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ABSTRACT 
 

Least square regression and machine learning tools were used for the development of global solar 
radiation forecasting models for Asaba region. Data from the year 2013-2022 from Nigerian 
Meteorological Agency, Asaba was used for this study. The least square regression method was 
used to develop four global solar radiation -based models, tagged H1, H2, H3 and H4 with 
characteristic day length, solar declination angle, rainfall amount, etc. as its model terms while the 
machine learning models produced multilayer perceptron, coarse Gaussian model (SVM-based 
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model) and XGBoost model. The prediction factors like mean bias error, mean percentage error, 
root mean square error, Nash-Sutcliffe equation, coefficient of correlation (R), t-test, and coefficient 
of determination (R2) were considered using the model terms. The results indicates that H4 model 
outperformed H1, H2, H3, machine learning models (SVM-based model, multilayer perceptron and 
XGBoost) and other existing models (MA-MME and MLR) with a mean percentage error value of 
0.740, RMSE value of 46.588, Nash-Sutcliffe equation value of 0.739, higher R2 value of 0.7391, t-
test value of 2.595E-24 and mean bias error value of -6.88E-12. Thus, H4 model results fell within 
accepted range. Additionally, the exergy of the global solar radiation of Asaba varied from 20-185 
W/m2 which are good. This shows that a more efficient and ideal global solar radiation prediction 
model (H4) has been developed for Asaba and other regions that share similar climatic conditions. 
 

 
Keywords: Global solar radiation; asaba; least square regression; exergy; machine learning tools. 
 

1. INTRODUCTION 
 

Energy drives industrialization and it remains the 
bedrock for national growth and development [[1-
2]. Non-renewable energy and renewable energy 
are the two subset of energy [1,3]. Non-
renewable form of energy e.g Fossil fuel 
combustion depletes the ozone layer, thereby, 
emitting harmful ultraviolet rays to the entire 
environment via the release of greenhouse 
gases leading to global warming. This negative 
impact on earth has redirected attention to green 
energy referred to as renewable energy; a form 
of energy that is cheap, readily available, 
replenishes itself, doesn’t cause economic and 
political imbalance unlike fossil fuel [1]. Thus, the 
reason why nations, engineers and                     
scientists consider it as a source that can drive 
the economy of any country towards 
industrialization [4]. The various forms of 
renewable energy are: wind, solar, water, 
geothermal, biomass etc. [3-5]. Among all the 
various forms of renewable energy, solar energy 
is more desirable due to its availability and 
radiant form [3,5,6].  
 
Solar energy is obtained from the sun. Duffie and 
Beckham [7] explained the sun to be a sphere of 
intensely hot gaseous matter with a diameter of 

1.39 × 109𝑚 and is, on the average, 1.5 × 1011𝑚 
from the earth. A view from the earth shows that 
the sun rotates on its axis about 27 days and the 
Polar Regions take about 30 days for each 
rotation [7]. The sun has an effective blackbody 
temperature of 5777K. The temperature in the 
central interior regions is estimated to range from 

8 × 106𝐾  to 40 × 106𝐾  and the density is 
estimated to be about 100 times that of water [8]. 
The energy produced in the interior of the solar 
sphere at temperatures of many millions of 
degrees must be transferred out to the surface 
and then be radiated into space as depicted in 
Fig. 1. 

Several technologies such as solar pumps, solar 
heaters, photovoltaic systems, solar cars, solar 
powered heating, ventilation and air-conditioning 
systems (HVACs) were all designed and built to 
be driven by solar energy. Solar energy has thus 
left a huge mark in the world of science and 
technology to be very promising and an efficient 
source of energy. In addition, for efficient 
utilization of these solar driven technologies, 
sufficient data/information on the amount of solar 
radiation or irradiation incident on the earth 
surface for a particular region of interest must be 
considered and factored into the design of the 
solar system in order to actualize its optimal 
performance characteristics. The total amount of 
solar radiation incident on the earth surface is 
called global solar radiation (GSR) [9]. Global 
solar radiation data are very imperative at 
various steps of the design, engineering, 
simulation and performance evaluation of any 
solar energy project [9]. The knowledge of the 
solar irradiation on the earth’s surface is an 
essential requirement not only in the studies of 
climate change, environmental pollution, but also 
in agriculture, hydrology, food industry and non-
conventional energy development programs [10]. 
It should be noted that not all the irradiation 
actually reaches the earth’s surface. The amount 
of irradiation that would reach the earth’s surface 
depends solely on: the concentration of airborne 
particulate matter, gaseous pollutants and water 
(vapour, liquid, or solid) in the sky. These factors 
contribute to the attenuation of solar radiation 
and also affect the diffuse and direct radiation 
ratio [9]. There are two components of global 
solar radiation, namely: diffuse and direct solar 
radiation. The former results from scattering 
caused by gases in the earth’s atmosphere, 
dispersed water droplets and particulates, while 
the later refers to radiations which were not 
scattered. Global solar radiation is the algebraic 
sum of the two components. The amount of 
irradiation of a particular geographical location in 
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the visible and near-infrared wavelength ranges 
from 0.3 𝜇𝑚 𝑡𝑜 2𝜇𝑚  and it is measured with a 
pyranometer. Global solar radiation varies from 
latitude to latitude [9].  
 
Due to seasonal variations and climatic changes, 
it has become necessary to frequently measure 
the amount of solar radiation incident on a 
particular geographical setting and other climate 
parameters that are of importance in the design 
and manufacturing of solar powered appliances 
and devices. Sequel to the fact that solar 
radiation measurements are not readily available 
in many developing countries due to non-
availability or inadequate provision of 
measurement instruments [9]. There is need to 
research towards the development of 
mathematical models that could be employed in 
estimating the amount of solar radiation for a 
specific geographical site like Asaba, Nigeria, a 
State Capital that houses an airport and other 
reputable organizations, with a view to reduce 
the frequency at which solar irradiation and other 
climate parameters are being measured with 
their relevant tools. Njoku et al. [11] performed a 
study on the analysis of solar radiation 
measurement in south-west geopolitical zone of 
Nigeria. They used twenty (20) years data (from 
2000-2021) of daily global solar radiation and 
monthly average hours of bright sunshine 
sourced from National Aeronautics and Space 
Administration (NASA) and Nigeria 
Meteorological Agency (NIMET) in carrying out 
their studies. From their studies, aided by global 
solar radiation, clearness index and sunshine 
hour, sky condition of South West Geopolitical 
zone in Nigeria was characterized. The worst 
month for harvest of solar radiation in the zone 
was August as it recorded the lowest level of 
clearness index and hours of bright sunshine. 
The city of Ikeja was considered the worst 
location for harvest of solar radiation in the 
geopolitical zone. Coefficients for the Angstrom-
Page equation was estimated for the cities and 
the associated coefficient of determination 
exhibited low variation for each study location.  
 
Additionally, some researchers have also 
employed artificial intelligence tools like artificial 
neutral networks, least square regression model, 
and machine learning models in predicting the 
amount of solar radiation of a particular 
geographical location [10]. Machine learning 
(ML) model according to Junliang et al. [12] have 
an intrinsic excellent capability of dealing with 
non-linear functions approximation, data sorting, 
pattern recognition, optimization, clustering, and 

trend detection. Also, artificial neural network 
(ANN) is the model widely used for predicting 
operations and it’s the machine learning utilized 
here. The ANN imitates the mechanism of the 
brain. Ertekin and Evrendiliek [13] estimated 
daily global solar radiation in Al-Madinah of 
Saudi Arabia using multi-layer perceptron (MLP) 
model from sunshine duration, air temperature 
and relative humidity data. They discovered that 
the MLP model performed better than the linear 
model but not the quadratic model. Behrang et 
al. [14] studied the performance of two ANN 
models- MLP and radial basis function (RBF) 
models in predicting daily values of global solar 
radiation based on sunshine duration and other 
meteorological data for the Dezful city in Iran. 
The MLP model performed better than the other 
models. Also, Huang et al. [10] compared the 
prediction performances of random forest (RF) 
model, multiple linear regression (MLR) and 
simple persistence methods in modeling daily 
global solar radiation using the meteorological 
data of four stations across Australia. They 
discovered that the RF model had better 
estimation performance than others. In addition, 
Huang et al. [10] worked on “solar radiation 
prediction using different machine learning 
algorithms and implications for extreme climate 
events and performed data preprocessing and 
factors selection based on meteorological factors 
and solar radiation data from 1980 to 2016 for 
Ganzhou, China by developing twelve machine 
learning models to estimate and contrast each 
day and monthly values of solar radiation and a 
stacking model using Sklearn and the Xgb 
library. They concluded that the stacking model 
and the XGBoost model gave the ideal model in 
forecasting solar radiation for Ganzhou, China”. 
But as much as we are aware, no one has 
worked on global solar radiation in Asaba and its 
region, let alone utilizing different least square 
regression models (H1, H2, H3 and H4) and 
machine learning models (SVM-based model, 
multilayer perceptron and XGBoost) to forecast 
weather conditions and its thermodynamics 
analysis for the benefit of the society at large and 
to meet UN`s millennium development target of 
clean energy for everyone [2]. The input factors 
of 10 years collected from NIMET are; monthly 
average daily hours of bright sunshine, monthly 
mean minimum and maximum temperatures, 
monthly mean values of relative humidity, 
monthly mean values of rainfall and monthly 
mean global solar radiation while the monthly 
mean daily sunshine duration known as 
characteristic day length, sunset hour angle, 
solar declination angle and other parameters of 
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interest were calculated using the appropriate 
equations. 
 

Therefore, this research was conducted on solar 
radiation forecasting models and their 
thermodynamic analysis in Asaba using least 
square regression and machine learning 
approach by collecting ten (10) years (2013-
2022) meteorological data of Asaba region from 
Nigeria Meteorological Agency (NIMET). Then 
these findings would be compared and validated 
globally. 
 

2. MATERIALS AND METHODS 
 

2.1 Material collection 
 

The materials used in this study includes: the 
climatic data of Asaba town, Delta State, latitude 

6.2059°N and longitude 6.6959°E, for a period of 
ten years (2013-2022), measuring instruments 
and software packages. The following climatic 
data of the study site were collected from the 
Nigeria Meteorological Agency (NIMET), Asaba- 
monthly average daily hours of bright sunshine, 
monthly mean minimum and maximum 
temperatures, monthly mean values of relative 
humidity, month amount of rainfall and monthly 
mean global solar radiation. 
 
2.1.1 A brief of the climatic data from NIMET 

asaba region utilized in this study with 
input factors 

 
Table 1- 6 highlights the input factors considered 
and its data collected from NIMET, Asaba region 
for10years. 

 

 
 

Fig. 1. The structure of the sun [7] 
  

Table 1. Monthly mean values of maximum temperature (℃) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 34.6 35.4 36.6 36.6 36.4 35.3 35.6 35.7 35.4 34.8 
FEB 35.2 36.1 36.9 38.4 37.9 35.8 36 36.2 35.8 35.4 
MAR 33.6 34.3 35.1 35.4 37.3 34.9 35.4 35.3 34.3 33.9 
APR 33.8 33.4 34.2 35.5 34.9 33.7 34.9 34.6 33.8 34.1 
MAY 32.4 32.5 33.8 34.4 34.4 32.6 34 33.2 33.1 32.8 
JUNE 31.8 31.8 32.8 32.3 33.3 31.9 31.6 34.8 32.9 32.4 
JULY 32.2 32.4 31.5 31.8 31.3 30.3 30 30.3 32.1 31.4 
AUG 32.5 33.2 32.8 30.9 29.8 30.8 30.2 30.7 32.8 32.1 
SEPT 30.3 31.8 31.8 32 30.3 31 31.3 29.9 33.1 31.2 
OCT 31.1 32.8 32.8 33.5 32.4 30.2 31.1 31.4 32.8 31.9 
NOV 32.6 34.1 33.8 35.7 34.4 33.1 33.1 34.4 34.8 32.8 
DEC 33.8 34.7 34.8 35.5 34.6 34.8 35.2 35.2 34.1 33.6 
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Table 2. Monthly mean values of minimum temperature (℃) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 22.3 21.3 22.5 22.4 22.8 22.1 22.1 21.7 22.1 21.8 
FEB 23.3 22.1 22.1 23.4 22.4 21.6 23.4 22.3 21.6 21.8 
MAR 23.5 24.1 23.8 23.8 23.3 23.4 24.3 22.8 22.8 22.8 
APR 24.4 24.3 23.6 24.1 24.1 24.2 24.1 23.5 23.6 23.1 
MAY 23.8 23.3 24.2 24.8 24.4 24.8 23.8 24.2 24.4 23.4 
JUNE 24.2 23.8 24.6 24.1 24.8 25.2 24.4 24.8 24.2 23.8 
JULY 25.2 24.3 24.8 23.5 24 24.8 24.7 24.4 24.1 24.6 
AUG 25.4 25.4 24.6 23.1 23.6 24.4 25.1 24.3 24.3 24.6 
SEPT 24.8 24.2 23.4 24.4 23.6 24.6 24.6 24.1 24.6 24.5 
OCT 24.3 24.2 24.2 23.4 24.4 24.4 24.3 24.3 25.1 24.1 
NOV 24.2 24.1 24.6 24.1 24.1 23.8 23.8 24.8 23.5 23.1 
DEC 23.9 23.5 24.9 23.7 24.4 23.2 22.5 24.1 23.4 22.2 

 
Table 3. Monthly mean values of relative humidity (%) 

 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 48 42 64 48 47 56 58 58 48 46 
FEB 54 56 68 35 37 62 43 54 52 48 
MAR 58 62 70 52 35 68 49 65 64 62 
APR 62 74 75 55 52 74 58 72 74 74 
MAY 74 78 82 69 62 76 65 78 78 76 
JUNE 86 82 88 76 78 79 72 76 82 80 
JULY 84 86 86 85 84 85 78 84 80 88 
AUG 78 84 87 87 89 86 84 87 88 86 
SEPT 87 88 85 83 83 81 86 89 86 88 
OCT 82 86 84 76 76 79 84 78 84 82 
NOV 78 76 78 65 64 72 78 72 78 75 
DEC 71 72 72 58 62 64 73 68 70 65 

 
Table 4. Monthly mean values of bright sunshine (hours) 

 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 6.42 7.24 8.23 8.23 7.12 8.25 9.23 8.23 7.54 8.34 
FEB 7.34 6.58 8.12 7.51 6.23 7.48 8.17 9.1 7.32 10.24 
MAR 6.4 5.43 7.45 6.54 5.23 6.48 8.42 7.23 6.12 7.23 
APR 5.1 5.52 7.23 6.23 5.12 6.14 7.21 6.43 6.34 6.45 
MAY 5.43 6.45 6.45 5.54 4.48 5.51 5.23 5.23 5.23 6.32 
JUNE 6.32 7.11 6.12 5.1 4.23 4.52 4.45 5.43 6.23 5.45 
JULY 5.43 6.23 5.5 4.23 4.48 4.32 5.23 4.56 4.56 4.46 
AUG 4.32 4.13 4.48 4.31 5.14 4.35 5.12 6.23 4.45 5.4 
SEPT 5.12 4.54 4.54 4.58 5.45 4.52 4.23 5.21 5.13 6.23 
OCT 4.53 5.12 5.58 4.46 6.13 4.51 4.43 4.45 5.42 5.12 
NOV 6.24 6.12 6.48 5.42 6.42 5.34 6.32 6.21 6.12 4.38 
DEC 5.43 5.41 7.35 6.54 5.13 5.23 6.45 5.41 6.34 5.31 

 

Table 5. Monthly mean values of global solar radiation (𝐰/𝐦𝟐) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 620 680 710 720 740 720 680 680 700 640 
FEB 680 640 640 780 680 740 720 640 710 580 
MAR 520 570 560 730 620 680 640 580 680 540 
APR 540 540 520 680 580 640 600 560 640 480 
MAY 480 460 470 640 600 580 540 480 580 460 
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 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JUNE 510 470 380 580 580 510 490 480 460 420 
JULY 380 510 420 540 540 480 520 420 440 470 
AUG 420 420 450 510 480 460 480 460 480 460 
SEPT 460 480 480 480 460 480 440 470 440 520 
OCT 470 450 540 460 520 480 460 430 460 510 
NOV 570 480 580 540 560 580 530 520 480 540 
DEC 620 540 620 620 540 610 580 600 460 580 

 
Table 6. Monthly mean values of rainfall amount (mm) 

 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 25.9 41.9 0 0 3.9 0 0 0 0 0 
FEB 5.1 25 35.7 18.2 0 233.2 32 0 0 0 
MAR 68 115.3 174.9 184.6 78.1 17.4 6.9 151.8 25.9 23.4 
APR 204 154.6 47.8 91.6 268.9 219.5 32.5 136.5 232.5 371.5 
MAY 293 299.3 270.8 186.2 354.7 211.6 389.8 222.6 278 433.6 
JUNE 311.6 381.2 277.8 622.5 373.5 141.3 334.9 291.6 579.5 259.5 
JULY 255.7 334.9 371.2 482.4 681.5 846.6 616.4 277.7 304.7 489.4 
AUG 171.6 299.2 385.2 325.8 499.4 343.1 782.1 123.9 530.3 190.9 
SEPT 235.9 214.2 727 353.1 263.3 745.3 811.1 443 324.4 381.5 
OCT 224.3 218.3 263.3 164.4 404.3 133.3 311.7 348.2 349.6 405.3 
NOV 19.9 70.5 53.3 15 14.2 69.3 102.2 10.2 276.5 0 
DEC 0 27.8 34 0 0 0 0 83.9 64.8 0 

 
2.1.2 Instruments used in measuring the 

climatic parameters 
 
The instruments used in this study were 
Campbell-Stokes Recorder, Solarimeter, 
Minimum Thermometer, Maximum Thermometer, 
Todler Radar, Hygrometer, Rain gauge, MATLAB 
Software 2017, Microsoft Excel 2016 and Minitab 
2021 
 

2.2 Research Method 
 
The multivariate formulation models developed 
by Cohen et al. [15] which has greatly proven to 
be efficient in the estimation of global solar 
radiation were used to estimate the global solar 
radiation values of the Asaba region, Delta State. 
The least square method was employed to 
develop multiple linear regression (MLR) model 
and multivariate models for the estimation of 
global solar radiation of Asaba town, Delta State.  
In addition, machine learning models such as 
multilayer perceptron network (MLP), support 
vector machine (SVM) and extreme gradient 
boosting (XGBoost) which are the classified 
types of artificial neural network (ANN), Kernel-
based algorithms (KBA) and tree-based 
assembly (TBA) respectively, were also used to 
estimate the values of global solar radiation of 
the study site. The estimation performances of 
the machine learning models, empirical 
multivariate models (Cohen’s models), multiple 

linear regression model and the newly developed 
multivariate regression models were statistically 
compared using the indices of mean bias error 
(MBE), root mean square error (RMSE), mean 
percentage error (MPE), coefficient of correlation 
(R), t-statistic test, Nash-Sutcliffe equation (NSE) 

and coefficient of determinant (R2 ) in order to 
ascertain the correctness and significance of the 
new models and as well depict the best model. 
Graphical visualizations were also used in the 
comparative study of these models. 
 

2.2.1 Determination of model development 
parameters 

 

Solar declination angle (𝛅) 
 

Cooper [16], gave an approximate equation for 
determining the declination angle (δ) to be:  
 

δ = 23.45 sin (360
284+n

365
)                       (1) 

 

Sunset hour angle (𝛚𝐬)  
 

According to Duffie and Beckman [7], the sunset 
hour angle is computed using the relation: 
 

ωs = cos−1(−tan∅tanδ)                        (2) 
 

Monthly mean daily sunshine duration (N) 
 

This was computed using Duffie and Beckham 
[7] model, 
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  N =
2

15
cos−1(−tan∅tanδ) =

2

15
ωs         (3) 

 
Monthly mean daily extraterrestrial global 
solar radiation (𝐙𝐎) 
 

This was determined using the relation 
expressed by Duffie and Beckham [7], 
 

  ZO =
24×3600Gsc

106π
(1 + 0.033cos

360n

365
) (cos∅cosδsinωs +

πωs

180
 sin∅sinδ)                                                              (4) 

 

Where: Gsc  = The solar constant = 1367 w/m2, ∅  
= the latitude of the area considered (degrees) 
 

δ =  Solar declination angle (degrees), ωs  = 
Sunset hour angle (degrees) 

 

The computed monthly mean values of solar 
declination angle, sunset hour angle and 
characteristic day length using equations 1, 2, 
and 3 respectively are delineated in Tables 7 to 
9.  

Table 7. Monthly mean values of solar declination angle (degrees) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN -20.90 -21.27 -21.44 -21.75 -21.60 -20.34 -21.10 -20.73 -20.14 -20.73 
FEB -13.00 -13.29 -13.62 -14.27 -13.95 -11.58 -12.95 -12.27 -11.23 -12.27 
MAR -2.40 -2.82 -3.22 -4.02 -3.62 -0.81 -2.42 -1.61 -0.40 -1.61 
APR 9.40 9.41 9.04 8.29 8.67 11.23 9.78 10.51 11.58 10.51 
MAY 18.80 18.79 18.55 18.04 18.30 19.93 19.03 19.49 20.14 19.49 
JUNE 23.10 23.31 23.27 23.15 23.21 23.44 23.35 23.41 23.45 23.41 
JULY 21.20 21.52 21.67 21.97 21.83 20.64 21.35 21.01 20.44 21.01 
AUG 13.50 13.78 14.11 14.74 14.43 12.10 13.45 12.79 11.75 12.79 
SEPT 2.20 2.22 2.62 3.42 3.02 0.20 1.81 1.01 -0.20 1.01 
OCT -9.60 -9.60 -9.23 -8.48 -8.86 -11.40 -9.97 -10.69 -11.75 -10.69 
NOV -18.90 -19.15 -18.91 -18.42 -18.67 -20.24 -19.38 -19.82 -20.44 -19.82 
DEC -23.00 -23.34 -23.29 -23.18 -23.24 -23.45 -23.37 -23.42 -23.45 -23.42 

 

Table 8. Monthly mean values of sunset hour angle (degrees) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 87.63 87.58 87.56 87.52 87.54 87.70 87.60 87.65 87.72 87.65 
FEB 88.57 88.53 88.50 88.42 88.46 88.73 88.57 88.65 88.77 88.65 
MAR 89.74 89.69 89.65 89.56 89.61 89.91 89.74 89.83 89.96 89.83 
APR 91.03 91.03 90.99 90.90 90.95 91.23 91.07 91.15 91.27 91.15 
MAY 92.11 92.11 92.08 92.02 92.05 92.25 92.14 92.20 92.28 92.20 
JUNE 92.65 92.68 92.67 92.66 92.66 92.69 92.68 92.69 92.69 92.69 
JULY 92.41 92.45 92.47 92.51 92.49 92.34 92.43 92.39 92.31 92.39 
AUG 91.49 91.52 91.56 91.63 91.60 91.33 91.49 91.41 91.29 91.41 
SEPT 90.24 90.24 90.28 90.37 90.33 90.02 90.20 90.11 89.98 90.11 
OCT 88.95 88.95 88.99 89.07 89.03 88.75 88.91 88.83 88.71 88.83 
NOV 87.87 87.84 87.87 87.93 87.90 87.71 87.82 87.76 87.69 87.76 
DEC 87.36 87.32 87.33 87.34 87.33 87.31 87.32 87.31 87.31 87.31 

 

Table 9. Monthly mean values of characteristic day length (hours) 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 11.68 11.68 11.67 11.67 11.67 11.69 11.68 11.69 11.70 11.69 
FEB 11.81 11.80 11.80 11.79 11.79 11.83 11.81 11.82 11.84 11.82 
MAR 11.97 11.96 11.95 11.94 11.95 11.99 11.97 11.98 11.99 11.98 
APR 12.14 12.14 12.13 12.12 12.13 12.16 12.14 12.15 12.17 12.15 
MAY 12.28 12.28 12.28 12.27 12.27 12.30 12.29 12.29 12.30 12.29 
JUNE 12.35 12.36 12.36 12.35 12.36 12.36 12.36 12.36 12.36 12.36 
JULY 12.32 12.33 12.33 12.33 12.33 12.31 12.32 12.32 12.31 12.32 
AUG 12.20 12.20 12.21 12.22 12.21 12.18 12.20 12.19 12.17 12.19 
SEPT 12.03 12.03 12.04 12.05 12.04 12.00 12.03 12.01 12.00 12.01 
OCT 11.86 11.86 11.87 11.88 11.87 11.83 11.85 11.84 11.83 11.84 
NOV 11.72 11.71 11.72 11.72 11.72 11.69 11.71 11.70 11.69 11.70 
DEC 11.65 11.64 11.64 11.65 11.64 11.64 11.64 11.64 11.64 11.64 
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Table 10. Day number in the years 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

JAN 17 15 14 12 13 20 16 18 21 18 
FEB 47 46 45 43 44 51 47 49 52 49 
MAR 75 74 73 71 72 79 75 77 80 77 
APR 105 105 104 102 103 110 106 108 111 108 
MAY 135 135 134 132 133 140 136 138 141 138 
JUNE 162 166 165 163 164 171 167 169 172 169 
JULY 198 196 195 193 194 201 197 199 202 199 
AUG 228 227 226 224 225 232 228 230 233 230 
SEPT 258 258 257 255 256 263 259 261 264 261 
OCT 288 288 287 285 286 293 289 291 294 291 
NOV 318 319 318 316 317 324 320 322 325 322 
DEC 344 349 348 346 347 354 350 352 355 352 

 
Table 10 shows the day number in the year used 
in computing the solar declination angle and 
other parameters. 
 

2.2.2 The proposed new models 
 

The proposed new models for estimating global 
solar radiation were developed using least 

square multivariate regression method and it 
employed rainfall amount and solar declination 
angle, in addition to some of the other variables 
used in the multivariate models of Cohen et al. 
[15] as its independent or predictive variables. 
The proposed new models are presented in 
equations 5-8. 
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Where: H = global solar radiation, δ = solar declination angle, Tmax = maximum temperature, R.F = 

rainfall amount, R.H. = relative humidity, ∅ = latitude of the place, n = day number the year, N = 

characteristic day length, n̅ = hours of bright sunshine, 
n̅

N
 = sunshine index. 

 
2.2.3 Equations utilized for output analysis 
 
The Mean Bias Error (MBE) 
 
The relation used for its computation is given by equation 9. 
 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑍𝑖𝑐𝑎𝑙 − 𝑍𝑖𝑚𝑒𝑎)𝑛

𝑖=1                                                                                                 (9) 

 
Where: n = number of data points, Zical = calculated value of global solar radiation, 
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Zimea = measured value of global solar radiation 
 
The Mean Percentage Error (MPE) 
 
The correctness of a model is verified if its MPE value falls between -10% and 10%. MPE value is 
computed using equation 10. 
 

MPE(%) =
1

𝑛
∑ (

𝑍𝑖𝑐𝑎𝑙−𝑍𝑖𝑚𝑒𝑎𝑠

𝑍𝑖𝑚𝑒𝑎𝑠
)𝑛

𝑖=1 × 100                                                                   (10) 

 
The Root Mean Square Error (RMSE) 
 
The smaller the value of RMSE the better the model’s estimation strength and accuracy. Its 
computational formula is given by equation 11 
 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ (𝑧𝑖𝑐𝑎𝑙 − 𝑧𝑖𝑚𝑒𝑎𝑠)2𝑛

𝑖=1 ]

1

2
                                (11) 

 
The Nash-Sutcliffe Equation (NSE) 
 
Model’s efficiency and correctness is assured if and only if NSE is very close to one. The formula 
used to compute it as given by Chen et al. [17] is given by equation 12 
 

𝑁𝑆𝐸 = 1 −
∑ (𝑍𝑖𝑚𝑒𝑎−𝑍𝑖𝑐𝑎𝑙)2𝑛

𝑖=1

∑ (𝑍𝑖𝑚𝑒𝑎−𝑍𝑚𝑒𝑎)2𝑛
𝑖=1

                                                                     (12) 

 

Where: �̅�𝑚𝑒𝑎 = the mean measured value of global solar radiation 
 
The Coefficient of Correlation (R) 
 
The coefficient of correlation measures the degree of association or relationship between the 
measured value of global solar radiation and the calculated/estimated value. Models with values of 
coefficient of correlation closer to one (1) or even one is regarded as efficient models well suited for 
response prediction at any factor level considered. The Karl Pearson’s method was used to assess 
the developed model’s association with the measured values of global solar radiation. It was 
computed using the equation 13. 
 

𝑅 =
∑ 𝑋𝑌

√(∑ 𝑋2)(∑ 𝑌2)
                                                           (13) 

 
Where: X = the difference between the measured values of global solar radiation and the mean of the 
measured global solar radiation, Y = the difference between the estimated global solar radiation and 
the mean of the estimated global solar radiation. 
 
T-statistics Test 
 
The formula used to compute it is given by equation 14 
 

𝑡 = [
(𝑛−1)(𝑀𝐵𝐸)2

(𝑅𝑀𝑆𝐸)2−(𝑀𝐵𝐸)2]

1

2
                                                                                             (14) 

 

Coefficient of Determination (𝐑𝟐) 
 
A value of R2 close to 1 suggests that the model is best suited for global solar radiation estimation. It 
is mathematically given as equation 15, 
 

 R2 =
sum of squares (ss)

sum of squares of residuals
= 

∑ (Zimea−Z̅imea)2n
i=1

∑ (𝑍imea−Z̅ical)2n
i=1 

                                                                      (15)  
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2.2.4 Thermodynamic analysis: energy and 
exergy analysis of global solar radiation 
of asaba town   

         
The exergy analysis of Asaba town, Delta state 
was based on the second law of 
thermodynamics. It can be used to determine the 
theoretical limits for the performance of most 
commonly used engineering systems, such as: 
heat engine, refrigerators, solar panels, as well 
as predicting the degree of completion of 
chemical reactions. Therefore, to estimate the 
exergy solar radiation on the earth, consider a 
machine placed on the earth surface as shown in 
Fig. 2.  
 
The machine extracts the maximum work Wmax 

obtainable from the energy source Es , and it 

delivers heat Qo  to the environment at 
temperature To . The machine transmits the 

energy Ee by radiation.  
 
According to the energy and entropy balance of 
the cyclic machine, the exergy solar radiation 
expressed by Nayak and Tiwari [18] is given as,    
     

𝐸𝑥𝑠 = 𝐻 [1 −
4

3
(

𝑇1

𝑇2
) +

1

3
(

𝑇1

𝑇2
)

4

]                     (16)                       

 
Where: Exs = the exergy of the solar energy, H = 

global solar radiation (w/ 𝑚2 ),  𝑇1  = ambient 
temperature of the region, which is equivalent to 
the minimum temperature (K),   𝑇2  = sun’s 
temperature of the region, equivalently equal to 
the maximum temperature (K),  𝑇𝑜  = sink 
temperature. 
 
Thus, the exergy global solar radiation for Asaba 
region was computed using equation 16 and was 
equally shown graphically to clearly delineate the 
lost energies of solar irradiance in the study site. 
 

3. RESULTS AND DISCUSSIONS 
 

3.1 Summary of the Results of the 
Statistical Evaluation of the Models 

 
Table 11 shows the result of the statistical 
evaluation of the models- MMA, MMB, MMC, 
MMD, MME, MLR, H1, H2, H3, H4, MLP, SVM 
and XGBoost. 
 
It is worthy of note that the best performed model 
was obtained via a statistical evaluations 
considering the following statistical tools: mean 
bias error (MBE), mean percentage error (MPE), 
root mean square error (RMSE), Nash-Sutcliffe 
equation (NSE), coefficient of correlation (R), t-
statistics test, and coefficient of Determination 

(R2). 
 
From Table 11, the new models (H1-H4) 
especially H4 model performed better than the 
multivariate (MMA-MME) and the MLR models 
because its: MPE value fall within -10 to 10%, 
lower RMSE value, higher NSE value (that is 
much closer to 1), higher value of r value,              

higher R2 value and lower t-stat. and MBE value. 
The H4 model outperformed the models 
developed by Cohen et al. [15] and the MLR 
model. In addition, the H4 model also 
outperformed the machine learning                               
model- SVM, and it had a closer performance 
characteristic  of  the  MLP  and  XGBoost  
models. 
 

3.2 Result of the Exergy Analysis of 
Asaba Town 

 
The result measured GSR and exergy GSR 
against the 120 months of the collected dataset 
respectively.  
   
 

 
 

Fig. 2. Energy and exergy interactions in a cyclic machine 
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Table 11. Statistical evaluation of the models 
 

 PERFORMANCE INDICES 

Models MBE MPE RMSE NSE R t-stat. 𝐑𝟐(%) 

MMA -3.78E-12 -0.833 50.520 0.693 0.833 8.162E-13 0.6932 
MMB -3.75E-12 -0.833 50.625 0.692 0.832 6.529E-25 0.6919 
MMC -6.68E-12 -0.833 50.314 0.696 0.834 2.096E-24 0.6957 
MMD -1.03E-11 -0.833 49.325 0.708 0.841 5.189E-24 0.7075 
MME -3.43E-12 0.847 50.248 0.696 0.835 5.545E-25 0.6965 
MLR 1.14E-14 0.958 53.480 0.656 0.810 5.407E-30 0.6562 
H1 -9.96E-12 0.777 47.442 0.729 0.854 5.245E-24 0.7294 
H2 -1.09E-11 0.780 47.555 0.728 0.853 6.252E-24 0.7281 
H3 -8.99E-12 0.750 46.846 0.736 0.858 4.382E-24 0.7362 
H4 -6.88E-12 0.740 46.588 0.739 0.860 2.595E-24 0.7391 
MLP 0.5315 0.604 38.183 0.825 0.908 0.0231 0.9999 
SVM -6.3685 -0.368 47.583 0.728 0.856 2.1705 0.6900 
XGBoost -5.9040 -0.477 39.372 0.814 0.906 2.7374 0.6200 

 
It was observed that the lost GSR energy could 

be observed to vary between 20-185W/m2. This 
therefore suggests that the GSR of Asaba town 
is not fully exploited as the lost GSR energy 
could be utilized for other meaningful purposes. 
Thus, this demonstrates the effect of the 
atmospheric bodies which absorb some of the 
energy before it gets to the earth surface. This 
lost GSR energy need to be harnessed so as to 
improve the operational characteristics of solar 
energy consuming devices such as the heating, 
ventilation and air-conditioning system (HVAC), 
solar cars, solar pumps, solar heaters, etc. 
Appendix A can be referred for exergy GSR 
values. 
 

4. CONCLUSION 
 
The study presents the thermodynamic analysis 
and GSR prediction model development for 
Asaba town, Delta state. The multivariate models 
of Cohen et al. [15] and the MLR model were 
outperformed by the four new models developed 
in this study based on the statistical indices 
(mean bias error (MBE), mean percentage error 
(MPE), root mean square error (RMSE), Nash-
Sutcliffe equation (NSE), coefficient of correlation 

(R), t-statistics test, and coefficient of 
Determination R2) that were used. The four new 
models (H1-H4) were modifications of the 
multivariate models (MMA, MMB, MMC, MMD, 
and MME) that were achieved by introducing 
some other parameters like: solar declination 
angle and rainfall amount, in addition to other 
polynomic model terms of various degrees that 
were built using least square regression 
methodology. The H4 model had better 
performance characteristics when compared to 
the other models based on these satisfied 
conditions: MPE value of 0.740 fall within -10 to 
10%, lower RMSE value of 46.588, higher NSE 
value of 0.739 (that is much closer to 1), higher R 

value of 0.860, higher R2  value of 0.7391 and 
lower t-stat. value of 2.595E-24 and MBE value 
of -6.88E-12. Furthermore, the H4 model had 
better prediction performance than the SVM 
model and a much closer performance 
characteristics of the MLP and XGBoost machine 
learning models. Therefore, a GSR prediction 
models that have better performance 
characteristics than the existing multivariate and 
MLR models have been developed in this study. 
These models are presented thus as equation 
17. 
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In addition, the thermodynamic analysis 
performed in this study for the test region- Asaba 
town, Delta state, showed that the exergy GSR 

of the region varied between 20-185 W/m2. 
 
Appendix is available in the following link- 
https://journaljenrr.com/media/2024_JENRR_112
613.pdf 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Iweka SC, Owuama KC. Biogas Yielding 

Potential of Maize Chaff Inoculated with 
Cow Rumen and Its Characterization. 
Journal of Energy Research and Reviews. 
2020;34–50.  

2. Iweka SC, Ozioko FC, Edafiadhe ED, 
Adepoju TF. Bio-oil production from ripe 
pawpaw seeds and its optimal output: Box-
Behnken Design and Machine Learning 
approach. Scientific African. 2023:e01826.  

3. Iweka SC, Owuama KC, Chukwuneke JL, 
Falowo OA. Optimization of biogas yield 
from anaerobic co-digestion of corn-chaff 
and cow dung digestate: RSM and python 
approach. Heliyon. 2021;7(11):e08255.  

4. Imam AA, Abusorrah A, Marzband M. 
Potentials and opportunities of solar PV 
and wind energy sources in Saudi Arabia: 
Land suitability, techno-socio-economic 
feasibility, and future variability. Results in 
Engineering. 2024;21:101785.  

5. Iweka SC, Falowo OA, Amosun AA, Betiku 
E. Optimization of microwave-assisted 
biodiesel production from watermelon 
seeds oil using thermally modified kwale 
anthill mud as base catalyst. Heliyon. 
2023;9(7):e17762.  

6. Choudhary A, Pandey D, Bhardwaj S. A 
Review for the Development of ANN 
Based Solar Radiation Estimation Models. 
In: Smart Innovation, Systems and 
Technologies [Internet]. Singapore: 

Springer Singapore. 2020;59–66.  
Available:http://dx.doi.org/10.1007/978-
981-15-5971-6_7 

7. Duffie JA, Beckman WA. Solar Thermal 
Power Systems. Solar Engineering of 
Thermal Processes. 2013;621–34.  

8. Da’ie AB. Developing mathematical 
models for global solar radiation intensity 
estimation at Shakardara, Kabul. 
International Journal of Innovative 
Research and Scientific Studies. 2021;4 
(2):133–8. 

9. Nnabuenyi HO, Okoli LN, Nwosu FC, Ibe 
G. Estimation of global solar radiation 
using sunshine and temperature-based 
models for Oko town in Anambra state, 
Nigeria. American Journal of Renewable 
and Sustainable Energy. 2017;3(2): 8-14.  

10. Huang J, Troccoli A, Coppin P. An 
analytical comparison of four approaches 
to modelling the daily variability of solar 
irradiance using meteorological records. 
Renewable Energy. 2014 ;72:195–202.  

11. Njoku MC, Egwuagu DU, Ncharam D, 
Ndefo CC. Analysis of Solar Radiation 
Measurement in South-West Geopolitical 
Zone of Nigeria. Global Scientific Journals. 
2022;10(2):1945-1953 

12. Fan J, Wu L, Zhang F, Cai H, Zeng W, 
Wang X, et al. Empirical and machine 
learning models for predicting daily global 
solar radiation from sunshine duration: A 
review and case study in China. 
Renewable and Sustainable Energy 
Reviews. 2019;100:186–212.  

13. Ertekin C, Evrendilek F. Spatio-temporal 
modeling of global solar radiation 
dynamics as a function of sunshine 
duration for Turkey. Agricultural and Forest 
Meteorology. 2007;145(1–2):36–47.  

14. Behrang MA, Assareh E, Ghanbarzadeh A, 
Noghrehabadi AR. The potential of 
different artificial neural network (ANN) 
techniques in daily global solar radiation 
modeling based on meteorological data. 
Solar Energy. 2010;84(8):1468–80.  

15. Cohen. Applied Multiple Regression / 
Correlation Analysis for the Behavioral 

http://dx.doi.org/10.1007/978-981-15-5971-6_7
http://dx.doi.org/10.1007/978-981-15-5971-6_7


 
 
 
 

Nwanze et al.; J. Energy Res. Rev., vol. 16, no. 2, pp. 9-21, 2024; Article no.JENRR.112613 
 
 

 
21 

 

Sciences [Internet]. Routledge; 2013. 
Available:http://dx.doi.org/10.4324/978020
3774441 

16. Cooper PI. The absorption of radiation in 
solar stills. Solar Energy. 1969;12(3):333–
46.  

17. Chen R, Ersi K, Yang J, Lu S, Zhao W. 
Validation of five global radiation models 

with measured daily data in China. Energy 
Conversion and Management. 2004;45 
(11–12):1759–69.  

18. Neri M, Luscietti D, Pilotelli M. Computing 
the Exergy of Solar Radiation From                 
Real Radiation Data. Journal of                  
Energy Resources Technology. 
2017;139(6).  

_________________________________________________________________________________ 
© 2024 Nwanze et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/112613 

http://dx.doi.org/10.4324/9780203774441
http://dx.doi.org/10.4324/9780203774441
http://creativecommons.org/licenses/by/4.0

