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Abstract: Hydrogen sulfide (H2S) is a significant actor in the virulence and pathogenicity of fungi. The
analysis of endogenous H2S in fungi benefits the prevention and treatment of pathogenic infections.
Herein, a H2S-activated turn-on fluorescent probe named DDX-DNP was developed for the sensitive
and selective detection of H2S. Using DDX-DNP, the ability of several oral fungi strains to produce
H2S was identified, which was also validated using a typical chromogenic medium. In addition, DDX-
DNP was successfully used for the visual sensing of endogenous H2S in fungal cells via microscope,
flow cytometry, and colony imaging, along with a specific validation with the co-incubation of H2S
production inhibitors in living cells. Above all, DDX-DNP could be used for H2S detection, the
fluorescent imaging of fungi, and even the identification of related fungi.

Keywords: hydrogen sulfide; fluorescent probe; fungi; fluorescence imaging

1. Introduction

Hydrogen sulfide (H2S) was the third important signaling gas molecule discovered
in the body, after carbon monoxide (CO) and nitric oxide (NO), and it has an unpleasant
smell of rotten eggs [1,2]. Generally, H2S can be produced by enzymatic or non-enzymatic
reactions. Now, several main enzymes related to the production of H2S have been char-
acterized in mammals and bacteria, such as cystathionine-γ-lyase (CSE), cystathionine-
β-synthase (CBS), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfurtrans-
ferase (3-MST) [3–6]. CSE and CBS produce H2S through the condensation of homocys-
teine and cysteine or the α,β-elimination of cysteine, while 3-MST reductively converts
3-mercaptopyruvate to H2S [2,4,5]. In particular, in Candida albicans, CYS4 is annotated
as encoding CBS for the synthesis of H2S in the Candida Genome Database [4]. On the
other hand, polysulfides and glutathione could be converted to H2S via the non-enzymatic
pathway [6]. As a well-known endogenous gas molecule, H2S has been known to exert
all kinds of biological functions, such as relaxing vascular smooth muscles, mediating
neuronal transmission, and regulating inflammation [7–9]. However, an abnormal level of
H2S in biosystems could induce an array of malignant diseases including Down Syndrome,
Alzheimer’s disease, and diabetes, as well as accelerate the proliferation and migration of
cancer cells [10–14]. In addition, H2S, a volatile sulfur compound, is also one of the main
causes of oral malodor [15]. Excessive H2S may also irritate the eyes and respiratory tract,
resulting in the severe loss of consciousness, respiratory failure, and even death [16].

Given the biological importance of H2S, in the past few years, several methods have
been reported for H2S detection and analysis, such as colorimetry, electrochemical assay,
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and gas chromatography [17–19]. Unfortunately, few of these techniques are suitable for
living systems or for the in situ monitoring and analysis of H2S. On the contrary, compared
with the traditional methods, small molecular fluorescent probes have attracted consid-
erable attention because of their inherent advantages, for example, excellent selectivity,
high sensitivity, real-time monitoring, nondestructive visualization, convenience, and so
on [20–25].

Some fluorescent probes have been developed for the detection of H2S based on a
variety of strategies, such as (1) azides and nitro compounds being reduced to amines,
(2) the Michael addition reaction of the H2S-specific cleavage of the disulfide bond, nu-
cleophilic reaction, and thiolysis reaction, and (3) the H2S-induced metal displacement
approach and the metal indicator displacement approach [26–31]. These probes can im-
age H2S in living cells, tissue, and blood samples in vivo, even in subcellular targeting
location analysis [32–35]. Although great advancements have been made, unfortunately,
none of them has been used in microorganisms, including for fungi detection and analysis.
Hence, the design and synthesis of a highly selective fluorescent probe for monitoring H2S
in fungi is of great importance and urgently desirable to better understand the detailed
physiological and pathological effects of H2S.

In view of this, we designed and synthesized a fluorescent probe named DDX-DNP
for the detection of H2S in fungi based on the thiolysis of the dinitrophenyl ether strat-
egy [31,36,37]. Further research shows that the probe DDX-DNP has excellent optical
performance, including biological applicability and good selectivity. More importantly, this
probe successfully performed the visual sensing of endogenous H2S in fungi. To the best of
our knowledge, this technique is a pioneering and effective tool for assessing H2S changes
in the field of pathogenic infections.

2. Results and Discussion
2.1. Design of DDX-DNP and H2S Response

To achieve the detection and imaging of H2S, in consideration of its dual nucleophilic-
ity toward H2S, we introduced the 2,4-dinitrophenyl (DNP) group, which not only acts
as a recognition site but also an effective fluorescence quencher [36]. The final structure
of the designed fluorescent probe is shown in Scheme 1. In the absence of H2S, the probe
DDX-DNP exhibited a weak fluorescence signal. When DDX-DNP reacted with H2S, the
DNP group was removed from DDX-DNP so as to release the DDX-OH, exhibiting a re-
markable fluorescence signal at 620 nm. Thus, H2S was detected qualitatively by recording
the fluorescence intensity changes from probe DDX-DNP to the fluorophore, DDX-OH.
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Scheme 1. Schematic illustration of DDX-DNP detection of H2S.

2.2. Spectral Characteristics and DFT Calculations of DDX-DNP and DDX-OH

In order to evaluate the detection properties of DDX-DNP, first, the optical spectral
characteristics of DDX-DNP and the product, DDX-OH, were recorded using UV-vis
absorbance and fluorescence spectroscopy. As shown in Figure 1a, DDX-DNP and DDX-
OH displayed the maximum absorbance at 540 nm and 580 nm, respectively. Excited
by laser at 580 nm, DDX-OH showed a strong fluorescence intensity at 620 nm, while
DDX-DNP showed no fluorescence signal (Figure 1b). In addition, we also recorded the
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absorbance spectra of DDX-DNP at different concentrations (0–10 µM), and a good linear
relationship was observed between the DDX-DNP concentrations and the absorbance
values (Figure S1).
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Figure 1. The absorption (a) and fluorescence (b) spectra of DDX-DNP (10 µM) and DDX-OH (10 µM)
in KH2PO4–K2HPO4 buffer (50 mM, pH 7.4), gain = 80 (b); (c) density functional theory (DFT)–based
optimized structures and frontier molecular orbitals (MOs) of DDX-DNP and DDX-OH.

In order to gain a better insight into the fluorescence response behavior of DDX-DNP
from the perspective of the molecular orbital, the geometries of DDX-DNP and DDX-
OH were optimized, and their frontier relevant molecular energy levels were calculated
as shown in Figure 1c [36,38]. The π electrons on the HOMO level of fluorescent probe
DDX-DNP were mainly concentrated on the dihydrobenzo[c]xanthen skeleton. In contrast,
on the LUMO level, these electrons were mainly distributed in the DNP group. This
phenomenon means that a possible photoinduced electron transfer (PET) process occurs in
DDX-DNP; the electron transfer from the dihydroben-zo[c]xanthen skeleton to the DNP
group leads to a fluorescence “turn off” state. Nevertheless, the π electrons of the DDX-OH
fluorophore were mainly delocalized in the whole-molecule skeleton on both the LUMO
and HOMO levels, which resulted in a typical intramolecular charge transfer (ICT) process,
and the strong fluorescence signal was “turned on”. In addition, the calculated energy gaps
(LUMO → HOMO) of DDX-DNP and DDX-OH were 2.19 eV and 2.73 eV, respectively.

Next, the fluorescence response of DDX-DNP toward H2S at different concentrations
(0–100 µM) was also investigated. As can be seen in Figure 2a, along with the addition
of incremental amounts of H2S, the fluorescence intensity enhancement at 620 nm, in a
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concentration-dependent manner, was observed clearly, which indicated that the DNP
moiety was cut off by H2S to induce a dramatic and rapid fluorescence turn-on response.
A point worth emphasizing is that a good linear relationship (R2 = 0.9937) was observed
between the H2S concentrations and the fluorescence intensity at 620 nm (Figure 2b).
Furthermore, we measured the visual fluorescence images with a series of concentrations
for H2S (0–100 µM) and DDX-OH (0–1 µM) in 96 plates, which showed that the fluorescence
intensity gradually increased with the increasing H2S concentration (Figure 2c,d), indicating
the potential visual detection of H2S. Above all, DDX-DNP could be activated by H2S,
suggesting its application as a turn-on fluorescent probe for H2S.
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Figure 2. (a) Fluorescence spectra of reaction solutions of DDX-DNP (10 µM) with NaHS at different
concentrations (0–100 µM) and (b) the linear relationship between fluorescence intensity at 620 nm
and NaHS concentrations. (c) Fluorescence imaging of NaHS at different concentrations (0–100 µM)
using DDX-DNP (10 µM) and (d) DDX-OH (0–1 µM) in 96 plates. The time for the incubation was
1 h, at 37 ◦C in KH2PO4-K2HPO4 buffer (50 mM, pH 7.4) (a,c). λex/λem = 580/620 nm.

On the other hand, the fluorescence response of DDX-DNP toward H2S with different
incubation times, in the range of 0–180 min, was also explored. With the increase in
incubation time, the fluorescence intensity at 620 nm showed an increasing tendency, and it
appeared to be flat after 120 min (Figure 3). Therefore, we finally identified 100 µM of H2S
and an incubation time of 60 min as the key factors for the H2S fluorescence detection system
based on the above results. In addition, kinetic analysis (Figure S3) revealed that the apparent
rate constant k′ for the reaction of DDX-DNP with H2S was 0.023 min−1, and the pseudo-first-
order rate constant k for the reaction of DDX-DNP with H2S was 0.23 M−1 min−1.

Job’s Plot [39] was generated by continuously varying the mole fraction of NaHS
from 0 to 1 in a solution of NaHS + DDX-DNP with a total concentration of 100 µM. The
fluorescence intensity became the strongest when the molar fraction of NaHS was 0.5,
which indicated that the binding stoichiometry between probe DDX-DNP and NaHS is 1:1
(Figure S4).

2.3. Selectivity of DDX-DNP for the Detection of H2S

In this study, the fluorescence intensities of DDX-DNP and DDX-OH under different
pH conditions were determined and analyzed. As shown in Figure 4a, DDX-DNP showed
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almost no variation from pH 2.0 to 12.0, and DDX-OH with the hydroxyl group exposed to
the outside manifested a strong fluorescence signal from pH 6.0 to 9.0.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. The fluorescence spectra of DDX-DNP (10 µM) toward NaHS 40 µM (a), 80 µM (b), and 
100 µM (c) with different incubation times (0–180 min). (d) Time-dependent fluorescence intensity 
of DDX-DNP in the presence of various concentrations of NaHS (0, 40, 80, and 100 µM, respec-
tively). λex/λem = 580/620 nm. 

2.3. Selectivity of DDX-DNP for the Detection of H2S 
In this study, the fluorescence intensities of DDX-DNP and DDX-OH under 

different pH conditions were determined and analyzed. As shown in Figure 4a, 
DDX-DNP showed almost no variation from pH 2.0 to 12.0, and DDX-OH with the hy-
droxyl group exposed to the outside manifested a strong fluorescence signal from pH 6.0 
to 9.0. 

In order to compare the reaction rates at different pH values and confirm whether 
the probe could function smoothly under the studied physiological conditions, the fluo-
rescence intensity of probe DDX-DNP toward H2S was investigated at different pH val-
ues (Figure 4b). The probe DDX-DNP’s fluorescence intensity was enhanced noticeably 
from pH 4 to 9, and it reached the maximum fluorescent intensity at pH 7, while the 
other pH values did not exhibit any obvious fluorescence enhancement. In fact, fluores-
cence quenching occurred under strong alkali conditions. Therefore, pH 7.4 was deter-
mined to be the optimal pH for the incubation system. The incubation temperature was 
also measured, as shown in Figure S5. The reaction rate reached its maximum at 37 °C, 
and it did not continue to accelerate with the increasing temperature. 

The excellent selectivity of the fluorescent probe for the target substance is an es-
sential condition for its practical application. Thereby, we further explored the selectivity 
of DDX-DNP toward H2S. As shown in Figure 4c, in the presence of various substances 
such as common metal ions, Na+, K+, Mn2+, Ca2+, Cu2+, Zn2+, Fe2+, Mg2+, Ba2+, Ni2+, Cr3+, Fe3+, 
IO4−, SO42−, CO32−, and Cr2O72−, and natural amino acids, Glu, Lys, Tyr, Gly, His, Arg, Ser, 
Trp, and biothiols (Cys, Met, GSH), the fluorescence intensity of DDX-DNP was meas-
ured. Notably, only glutathione and cysteine could trigger a weak fluorescence signal 
enhancement and cause hardly any interference in H2S detection. Other species could not 

Figure 3. The fluorescence spectra of DDX-DNP (10 µM) toward NaHS 40 µM (a), 80 µM (b), and
100 µM (c) with different incubation times (0–180 min). (d) Time-dependent fluorescence intensity of
DDX-DNP in the presence of various concentrations of NaHS (0, 40, 80, and 100 µM, respectively).
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changes in DDX-DNP (10 µM) in phosphate buffer upon the sequential addition of various species. The
time for the incubation was 1 h (b,c). All species’ concentrations were 100 µM. λex/λem = 580/620 nm.
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In order to compare the reaction rates at different pH values and confirm whether
the probe could function smoothly under the studied physiological conditions, the fluores-
cence intensity of probe DDX-DNP toward H2S was investigated at different pH values
(Figure 4b). The probe DDX-DNP’s fluorescence intensity was enhanced noticeably from
pH 4 to 9, and it reached the maximum fluorescent intensity at pH 7, while the other
pH values did not exhibit any obvious fluorescence enhancement. In fact, fluorescence
quenching occurred under strong alkali conditions. Therefore, pH 7.4 was determined to be
the optimal pH for the incubation system. The incubation temperature was also measured,
as shown in Figure S5. The reaction rate reached its maximum at 37 ◦C, and it did not
continue to accelerate with the increasing temperature.

The excellent selectivity of the fluorescent probe for the target substance is an essential
condition for its practical application. Thereby, we further explored the selectivity of
DDX-DNP toward H2S. As shown in Figure 4c, in the presence of various substances such
as common metal ions, Na+, K+, Mn2+, Ca2+, Cu2+, Zn2+, Fe2+, Mg2+, Ba2+, Ni2+, Cr3+,
Fe3+, IO4

−, SO4
2−, CO3

2−, and Cr2O7
2−, and natural amino acids, Glu, Lys, Tyr, Gly, His,

Arg, Ser, Trp, and biothiols (Cys, Met, GSH), the fluorescence intensity of DDX-DNP was
measured. Notably, only glutathione and cysteine could trigger a weak fluorescence signal
enhancement and cause hardly any interference in H2S detection. Other species could not
render an apparent change in fluorescence intensity, which demonstrated that DDX-DNP
displayed a good selectivity for the detection of endogenous H2S.

2.4. Confirmation about the Reaction between DDX-DNP and H2S

In order to confirm the sensing mechanism of DDX-DNP for H2S, HPLC-combined
electrospray ionization–mass spectrometry (ESI-MS) analysis experiments were performed.
As illustrated in Figure S11, after incubation with NaHS, a new ion peak at m/z 320.40
was observed, which could be assigned to the product DDX-OH [M − H]−. There-
fore, the reaction mechanism of DDX-DNP for sensing H2S is proposed, as shown in
Scheme S2.

Moreover, the chromatograms were also recorded using LC–MS/MS data for the
fluorescent probe DDX-DNP, product DDX-OH, and reaction solution. As shown in
Figure S6, a chromatographic peak of the probe DDX-DNP at the retention time of 3.44 min
was observed, and DDX-DNP displayed a narrow peak at 3.29 min. Upon the addition
of NaHS, a peak at 3.44 min (DDX-DNP) along with a peak at 3.29 min (DDX-OH) was
recorded. Altogether, these results convey that the H2S-triggered thiolysis of dinitrophenyl
ether occurred, releasing the target fluorophore.

2.5. High-Throughput Screening for Fungi-Produced H2S from Tongue-Coating Fungi Strains
Based on DDX-DNP

As it is well known, redox homeostasis is essential for host colonization by pathogens,
while H2S has antioxidative properties and a protective bacterial effect against antibiotics [4],
thus further aggravating the pathogenicity of pathogens. H2S is not only generated by
bacteria, but also it has been previously reported that some fungi can produce H2S. In our
previous work, we leveraged the cultivation and sequencing of tongue-coating samples
from healthy individuals to create a massive fungi bank. Thus, we created sufficient
and convenient fungi strains for the high-throughput screening of fungi-produced H2S
based on DDX-DNP. As displayed in Figure 5a,b, eight yeast strains were identified
with high yields of H2S production from tongue-coating fungi, among which the Candida
xestobii and Wickerhamiella spandovensis strains were the most active H2S-producing strains.
Candida albicans, as a pathogen, was also previously discovered to be a H2S-producing
fungus [4].
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Figure 5. (a) The heat map of high-throughput screening of H2S-producing strains of tongue-coating
fungi generated using DDX-DNP (25 µM); (b) the quantization results of 8 potential yeast strains
with high yields of H2S; and (c) the visual detection of H2S generation of 8 yeast strains using BiGGY
agar plates.

In addition, we used the BiGGY (bismuth sulfite glucose glycine yeast) agar plate to
verify the production of H2S by these identified yeasts. Before the formal experiments, first,
we measured the selectivity of the BiGGY medium toward H2S. In the medium, bismuth
ammonium citrate could be reduced by the H2S donor NaHS to yield a brownish-black color,
while failing to react with glutathione, methionine, cysteine, and other thiol-containing
compounds (Figure S7). Therefore, this assay acts as a specific indicator to evaluate the
H2S production of fungi. As we expected, when the identified eight yeast stains were
grown in the BiGGY agar, the brownish-black color of the colonies appeared (Figure 5c),
which was consistent with the results identified using DDX-DNP, further indicating that
the developed fluorescent probe was feasible for detecting H2S.

2.6. Fluorescence Imaging of Fungi via H2S Monitoring

Inspired by its satisfying sensing performance and good selective ability, the sens-
ing of endogenous H2S in fungi by DDX-DNP was performed with validation using
2-(Aminooxy) acetic acid (AOA) as the inhibitor of H2S production in cells. Then, a fungi
imaging experiment was carried out using Candida albicans. As shown in Figure 6b, a non-
fluorescence signal was observed in the blank group, and a strong fluorescence signal was
detected for fungal cells after the co-incubation of DDX-DNP, which indicated the abun-
dant generation of endogenous H2S in Candida albicans. Furthermore, in the presence of
AOA, the Candida albicans cells co-incubated with DDX-DNP, showing weak fluorescence
intensity, which validated the specific detection of endogenous H2S by DDX-DNP. Subse-
quently, the ability of the fluorescent probe DDX-DNP to detect endogenous H2S in Candida
albicans was also verified using a flow cytometric assay. As shown in Figure 6c, compared
with the blank group (blue line), Candida albicans incubated with DDX-DNP displayed
a significant shift (orange line); however, the shift in the inhibitor group (red line) was
clearly reduced. At the same time, we also selected a fungus, W. paraugosa, which released
almost no H2S as a negative strain for fluorescence imaging experiments. There is no doubt
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that no fluorescence intensity was observed in its fluorescence field (Figure 6d), which was
in accordance with the results obtained in the fungi solution detection (Figure 5b). This
further demonstrates the highly selective characteristic of endogenous H2S sensing using
DDX-DNP. Additionally, the fluorescence imaging of Candida albicans and other yeast
strains was also determined using agar plates. The fungal colonies displayed a significant
fluorescence signal after being incubated with DDX-DNP, and the signal was measured
using the Typhoon imager (Figure 6e,f). Thus, DDX-DNP has good biocompatibility and
can achieve the detection and visualization of endogenous H2S created by living fungi,
which suggests its potential applications for fungi identification or activity assays regarding
H2S production.
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Figure 6. (a) Chemical structure of the CBS inhibitor AOA; (b) fluorescence images of C. albicans
incubated with DDX-DNP (25 µM) and in the presence of inhibitor AOA, scale bar = 25 µm; (c) flow
cytometric analysis of C. albicans (blue) with DDX-DNP (orange) or both AOA and DDX-DNP
(red); (d) fluorescence images of W. paraugosa incubated with DDX-DNP, scale bar = 20 µm; and
(e,f) fluorescence images of yeast colonies on MtB agar plates along with bright fields. The plate was
divided into three sections: (1) yeast colonies as the blank section in absence of DDX-DNP; (2) yeast
colonies incubated with 25 µM DDX-DNP; and (3) yeast colonies incubated with 1 mM AOA and
25 µM DDX-DNP.
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3. Materials and Methods
3.1. Materials and Instruments

Unless otherwise noted, all the chemical reagents and solvents were purchased from
commercial suppliers Maclin Biochemical Co., Ltd. (Shanghai, China) and Kermel Chemical
Reagent Co., Ltd. (Tianjin, China) and used without further refinement. Pepton, yeast
extract, and agar were purchased from Solarbio Science & Technology Co., Ltd. (Beijing,
China). BiGGY (bismuth sulfite glucose glycine yeast) agar medium was obtained from
Hope Bio-Technology Co., Ltd. (Qingdao, China).

1H-NMR and 13C-NMR spectra of synthesized products were measured on a Bruker-
600 spectrometer (Bruker, Madison, WI, USA), using tetramethylsilane (TMS) as an internal
standard. High-resolution mass spectra (HRMS) of synthesized products were measured
using an AB SciexX500r TOF mass spectrometer (AB SCIEX, Framingham, MA, USA). The
fluorescence microscopic images of fungal cells were obtained using a confocal microscope
(Leica, Wetzlar, Germany). The fluorescence images of fungous colonies on agar plates
were recorded using a fluorescence image analyzer (Amersham Typhoon, Tokyo, Japan).
The bioassay solutions in 96-well plates were also analyzed using an microplate reader
(Tecan, Männedorf, Switzerland). All pH measurements were taken using a pHS-3C pH
meter (INESA, Shanghai, China).

3.2. Synthetic Procedure of Probe DDX-DNP

The fluorescent probe DDX-DNP was synthesized according to the methodology shown
in Scheme S1, and the NMR and HRMS data are provided in the Supplementary Materials.

3.2.1. Synthesis of DDX-OH

DDX-OH was synthesized according to a previously reported procedure [40].
4-(Diethylamino)salicylaldehyde (1.93 g, 10 mmol) and 6-Hydroxy-1-tetralone (1.62 g, 10 mmol)
were dissolved in concentrated sulfuric acid (10 mL), and the solution was stirred at 90 ◦C
in an argon atmosphere for 6 h. The solution was cooled to room temperature and then
poured into ice water (100 mL) containing HClO4 (4 mL). The mixture was filtered to
obtain the product DDX-OH as a red solid (2.15 g, 51.2%), which was used for the next
step without further purification. 1H NMR (500 MHz, DMSO-d6) δH 8.62 (s, 1H), 8.16 (d,
J = 8.7 Hz, 1H), 7.91 (d, J = 9.4 Hz, 1H), 7.41 (dd, J = 9.3, 2.3 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H),
6.94 (dd, J = 8.7, 2.3 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 3.67 (q, J = 7.0 Hz, 4H), 3.01 (s, 4H),
1.24 (t, J = 7.1 Hz, 6H).

3.2.2. Synthesis of DDX-DNP

DDX-OH (210 mg, 0.50 mmol), 2,4-dinitrofluorobenzene (93 mg, 0.50 mmol), and
K2CO3 (207 mg, 1.5 mmol) were dissolved in CH3CN (20 mL), and the solution was stirred
at room temperature in an argon atmosphere for 1 h. The mixture was evaporated under
reduced pressure, and the crude product was purified using silica gel chromatography
(CH2Cl2: MeOH = 15:1, v:v) to obtain the product DDX-DNP as a red solid (150 mg, 51.1%).
1H NMR (600 MHz, CDCl3) δH 8.88 (d, J = 2.6 Hz, 1H), 8.51 (s, 1H), 8.48 (dd, J = 9.4, 2.6 Hz,
1H), 8.40 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 9.4 Hz, 1H), 7.38 (d, J = 9.1 Hz, 1H), 7.25 (dd, J = 9.6,
2.2 Hz, 1H), 7.17 (dd, J = 8.7, 2.2 Hz, 1H), 7.12 (d, J = 2.2 Hz, 1H), 7.07 (d, J = 2.2 Hz, 1H), 3.69
(m, 4H), 3.13 (m, 4H), 1.37 (t, J = 7.0 Hz, 6H). 13C NMR (150 MHz, CDCl3) δC 162.0, 159.2,
159.0, 156.2, 153.7, 148.9, 144.9, 143.0, 140.6, 132.6, 129.6, 129.3, 123.7, 122.1, 121.8, 121.1,
119.6, 119.3, 118.8, 118.3, 96.2, 46.5, 27.1, 24.9, 12.7. HR-MS m/z 486.1645 (C27H24N3O6

+),
calcd for 486.1660.

3.3. Density Functional Theory (DFT) Calculations

All computations were performed in GaussView 6.0.16 using Gaussian 16. The
B3LYP/6-31G(d) basis set method was applied to optimize the low-energetic conforma-
tions of DDX-DNP and DDX-OH using density functional theory (DFT). Then, the lowest
unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO)
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calculations were performed using Mos tool in GaussView 6.0.16, through a fchk-type file.
The calculation was not limited by bonds/angles/dihedral angles, and all atoms could be
freely optimized.

3.4. High-Performance Liquid Chromatography–Mass Spectrometry of DDX-DNP and DDX-OH

An HPLC–MS/MS-system Triple Quad 4500 MD (AB SCIEX, USA) was utilized to
identify DDX-DNP and DDX-OH in the reacted solution. The MS parameters were op-
timized as follows: for DDX-DNP, Q1 Mass 487.1Da, Q3 Mass 440.0 Da, Declustering
Potential (DP) 110.0 volts, collision energy (CE) 50.0 volts; and for DDX-OH, Q1 Mass
321.2 Da, Q3 Mass 277.0 Da, DP 110.0 volts, CE 53.0 volts. The mobile phase was com-
posed of A (0.1% v/v formic acid aqueous solution) and B (acetonitrile). Next, the HPLC
elution conditions were optimized as follows: 0–1 min: 90% A; 1–2.5 min: 90–0% A;
2.5–4 min: 0% A; 4.0–5.5 min: 0–90% A; and 5.5–6.5 min: 90% A. The flow rate and the
column temperature were set to 0.3 mL/min and 40 ◦C, respectively. Subsequently, the
solutions of DDX-DNP and DDX-OH and the reacted solution of DDX-DNP and NaHS
were injected, respectively. Finally, all the data were collected and processed using Analyst
1.6.3 software.

3.5. Spectroscopic Measurements

Unless otherwise noted, all measurements were performed in KH2PO4-K2HPO4 buffer
(50 mM, pH 7.4). H2S was prepared from NaHS, which is a common donor and a standard
source for H2S. The stock solution of the probe DDX-DNP (25 mM) was prepared in DMSO
and then diluted to the desired concentration prior to the next experiment. The fluorescence
spectra of the resultant solution were recorded using the maximum absorbance wavelength
of the corresponding fluorophores as the excited wavelength (DDX-OH: λex = 580 nm).

Fluorescence response tests of DDX-DNP (10 µM) towards NaHS at different concen-
trations (0–100 µM) were performed in KH2PO4-K2HPO4 buffer for 60 min, incubated at
37 ◦C. Meanwhile, the fluorescence responses of DDX-DNP (10 µM) towards NaHS (0, 40,
80, and 100 µM) with different incubation times (0–180 min) were investigated in phosphate
buffer, when incubated at 37 ◦C.

For the effect of pH on the fluorescence probe, different pH values of the phosphate
buffer from 2.0 to 12.0 were adjusted by supplementing appropriate volumes of standard
phosphoric acid or potassium hydroxide, which were used for the fluorescence intensity
detection of DDX-DNP.

3.6. Kinetic Studies [38]

The reaction of DDX-DNP (10 µM) with H2S in KH2PO4-K2HPO4 buffer (50 mM,
pH 7.4) at 37 ◦C was monitored by measuring the fluorescence intensity (E). The apparent
rate constant for the reaction was determined by fitting the fluorescence intensity of the
samples to the pseudo- first-order equation:

ln((Emax − Et)/Emax) = −k′t (1)

where Et and Emax are the fluorescent intensities at 620 nm at times t and the maximum
value obtained during the reaction. k′ is the apparent rate constant. The pseudo-first-order
rate constant k (M−1 s−1) was obtained from Equation (2),

k′ = kC (2)

where C is the concentration of H2S.

3.7. Selectivity Evaluation

The selectivity of DDX-DNP toward H2S and other species regarding the fluorescence
intensity of DDX-DNP was evaluated in the presence of various ions and amino acids,
such as NaCl, KCl, MnCl2, CaCl2, CuSO4, MgCl2, BaCl2, ZnCl2, FeCl2, FeCl3, CaCO3,
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KIO4, K2Cr2O7, tyrosine (Tyr), glycine (Gly), histidine (His), arginine (Arg), serine (Ser),
tryptophan (Trp), glutathione (GSH), methionine (Met), lysine (Lys), cysteine (Cys), and
myristic acid. All species’ concentrations were 100 µM.

3.8. Fungi Strains and Cultivation

All the yeast strains from a single colony were initially propagated in liquid martin
broth modified medium (MtB), supplemented with or without 2% agar, at 32 ◦C in an
orbital shaker (130 rpm) or a constant-temperature incubator. The yeast strains studied
in this work are listed in Table S1. The fugal cells were cultured to an optical density at
600 nm (OD600) of 0.8 to 1.0, namely, culturing up to the logarithmic phase for experiments.

3.9. DDX-DNP High-Throughput Screening for H2S Production by Tongue-Coating Fungi

All the yeast strains were cultured in the MTB medium for at least 24 h to obtain
enough fungal cells with an OD value of 1.0. Then, the probe DDX-DNP (25 µM) was
added into the culture for co-incubation with yeast for about 4 h at 32 ◦C. After the fungal
supernatants were harvested using centrifugation at 20,000× g for 10 min, the super-
natant solutions were used to measure the fluorescence spectra using a microplate reader
(λex 580/λem 620 nm).

3.10. Fluorescence Imaging of Fungi via the Detection of H2S

The potential hydrogen sulfide-producing strains were cultured on MTB agar for
3–5 days. Fungal colonies were observed on the plates at 32 ◦C; then, the plates were
divided into three regions, and DDX-DNP (25 µM) was sprayed on to the fungal colonies
and incubated for 4 h at 32 ◦C. The inhibitor group were preincubated with AOA (1 mM)
for 2 h at 32 ◦C. Finally, the plates were scanned using an Amersham Typhoon RGB
(λex = 532 nm).

Candida albicans and negative strains were cultured in the MTB medium; then, DDX-
DNP was added into the medium with a final concentration of 25 µM and incubated at
32 ◦C for 4 h. The inhibitor group were preincubated with AOA (1 mM) for 2 h at 32 ◦C.
After washing the whole cells three times with PBS, they were dropped into glass slides
and immobilized with coverslips for imaging experiments. Finally, the imaging cells were
observed using a Leica Confocal Microscope with λex 561/λem 602–650 nm. The fluorescent
signal was also recorded using flow cytometry. A total of about 10,000 events were collected
for data analysis, without using specific gating policies. The data were analyzed using
FlowJoversion v10.8.1 software.

4. Conclusions

To sum up, we designed and synthesized a turn-on fluorescent probe for monitoring
H2S based on the H2S-triggered thiolysis of the dinitrophenyl ether strategy. In the presence
of H2S, the fluorescent probe DDX-DNP exhibits a remarkable fluorescence enhancement at
620 nm. More importantly, DDX-DNP was the first fluorescent probe successfully used for
the fluorescence bioimaging of H2S in fungi. In short, DDX-DNP, as a turn-on fluorescent
probe activated by H2S, can be used for H2S detection, as well as for the visual sensing of
endogenous H2S in living fungi.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29030577/s1.
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