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Abstract: In this paper, a fiber optic microprobe displacement sensor is proposed considering charac-
teristics of micro-Michelson interference structure and its components. The principal error of micro
Fabry–Perot interferometric structure is avoided, and high-precision interferometric displacement
measurement is realized. The collimated microprobe and convergent microprobe are analyzed, simu-
lated, and designed for the purposes of measuring long-distance displacement and small spot rough
surface, respectively. The core parameters of the probes’ internal components are mapped to coupling
efficiency and contrast of the sensor measurements, which provides a basis for the probes’ design.
Finally, simulation and experimental testing of the two probes show that the collimated probe’s
working distance and converging probe’s tolerance angle can reach 40 cm and ±0.5◦, respectively.
The designed probes are installed in the fiber laser interferometer, and a displacement resolution of
0.4 nm is achieved.

Keywords: fiber laser interferometer; microprobe sensors; Michelson laser interference

1. Introduction

As an important and indispensable technology and core strategy in the field of ultra-
precision displacement measurement, laser interferometer is also developing in the direc-
tion of high-integration, small-volume, and ultra-precision embedded on-line measure-
ment [1–3]. Compared with the traditional laser interferometer, the fiber laser interferometer
has significant advantages, such as easy installation and adjustment, isolation of thermal
pollution, and easy embedded measurement realization. There are four main categories of
fiber optic interferometers: fiber optic Michelson interferometers [4–7], fiber optic Mach–
Zehnder (M-Z) interferometers [8], fiber optic Sagnac interferometers [9], and fiber optic
Fabry–Perot (F-P) interferometers [10,11], among which only fiber optic Michelson interfer-
ometers and fiber optic Fabry–Perot interferometers are capable of performing embedded
displacement measurements. For the fiber optic Michelson laser interferometer, the stability
and anti-interference are not optimized because the reference and measurement light inside
the fiber are easily affected by the external environment. Even though researchers have
studied the use of dual interferometers to compensate for the common optical path [12],
the method is still not practical. The fiber optic Fabry–Perot laser interferometer is more
resistant to interference because the reference and measurement lights are in a common
optical path and the optical fiber is only used for transmission. Therefore, the sensing
method using the F-P cavity formed by the fiber end-face and the target object has received
widespread attention.
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The initial version of fiber optic F-P interferometer was composed of a single-mode
fiber end-face and a target because the beam out of the fiber presented a cone angle
dispersion; therefore, light return efficiency was very low and, as a result, it was difficult to
carry out long-distance measurements and its probing distance was generally around
1 mm [13]. Some researchers processed the fiber structure to achieve a tapered core
structure in order to reduce the outflow light beam dispersion angle, increase the fiber optic
microprobe detection distance, and ultimately achieve an 80 mm working distance [14].
In order to further increase the micro-sensing probes’ measurement distance, a method
was proposed to match the single-mode optical fiber parameters using convex and variable
refractive index lenses, which ultimately resulted in better beam collimation and increased
the detection distance to 30–40 cm [15–18]. However, the above structure approximates the
multi-beam interference into a two-beam interference, an approximation that is acceptable
in some sensing fields where high precision is not required. In the field of ultra-precision
displacement sensing, however, the resulting higher-order cyclic principle error seriously
affects the accuracy of laser interference displacement measurement.

To address the lack of high-precision micro-sensing probes, proper design solutions,
and models, we propose a fiber optic Michelson-type microprobe interference structure in
this study. The creation of a multi-beam interference principle error is avoided through
application of the two-beam interference principle for micro-sensing probes. First, a
theoretical model was developed for the fiber optic Michelson microprobe. A mapping
relationship between the probe’s structural parameters and working distance and tolerance
angle was then developed. The design parameters of the collimated micro-sensing probe
were finally studied. Moreover, we expanded the convergent microprobe, which is designed
to meet the measurement needs of small spots and rough reflective surfaces, thus facilitating
the application of microprobe laser interferometers. In Section 2, we introduce the fiber
optic microprobe laser interferometer, discuss the error analysis of the traditional F-P
microprobe, and then introduce the structure and design considerations of Michelson-type
microprobes. In Section 3, we discuss the experimental and simulation results associated
with the collimated and convergent microprobes. Lastly, the displacement measurement
results for these microprobes are presented.

2. Design of Two Michelson-Type Microprobe Sensors
2.1. Fundamentals of Fiber Optic Microprobe Laser Interferometry

The measurement principle of the fiber optic microprobe laser interferometer is as
follows: the FPGA signal processing board generates a sinusoidal modulation signal
through the Direct Digital Synthesis (DDS) technique. The drive current is then applied to
the distributed feedback semiconductor laser (DFB) so that the light’s output wavelength
is modulated by a high frequency (Figure 1). The output light propagates through the
optical fiber as well as the circulator and interferes with the micro-sensing probe with the
following expression:

I = Ir + Is + 2
√

Ir Is cos(φ0 + φx), (1)

where Ir denotes the intrinsic reference light intensity, Is represents the measured light
intensity, φ0 is the initial phase, and φx is the phase difference corresponding to the distance
to be measured.

The interfering signals are again propagated through the circulator and optical fiber
and are received by photodetectors, such as avalanche photodiodes (APD), and converted
into the corresponding current signals:

S(t) = K(Ir + Is) + 2K
√

Ir Is cos ϕ= A + B cos(φ0 + φx), (2)

where K denotes the photoelectric conversion coefficient of the photodetector, A = K(Ir + Is)
is the DC bias, and B = 2K

√
Ir Is is the amplitude of the AC signal carrying the

displacement information.
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Figure 1. Schematic diagram of fiber optic microprobe laser interferometer measurement (note: DFB:
Distributed Feedback Laser; FC: Fiber Circulator; SMF: Single-Mode Fiber; APD: Avalanche Photode-
tector; DSS: Direct Digital Synthesizer; ADC: Analog-to-Digital Converter; DAC: Digital-to-Analog
Converter; LPF: Low-Pass Filter; Atan: the inverse tangent algorithm; M1/2: Mirrors 1 and 2).

Based on the interferometric displacement measurement, the relationship between the
measurable phase and displacement is given by:

φx =
4πnLx

λ
, (3)

where n denotes the air refractive index, Lx is the displacement to be measured, and λ
denotes the laser wavelength.

After the photoelectric conversion, the signal S(t) is first converted from analog to
digital in the signal processing board, and then the phase is demodulated in FPGA using
the Phase Generated Carrier (PGC) algorithm [19,20] so that the final displacement can be
further calculated.

2.2. Analysis of High-Order Nanoscale Errors in F-P-Type Microprobes

To obtain the interference signal as discussed in Section 2.1., the fiber optic Fabry–
Perot micro-sensing probe has been widely developed. This probe has a common optical
path between the reference and measuring lights. This microprobe has high measurement
accuracy, a small size, and a simple structure, and it is commonly applied in the field of
precision displacement measurement. The structure and measurement principle of the
fiber optic Fabry–Perot micro-sensing probe laser interferometer is schematically shown
in Figure 2. An expression for the interference signal associated with the fiber optic F-P
microprobe is given by:

IFP = I0 ·
r2

1 + r2
2 − 2r1r2 cos φ(t)

(1 − r1r2)
2 + 4r1r2 sin2(φ(t)/2)

, (4)

where r1 denotes the reflectivity of the outgoing end-face of the fiber, r2 denotes the
reflectivity of the object to be measured, and φ(t) represents the phase to be measured.
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As shown on the right side of Figure 2, the F-P cavity is a low-fineness cavity when r1
and r2 are small, and the multibeam interference model of the fiber optic F-P micro-sensing
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probe can be approximated using a two-beam interference model; therefore, Equation (4)
can be simplified in the following format:

IFP = I0 ·
(

r2
1 + r2

2 − 2r1r2 cos φ(t)), (5)

However, the multibeam interference that exists in the F-P cavity is ignored due to
the equivalent treatment in the measurement principle, which results in non-negligible
errors. In Figure 2, the blue and red arrows indicate the reference and measurement
lights, respectively. The reference light’s vibration equation for the fiber F-P microprobe
interferometer can be expressed as:

Er = Ar exp[i(ωt+φr)], (6)

where Ar denotes the reference light’s amplitude, ω represents the reference light’s angular
frequency, and φr denotes the reference light’s initial phase.

Due to the motion of the measurement object, the vibration equation of the light exiting
the fiber after one reflection from the target inside the cavity is expressed as:

Em = Am exp[i(ωt+φ0 + φm)], (7)

where Am denotes the amplitude of the light measured by one reflection, ω represents the
angular frequency of the light measured by the fiber, φ0 denotes the initial phase, and φm
represents the phase corresponding to the displacement to be measured.

A number of reflection phenomena can be seen in Figure 2. After the 1st reflection of
the light, part of it goes through the optical fiber, whereas another part transmits through
the end-face of the optical fiber, re-incidences to the target, and forms the basis of the
subsequent reflections.

The vibrational equation of the light formed in the cavity after n reflections is:

Em_all =
n

∑
j=1

Am_j exp[i(ωt+φ0+jφm)], (8)

The interference signal obtained from the reference light and the reflected measure-
ment light interfere with each other in the fiber optic F-P microprobe interferometer, mathe-
matically represented by the following expression:

I ∝ Re
[
(Em_all + Er) · (Em_all + Er)

∗], (9)

According to Equation (9), the interference signal produced using an F-P type interfer-
ence probe can be represented by the following expression:

I = A + B1 cos(C cos wt + φm) + B2 cos(2C cos wt+2φm)+ . . .
+Bn−1 cos((n−1) · cos wt+(n −1)φm) + Bn cos(n · cos wt+nφm)

, (10)

where A denotes the DC component’s amplitude of the signal, Bn represents the nth AC sig-
nal amplitude, and w denotes the angular frequency of the sinusoidally
modulated signal.

According to Equation (10), the F-P interference generates additional multiple har-
monic signals compared to the two-beam interference, and the quadrature components of
the interference signal are obtained through PGC demodulation as follows:

S1 = B1 J1(C) sin φm+B2 J1(2C ) sin 2φm + . . .+Bn J1(n · C) sin nφm, (11)

S2 = B1 J2(C)cos φm+B2 J2(2C )cos 2φm + . . .+Bn J2(n · C) cos nφm, (12)
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The corresponding Lissajous graphs are plotted with S1 and S2 as the horizontal and
vertical coordinates, respectively, and it can be seen that the Lissajous graphs obtained from
the fiber optic F-P interferometric probe are not in the conventional ellipse form (Figure 3a).
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Next, the demodulation error obtained from the F-P sensing probe is simulated, and
the effective reflectivity of the object’s reflective surface in the F-P cavity of the microprobe
is set to be 0.6 considering the light intensity attenuation during the specular reflection
process (Figure 3b). According to this figure, the maximum error value reaches 3 nm;
therefore, it is difficult to achieve the nanoscale accuracy measurement requirements using
this interferometric probe.

Therefore, we propose to use a microprobe structure based on the fiber optic Michelson
interference principle divided into collimated and convergent types. Because it is a double-
beam interference in principle, the interference signal obtained using this probe type does
not have nanometer-scale error, making it possible to measure sub-nanometer precision
measurements using this fiber microprobe laser interferometer.

2.3. Design of a Collimated Michelson Micro-Sensing Probe

The proposed collimated Michelson microprobe (shown in Figure 4) consists of a single-
mode fiber pigtail, an air gap, a gradient refractive index (GRIN) lens, and a nonpolarized
beam splitter (NPBS).

The output light field of a single-mode fiber can be approximated as a Gaussian
distribution of the waist at the fiber end-face, and its waist size w0 is determined using the
fiber mode field diameter (MFD). After the Gaussian beam is collimated by the GRIN lens
and split by the beam splitter in equal proportions, one beam of light returns to the GRIN
lens as the reference light through the NPBS total reflection surface, and the other beam
of light propagates in the air for Zwd and is then reflected back to the GRIN lens by the
reflector to couple with the reference light in order to produce an interference signal.
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Figure 4. Composition diagram of collimated Michelson micro-sensing probe (note: L0 denotes the
length of the air gap after the fiber end-face, Z0 denotes the length of the GRIN lens, L1 denotes the
length of the air gap between the GRIN lens and the NPBS, d0 denotes the length of the NPBS, l
denotes the beam waist position, w1 denotes the waist size, Zwd denotes the working distance, q0

denotes the Gaussian beam on the fiber outgoing end-face, and q1 denotes the Gaussian beam after
passing through the microprobe. NPBS: nonpolarized beam splitter; GRIN: Gradient Index lens).

Next, the Gaussian beam complex size of curvature q-parameter transformation and
the ABCD transmission matrix are used to construct a model of the relationship between
the parameters of each element of the probe and the size of the output beam waist and the
working distance. The q-parameters are expressed as follows:

1
q(z)

=
1

R(z)
− i

λ

πw2(z)
, (13)

where R(z) is the curvature size of the isophase plane of the Gaussian beam located at z,
w(z) is the spot size of the isophase plane of the Gaussian beam located at z, and λ denotes
the light wavelength.

The Gaussian beam at the fiber end-face is q0 = i πn0w2
0

λ = i f0, and n0 is the air gap

refractive index. The ABCD transmission matrix M0 of the first air gap is
[

1 L0
0 1

]
. The

collimating lens uses a radial gradient refractive index lens, the refractive index changes
along the direction perpendicular to the optical axis, and the refractive index distribu-
tion equation is n(r) = n1

(
1 − Ar2

2

)
, where n1 is the refractive index on the optical axis,

b =
√

A is the self-focusing constant, and the transmission matrix M1 of the GRIN lens

is

[
cos

√
AZ0

sin
√

AZ0
n1
√

A
−n1

√
Asin

√
AZ0 cos

√
AZ0

]
. The transmission matrix M2 of the second air gap is[

1 L1
0 1

]
, the transmission matrix M3 of the NPBS is

[
1 d0

n2
0 1

]
, and n2 is the refractive index

of the NPBS.
The q-parameter of the light after passing through the microprobe is obtained from

the ABCD transformation law for Gaussian beams:

q1 =
Aq0 + B
Cq0 + D

, (14)

where A, B, C, and D represent the four parameters of the transmission matrix M, respec-
tively, and M = M3 × M2 × M1 × M0.

Based on the above analysis, the expressions for the output beam waist size and probe
working distance are obtained as:

w1 =

√
f0λ

D2 + πC2 f 2
0

, (15)

Zwd = −2

(
BD + AC f 2

0
)

D2 + C2 f 2
0

, (16)
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The output spot size versus probe working distance is given by:

w(Zwd) = w1

√√√√1 +

(
λZwd

πw2
1

)2

, (17)

The sensitivity of the fiber optic sensing probe to changes in object inclination and
working distance is investigated by translating and tilting the reflector. When the reflective
target has θ inclination, the light will become an off-axis Gaussian beam after passing
through the reflective target, which has a 2θ angle with the optical axis of the system. This
makes it difficult to simulate the transmission path of the Gaussian beam. As shown in
Figure 5, the symmetric equivalent fiber receiving probe is established with the reflector as
the axis following a method borrowed from the literature [18]. The beam interference can
be equated to the signal light coupling from the original probe and the intrinsic reference
light from the equivalent probe at the end-face of the equivalent probe.
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Figure 5. Output optical coupling model of symmetrically equivalent microprobe (note: Es denotes
the output optical field in a coordinate system established at the outgoing end-face of the probe, and
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end-face).

A coordinate system is established with the fiber optic probe outgoing end-face as well
as the equivalent probe end-face in order to obtain the expressions for the reference and
measured lights’ electric fields. The optical coupling efficiency of the fiber optic sensing
probe can be given by the overlapping integrals of the output photoelectric field and the
intrinsic mode field of the equivalent probe at the equivalent probe end-face.

In the absence of declination of the object to be measured, the power coupling efficiency
of the fiber optic interferometric probe with respect to the working distance is obtained as
follows, based on a relationship between the coordinate systems established by the two
probe end-faces (x = x′, y = y′, z = z′ + 2Zwd):

η1 =
4 f 4[ f 2+(2Z wd −l)2]( f 2+l2

)
f 4[2 f 2+(2Z wd −l)2+l2]

2
+w4

1k2[ f 2−(2Z wd −l)l]2(Z wd −l)2
, (18)

where k is the wave number and f is the confocal parameter of the output Gaussian beam,

described as f =
πnw2

1
λ .

Setting the reflector at the position of the outgoing beam waist (i.e., Zwd = l), there
exists an inclination angle θ of the reflector, according to the relationship of the coordinate
system established between the actual and equivalent probes’ end-faces (i.e., x = x′cos2θ
− z′sin2θ − Zwd sin2θ, y = y′ and z = x′sin2θ + z′cos2θ + Zwd + Zwdcos2θ). The power
coupling efficiency of the fiber optic probe is obtained as:

η2 = exp[− sin2 θ(
l2 f 2

w2
1(l

2+ f 2)
+

w2
1k2 f 2

4(l 2+ f 2)
)], (19)
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The interfering signal quality is also measured on the basis of the interferometric
fringe contrast, which is proportional to the signal-to-noise ratio of the measured signal
and is also related to the displacement-sensing sensitivity. According to Equation (2), the
fringe contrast is given by the following equation:

V =
IM − Im

IM + Im
=

2
√

Ir Is

Ir + Is
=

B
A

, (20)

where IM is the interferometric light intensity maximum, Im is the interferometric light
intensity minimum, Ir = |Er|2, and Is = |Es|2.

From the above analysis, it was found that several parameters affect the final output
beam’s waist position, waist size, and spot size, such as the distance between the single-
mode fiber pigtail and the GRIN lens (L0), the self-focusing constant b, the length Z0, the
central refractive index of the GRIN lens n1, the distance between the GRIN lens and the
NPBS L1, the dimensions of the NPBS, d0, and the material n2. The beam waist position and
size directly determine the beam coupling efficiency, η, and interferometric pattern contrast,
V, which also indirectly determine the probe working distance, Zwd, and tolerance angle θ.

Considering the equations presented so far, the structural parameters of each element
are designed in the following section. It is assumed that for the GRIN lens, b is 0.595 mm−1,
n1 is 1.591, and Z0 is 5.68 mm. The control variable method is also used to investigate
the effects of each factor on the probe working distance Zwd and tolerance angle θ in the
collimated microprobe structure. The target for these objective functions is to meet the
coupling efficiency of more than 20% while having a contrast ratio of more than 0.8 that
is continuous.

Firstly, the effect of the air gap length L0 on the working distance Zwd and tolerance
angle θ is explored. Taking L1 = 0 mm, d0 = 3 mm, and n2 = 1.50091 (N-bk7), and assuming
the output of single-mode fiber to be w0 = 5.2 µm and λ = 1.550 µm, the relationship
between L0 and the working distance Zwd as well as tolerance angle θ is obtained by
constantly varying L0 (Figure 6a,b). The collimated microprobe can work normally when
L0 is in the range of 4.3–4.5 mm (Figure 6a). With an increasing L0, the probe working
distance Zwd first increases, reaches a maximum value of 65.6 cm at L0 = 4.38 mm, and then
decreases. Moreover, with an increasing L0, the probe tolerance angle |θ| first becomes
smaller, reaches a minimum value of 0.039◦ at L0 = 4.36 mm, and then becomes larger
(Figure 6b). In summary, the distance from the single-mode fiber pigtail to the GRIN
lens L0 significantly affects the probe’s overall performance. It is difficult to ensure that a
sufficiently large working distance is obtained while obtaining a sufficient probe tolerance
angle. Considering the compromise, L0 = 4.4 mm is finally taken.

Next, the effect of the distance between GRIN and NPBS L1 on the working distance
Zwd and tolerance angle θ is explored. Taking L0 = 4.4 mm, d0 = 3 mm, and n2 = 1.50091
(N-bk7), the value of L1 is continuously changed to obtain the variation curves for the
working distance and tolerance angle (Figure 6c,d). With an increasing L1, the probe
working distance Zwd slightly decreases; therefore, L1 slightly affects the probe working
distance within the variation range of 0–60 mm. From Figure 6d, L1 also minimally affects
the probe tolerance angle within the variation range of 0–60 mm. Therefore, L1 = 0 mm is
selected considering the machining process taking into account the overall dimensions of
the probe.

Finally, the effect of NPBS dimension d0 on the working distance Zwd and tolerance
angle θ is explored considering L0 = 4.4 mm, L1 = 0, and n2 = 1.50091 (N-bk7). As seen in
Figure 6e,f, NPBS size d0 has no effect on the probe working distance Zwd or tolerance angle
θ. To match the GRIN lens size as well as the NPBS production cost, d0 = 3 mm is chosen.
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2.4. Design of a Convergent Michelson Micro-Sensing Probe

As shown in Figure 7, the converging microprobe design adds a converging lens to
the collimated Michelson microprobe structure, which converges the measurement light
onto the target to be measured and allows the microprobe tolerance angle to be increased.
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The air gap transmission matrix between the NPBS and converging lens

M4 is
[

1 L2
0 1

]
, and the Gaussian beam transmission matrix of the converging lens M5 is[

1 0
0 n3

][
1 d1
0 2

][
1 0

n3−1
−n3R1

1
n3

]
, where n3 is the refractive index of the lens, d1 is the lens

center thickness, and R1 is the curvature size of the lens.
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The final output beam waist parameter is affected not only by the collimated structure
variables but also by several new variables associated with the converging probe, such as
the distance between the NPBS and converging lens L2, the center thickness of the single
lens d1, and the size of the curvature R1 and the refractive index n3. All of these variables
affect the probe working distance Zwd and tolerance angle θ.

For the converging microprobe structure, the effects of each important factor on
the probe working distance Zwd and tolerance angle θ are investigated using the control
variable method assuming a GRIN lens with b of 0.595 mm−1, n1 of 1.591, and Z0 of 5.68 mm.
Firstly, the effect of air gap length L0 on working distance Zwd and tolerance angle θ is
explored assuming L1 = 0, d0 = 3 mm, n2 = 1.50091 (N-bk7), and L2 = 4 mm (Figure 8a,b).
The converging microprobe works properly when L0 is in the range of about 3.5–5 mm.
Increasing L0 rapidly declines the probe operating range Zwd while linearly increasing the
probe tolerance angle |θ|. It is concluded that keeping L0 in the range of 4–4.5 mm puts
the working range Zwd and tolerance angle θ in a large enough variation range.
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The effect of the distance between GRIN and NPBS L1 on the working distance Zwd and
tolerance angle θ is then investigated assuming L0 = 4.4 mm and L2 = 4 mm (Figure 8c,d).
In addition, the effect of L2 on Zwd and θ is obtained assuming L0 = 4.4 mm and L1 = 0
(Figure 8e,f). From these figures, it is concluded that L1 and L2 have an insignificant impact
on the probe’s performance parameters.

3. Results
3.1. Experimental Setup

According to Figure 1, the two Michelson structure microprobe sensors designed
above were used to build the overall fiber laser interferometer system. The laser source
used in the experiments was a distributed feedback laser (DFB) (DFB PRO BFY, Toptica,
Gräfelfing, Germany), which was modulated by a high-speed sinusoidal signal. The object
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under test was a P-733.3DD three-dimensional piezoelectric ceramic nano-displacement
stage (Physik Instrument, Karlsruhe, Germany) with an ultimate displacement resolution of
0.4 nm, which can be programmed to achieve different forms of motion. The optoelectronic
conversion of the interfering signals was implemented using an APD (APD430C, Thorlab,
Newton, NJ, USA) converted to a digital signal using a 16-bit digital-to-analog converter
(ADC). The phase demodulation occurred using the PGC algorithm, and the final demod-
ulated displacements were sent to a personal computer for display via Universal Serial
Bus (USB). All of the modulation and demodulation modules were operated in a Field
Programmable Gate Array (FPGA). All experiments were performed in an ultra-precision
clean laboratory (∆T = 0.01 ◦C/10 min) on an air-float table.

3.2. Experimental Performance Tests for Collimated Michelson Microprobes
3.2.1. Simulation Results Associated with Collimated Microprobes

Numerical simulation of the constructed collimated microprobe was carried out using
the model presented in Section 2.3 assuming a Gaussian beam waist size w0 = 5.2 × 10−6 m,
an air gap length L0 = 4.4 × 10−3 m, a GRIN lens length Z0 = 5.679 × 10−3 m, a self-
focusing constant

√
A = 0.595 mm−1, a refractive index n1 = 1.591, an NPBS length

d0 = 3 × 10−3 m, and a refractive index n2 = 1.50091. The microprobe beam waist position
was obtained at l = 16.7 cm with size w1 = 725 µm.

Firstly, the power coupling efficiency of the fiber optic sensing probe was calculated
based on the working distance Zwd and the deflection angle of the reflector. According
to Figure 9a, the probe receives a theoretically identical light wave field with an intrinsic
light field when the working distance is at the position of the output beam waist, which
caused 100% coupling efficiency. The power coupling efficiency versus deflection angle
was calculated when the reflector was at the output beam waist position (Figure 9b). When
the beam was vertically incident to the reflector, the optical power returned to the probe
was the largest. The optical power captured by the microprobe decreased rapidly with
the increase in the deflection angle when there was a deflection angle between the normal
value of the reflecting surface and the incident beam. The power coupling efficiency was
about 19% when the deflection angle of the reflector was ±0.05◦.
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In order to investigate the combined effects of working distance and mirror inclination
on the power coupling efficiency of the probe, the three-dimensional plot presented in
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Figure 9c can be used. Only when the working distance was located at the beam waist
and positive incidence could the fiber probe fully receive the reflected light field, and the
current maximum power coupling efficiency was not 100% if any of these parameters were
not in the optimal condition. When Zwd was in the range of 8 cm to 26 cm and θ was
changing between −0.01◦ and 0.01◦, the power coupling efficiency stayed above 80%, and
the fiber probe was more sensitive to the change in the reflector tilt angle (Figure 9d).

The interferometric signal contrast of the equivalent receiving fiber probe end-face was
next simulated as a function of the working distance and reflector inclination
(Figures 10a and 10b, respectively). According to these figures, the interferometric fringe
contrast varies more gently with respect to the working distance and reflector inclination
angle and maintains a better contrast within a range when compared with the simulation
results associated with the microprobe coupling efficiency. Then, both the working distance
and mirror inclination angle are varied simultaneously (Figure 10c,d). The contrast is
characterized by a gentle change, and the interference fringe contrast is theoretically greater
than 0.8 in the range of Zwd = 0 cm to 50 cm and θ = −0.04◦ to 0.04◦.
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3.2.2. Experimental Testing of Collimating Probes

The performance index of the assembled probe was tested (Figure 11). For the calcu-
lation of coupling efficiency, an optical power meter was used to measure the direct light
power out of the probe as a reference, and the optical power magnitude reflected back was
observed and recorded at different mirrors’ working distances and tolerance angles. The re-
turn light coupling efficiency as a function of working distances and tilt angle was obtained
(Figure 12a,b). In the range of a 0–70 cm distance, the coupling efficiency first increases,
reaches a maximum value of about 94% in the range of 14–20 cm, and then decreases. In
the ±0.05◦ angle working range, the coupling efficiency curve has parabolic symmetry, and
the tilt angle has a greater impact on the collimated microprobe coupling efficiency.
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To calculate the interference fringe contrast, the interference light coupled back under
different working distances and mirror angles was connected to an oscilloscope after
passing through the photoelectric converter in order to observe the DC magnitude as well
as AC components (Figures 12c and 12d, respectively). When the working distance is at
0–40 cm, the interfering signal contrast can reach more than 0.8, which belongs to the more
ideal range. The tilt angle contrast trend is similar to that of the coupling efficiency, and the
attenuation is extremely fast upon increasing the tilt angle. Therefore, the working distance
and probe tolerance angle can be up to 40 cm and ±0.03◦, respectively, for collimated
Michelson microprobe structures.

3.3. Experimental Performance Tests for Convergent Michelson Microprobes
3.3.1. Simulation Results Associated with Convergent Microprobes

The relationship between the microprobe working distance and the outgoing spot was
constructed as a model based on the ABCD transmission transformation law associated with
the complex curvature parameter q size. Assuming a distance parameter of L2 = 2 mm and
a converging lens parameters of F = 20 mm, n3 = 1.5176, d1 = 2.5 mm, and R1 = 10 mm, the
beam waist position and size were obtained at 17.60 mm and w2 = 22.363 µm, respectively.

Similarly to Section 3.2.1, theoretical models were developed for convergent micro-
probe coupling efficiency and interference fringe contrast as functions of probe working
distance and reflector inclination (Figure 13). According to Figure 13a, the coupling effi-
ciency is close to 100% when the working distance is near the output waist position. When
the working distance deviates from the waist position, the coupling efficiency decreases
sharply. As shown in Figure 13b, the reflector deflection angle should be changed to obtain
power coupling efficiency and the deflection angle when the reflector is located near the
output beam waist position. When the beam is vertically incident to the reflector, the optical
power returned to the probe is the greatest. When the reflecting surface is normal and the
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incident beam exists at a deflection angle, the optical power captured by the microprobe
decreases rapidly with an increase in the deflection angle, and the power coupling efficiency
is about 20% when the deflection angle of the reflector is ±0.8◦.
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Figure 13. Simulation of convergent micro-sensing probes (note: (a,b) denote the coupling efficiency
variations, and (c,d) denote the contrast variations).

As shown in Figure 13c,d, the contrast change trend is similar to that of the coupling
efficiency. When the working distance is at 1.75± 0.18 cm and the deflection angle of the reflector
is within ±0.74◦, the contrast can reach more than 0.8, meeting the working requirements.

3.3.2. Experimental Testing of Convergent Probes

With the same test method as that discussed in Section 3.2.2, the return light coupling
efficiency and convergence probe contrast as a function of working distance and tilt angle
are calculated (Figure 14). In the working distance range of 17.6 mm ± 0.5 mm, the coupling
efficiency increases first, reaches the maximum coupling efficiency, and then decreases. The
maximum coupling efficiency of about 90% appears near the waist. As for the tilt angle,
the coupling efficiency of 50% or more is regarded as the usable range, and the tolerance
angle range is about ±0.5◦.
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and (c,d) indicate the corresponding contrast variation curves).



Micromachines 2024, 15, 224 15 of 17

As shown in Figure 14c,d, when the working distance is at 17.6 mm ± 1.5 mm, the
interference signal contrast can reach more than 0.8. The tilt angle contrast trend is similar
to that of the tilt angle coupling efficiency, and the attenuation is extremely fast with the
increase of the tilt angle. It is then concluded that for convergent Michelson microprobe
structure, the working distance and reflector tolerance angle could reach 17.6 mm ± 0.5 mm
and ±0.5◦, respectively.

3.4. Displacement Resolution Test Results

The displacement stage was controlled to move back and forth for 0.8 nm and 0.4 nm,
i.e., to perform the test with 0.8 nm and 0.4 nm resolutions. The probe was replaced and
tested again, and the results are shown in Figure 15.
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The 0.8 nm and 0.4 nm displacement demodulation results are clearly recognizable
using our proposed probe. Although there is a directional drift in these measurements due
to the displacement stage accuracy as well as the ambient temperature, this can be reduced
by further improving the environmental stability at a later stage. Therefore, our proposed
Michelson micro-sensing structure enables the fiber microprobe laser interferometer to
achieve a sub-nanometer-scale displacement measurement accuracy of 0.4 nm.

4. Discussion and Conclusions

Today’s research on fiber optic micro-sensing probes mainly focuses on the interfer-
ometric structure of F-P cavities, a model that approximates multibeam interference as
two-beam interference for sensing. It does not take into account the measurement principle
error caused by multibeam reflection. In order to achieve sub-nanometer-level precision
displacement measurement for a micro-sensing probe, this paper first described the gen-
eral measurement principle of ultra-precision laser interference of fiber optic microprobe
and then derived and simulated the limitations associated with a fiber optic Fabry–Perot
interferometer. Subsequently, a sensing method and model for a Michelson microprobe
structure was investigated based on a self-focusing lens. The mapping relationship between
the sensing probe design parameters and measurement distance and tolerance angle was
established. Parametric simulation was carried out according to the proposed model, and
the proper design for the collimated Michelson fiber microprobe was then realized. In addi-
tion, a convergent Michelson microprobe design was completed to meet the requirements
of large-tolerance angular measurements.

The final probe design achieved the following properties: the collimated probe can
reach a working distance of 40 cm and a tolerance angle of ±0.03◦ under the premise of a
coupling efficiency of 50% or more and a contrast ratio of 0.8. The convergent probe can
reach a tolerance angle of ±0.5◦ at a beam waist of 17.6 ± 0.5 mm. The above two probes are
suitable for long-distance and large tolerance angle displacement measurement scenarios.
By applying the above probes to the fiber laser interferometer, the final displacement
resolution can reach 0.4 nm. In the future, we will focus on researching micro-sensing
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probes with longer working distances and larger tolerance angles to realize large-range
and high-precision displacement measurement.
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