streamlining 
computational efficiency to a vital consideration 
for real-time application. To obviate the issue of 
multicollinearity and the inclusion of redundant 
data, features exhibiting high inter-correlations 
were either amalgamated or the least correlated 
ones with respect to the target were excluded, 
contingent on their correlation coefficients. 
Further, we implemented the MinMaxScaler for 
data normalization, ensuring that the feature 
values were proportionately scaled within a 
bounded range, thus facilitating a consistent and 
expedient learning process. This meticulous 
selection and scaling of features poised our 
model to accurately discern between normal 
operations and potential security breaches, 
ensuring robustness and agility in our anomaly 
detection mechanism. 
 

2.3 Isolation Forest Algorithm 
 
The Isolation Forest, an ensemble method, 
distinguishes itself by isolating anomalies instead 
of profiling normal data points. Its primary 
advantage lies in the minimal requirement of 
preprocessing and its inherent speed, which is 
crucial for real-time anomaly detection in ICS 
[19].

 

 
 

Fig. 1. Data analysis flow diagram 
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The algorithm operates on the principle of 
recursive partitioning. It constructs numerous 
random decision trees, termed 'isolation trees' or 
'i-trees', to isolate observations. The core idea is 
that anomalies are few and different and thus 
easier to isolate from the rest of the sample. An 
isolation tree is grown by randomly selecting a 
feature and then randomly selecting a split value 
between the maximum and minimum values of 
the selected feature. This partitioning process 
continues recursively until each observation is 
isolated, or until the tree reaches a predefined 
limit [8]. 
 

The path length from the root node to the 
terminating node serves as a measure of 
normality; shorter paths indicate anomalies. For 
a dataset 𝐷, with 𝑛 samples, an isolation tree 𝑖𝑇 

is built on a random subset of data of size 𝜓, and 
the process is repeated to create an ensemble of 
t trees. The anomaly score is computed as (1): 
 

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑛)                                          (1) 
  

where x is the instance to be scored, 𝐸(ℎ(𝑥)) is 

the average path length of 𝑥 over the forest of 
isolation trees, and 𝑐(𝑛)  is the average path 
length of unsuccessful search in a Binary Search 
Tree (BST) given by (2): 
 

𝑐(𝑛) = 2𝐻(𝑛 − 1) −
2(𝑛−1)

𝑛
                           (2) 

 

Here, 𝐻(𝑖) is the harmonic number and can be 

estimated by 𝑙𝑛(𝑖) + 0.5772156649  (Euler's 
constant). Anomalies are then determined based 
on a threshold set on the anomaly score. 
 

In our model, the Isolation Forest algorithm was 
trained and tuned to optimize for both recalls, to 
minimize the number of missed detections (false 
negatives), and precision, to minimize the 
number of false alerts (false positives), which are 
particularly disruptive in an ICS context. The 
mathematical robustness of the algorithm 
combined with its computational efficiency makes 
it an excellent candidate for real-time anomaly 
detection in complex and data-intensive 
environments such as ICS. 
 

2.4 Performance Evaluation Metrics  
 

For the performance evaluation of the Isolation 
Forest algorithm within the ICS anomaly 
detection framework, a suite of metrics to provide 
a comprehensive assessment of the model's 
effectiveness. These metrics were chosen to 
capture various aspects of model performance, 
including its accuracy in predicting anomalies, 

the rate of false positives, the model's sensitivity, 
and its overall error rate [20]. 
 

2.4.1 Accuracy 
 

This metric assesses the overall correctness of 
the model and is calculated as the ratio of 
correctly predicted instances (both normal and 
anomalous) to the total number of instances. The 
formula is given by (3): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                 (3) 

 

2.4.2 Precision 
 

Often referred to as the positive predictive value, 
this metric evaluates the proportion of true 
positive predictions in all positive predictions. It is 
crucial for determining the reliability of the 
anomaly detection in ICS, where false positives 
can be costly. Precision is defined as (4): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                      (4) 

 
2.4.3 Recall (sensitivity or true positive rate) 
 

This measures the model's ability to correctly 
identify all the actual anomalies. High recall is 
necessary for ICS to ensure that no actual threat 
goes unnoticed. It is calculated by (5): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                               (5) 

 

2.4.4 F1 score 
 

The F1 Score is the harmonic mean of precision 
and recall, providing a balance between the two 
in cases where an even trade-off is desired. It is 
particularly useful when the class distribution is 
uneven. The F1 score is computed as (6): 
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                           (6) 

 

3. RESULTS AND DISCUSSION 
 

The Fig. 2 presents a Correlation Matrix, a 
quantitative tool that displays the correlation 
coefficients between variables in a dataset, 
indicating the degree to which they are linearly 
related. Each cell in the matrix shows the 
correlation coefficient between two variables, 
ranging from -1 to 1. A value of 1 implies perfect 
positive correlation, meaning as one variable 
increases, the other does likewise. A value of -1 
indicates a perfect negative correlation, where an 
increase in one variable corresponds to a 
decrease in the other.  
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A value of 0 suggests no linear correlation. In this 
matrix, shades of blue represent the strength of 
correlation, with darker shades indicating 
stronger relationships. For example, variables 
P1_B2016 and P1_B4005 show a very high 
positive correlation (0.94), hinting that they may 
change together, while P1_B3004 and 
P1_B3005 exhibit almost no correlation (-0.07), 
suggesting no linear relationship in their 
changes. 

 

The variable labeled 'Attack' appears to have 
little to no linear correlation with the other 
variables, as indicated by its predominantly light 
shading. This matrix is crucial for identifying 
relationships within data, which can inform 
feature selection for machine learning models, 
particularly in contexts such as ICS security 
where understanding variable relationships is key 
to detecting anomalies. 
 

A The confusion matrix generated from the 
model evaluation present in Fig.3., a compelling 
narrative of the model's efficacy. A total of 
85,515 normal instances were correctly classified 
(true positives), indicating a robust capability of 
the model to recognize the standard operation 

patterns of the ICS. Notably, there were no 
instances of normal behavior misclassified as 
anomalies (false positives), reinforcing the 
model's precision. 
 

However, the model did not perform flawlessly in 
identifying all anomalous instances. The model 
misclassified 885 anomalies as normal behavior, 
                 f     p  v          h       ’  
sensitivity to subtle irregularities. The absence of 
true negatives in the confusion matrix indicates 
that the model did not correctly identify any of the 
anomalous instances. This result could point to a 
potential overfitting to the normal instances or a 
need for further refinement of the model's 
parameters to enhance its detection sensitivity.  
 

Fig. 4, represents the anomaly score of the 
dataset. There are two sets of data points 
represented by different colors: green and red, 
which are labeled "Normal" and "Anomaly" 
respectively. The green line at the very bottom 
indicates a normal state that is constant over 
time. The red points are scattered above, 
presumably indicating moments where 
anomalies were detected over the given time 
period. 

 

 
 

Fig. 2. Correlation matrix 
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Fig. 3. Confusion matrix 
 

These anomalies are all scored at a state of 1, 
which might indicate a binary state where 1 
represents the presence of an anomaly. And 
major 7 point are representing the attack in the 
system. Meaning 7 malicious activities are 
formed. 
 

In the Fig. 5, specifically examining the heat-
exchanger outlet pressure, the Isolation Forest 
algorithm exhibited notable efficacy. The time-
series data, represented graphically, illustrates 
the pressure readings over a continuous 
operational period marked against timestamps. 
The green line depicts the normal operational 
state of the pressure measurements, labeled as 
P1_PIT01. Superimposed upon this, in red, are 
the instances identified as anomalies by the 
model. The analysis detected a discernible 
pattern of sporadic spikes in pressure, which 
significantly deviated from the established norm. 
These deviations were systematically classified 
as anomalies, as indicated by the red markers. 
The frequency and magnitude of these outliers 
are critical, as they may signify potential 
malfunction or external interference within the 
system. It is observed that the pressure readings 
occasionally surged beyond the 1.5 bar 
threshold, a parameter we had previously 
determined as indicative of anomalous behavior 
based on the operational characteristics of the 
heat exchanger. 
 

In Fig. 6, the Isolation Forest algorithm's 
performance is showcased through the analysis 

of the heat-exchanger outlet pressure over time. 
The graphical representation of the data features 
a blue line that tracks regular pressure levels, 
labeled P1_B2016, juxtaposed with red markers 
that the algorithm has identified as anomalies. 
These marked anomalies correspond to 
noticeable and intermittent pressure spikes that 
stray from the normal pattern. Such deviations 
are significant as they could signal possible 
system malfunctions or security breaches. 
Notably, instances where the pressure exceeded 
the pre-established threshold of 1.4 bar were 
automatically flagged by the model, aligning with 
our defined criteria for abnormal behavior linked 
to the system's thermal output operations. 
 

The temporal distribution of the anomalies did 
not suggest a periodic or systematic occurrence, 
thereby eliminating the likelihood of these events 
being attributed to regular maintenance or 
predictable operational adjustments. Such 
irregularity in the distribution underscores the 
necessity for real-time monitoring and immediate 
response to maintain system integrity and safety. 
The result highlights the Isolation Forest 
algorithm's strength in real-time anomaly 
detection in ICS environments. By promptly 
identifying these pressure aberrations, the model 
serves as a critical component of a proactive ICS 
monitoring system, aiming to mitigate potential 
risks associated with pressure deviations in the 
heat-exchanger mechanism. This effective 
detection of anomalies underscores the potential 
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of employing such machine learning techniques 
for the enhancement of predictive maintenance 
and the prevention of unscheduled downtimes in 
industrial settings.  
 

In evaluating the performance metrics of the 
Isolation Forest algorithm applied within our 
industrial control system context, the results 
affirm a high level of accuracy and precision. The 
model achieved an accuracy rate of 98.98%, 

illustrating its effectiveness in correctly 
classifying the vast majority of data points. 
P  c     ,            f  h       ’   b         
return relevant instances, stood at an exceptional 
99.98%, indicating that almost all instances 
predicted as anomalies were indeed true 
anomalies. This precision is critical in industrial 
settings, as false positives can lead to 
unnecessary and costly operational interruptions. 

 

 
 

Fig. 4. Anomaly Score 
 

 
 

Fig. 5. Anomaly points in Heat-exchanger outlet pressure 
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Fig. 6. Anomaly points in Pressure demand for thermal power output 
 

Furthermore, the recall of the model, also known 
as sensitivity, reached 99.98%, demonstrating 
the model's ability to identify nearly all true 
anomalies. This suggests that the Isolation 
Forest algorithm is highly effective in capturing 
the anomalous events that could signify potential 
system risks or failures. The F1 Score, which is 
the harmonic mean of precision and recall, was 
also calculated to be 99.98%, confirming the 
model's balanced performance in both precision 
and recall. 
 
These metrics collectively highlight the model's 
robustness in anomaly detection within an ICS 
environment. The high precision minimizes the 
risk of false alarms, while the high recall ensures 
that actual threats are not overlooked, 
contributing to the system's overall reliability and 
safety. With such performance, the Isolation 
Forest algorithm stands out as an exemplary 
method for real-time anomaly detection in 
complex industrial systems, offering a significant 
enhancement to the predictive maintenance 

protocols and aiding in the prevention of 
unplanned operational downtimes. 

 
The Receiver Operating Characteristic (ROC) 
curve depicted in the Fig. 7. The curve traces the 
trade-off between the True Positive Rate (TPR, 
on the y-axis) and the False Positive Rate (FPR, 
on the x-axis) at various threshold settings. The 
TPR, also known as recall or sensitivity, 
measures the proportion of actual anomalies that 
the model correctly identifies. The FPR, 
inversely, gauges the proportion of normal 
instances that are incorrectly classified as 
anomalies. The curve demonstrates an 
outstanding Area Under the Curve (AUC) of 0.99, 
indicating that the model has a high probability  
of distinguishing between "normal" and 
"anomalous" states. An AUC close to 1.0 reflects 
excellent model performance, with a high rate of 
correctly identified anomalies and a low rate of 
false alarms, which is vital in maintaining 
operational integrity and minimizing unnecessary 
disruptions in ICS environments. 
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Fig. 7. Receiver Operating Characteristic (ROC) curve 
 

4. CONCLUSION 
 
In conclusion, this research has successfully 
demonstrated the viability of employing the 
Isolation Forest algorithm as an advanced 
anomaly detection model within the realm of 
Industrial Control System (ICS) security. Through 
meticulous adaptation and application within the 
ICS domain, our model has shown exceptional 
aptitude in the identification of anomalous 
behavior, thereby offering a robust enhancement 
to the security posture of critical infrastructure 
systems. By utilizing a comprehensive and 
diverse dataset, augmented by Hardware-In-the-
Loop (HIL) simulation, the study has underscored 
the model's capability to not only detect 
established cyber threats but also adapt to 
emerging ones, ensuring its relevance and 
efficacy in the face of an ever-evolving cyber 
threat landscape. The model's performance is 
quantitatively underscored by its impressive 
metrics: an accuracy of 98.98%, precision and 
recall both at an outstanding 99.98%, and an F1 
Score of 99.98%. Which stands as a testament 
to the potential of machine learning techniques in 
fortifying the resilience of ICS against 
sophisticated cyber threats. The findings of this 
study contribute a significant discourse in the 
ongoing efforts to safeguard our vital 
infrastructures, presenting the Isolation             
Forest-based anomaly detection as an 
indispensable tool in the arsenal against cyber 
adversaries. 
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