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ABSTRACT 
 

Horticulture is a versatile field which encompasses a plethora of day to day strategic decisions like 
varietal selection, optimisation of resources, understanding the mechanisms of the phenology, 
identification of plant invaders both in the micro and macro level, wise and judicious use of plant 
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protectants, yield prediction & assessment, post harvesting & handling, strategic way of 
understanding the pulse of consumer’s popular demands and efficient way of marketing. Fruit trees 
are perennial unlike annual vegetable and cereal crops where there is a high prerequisite for 
efficient modelling of canopy architecture, photosynthesis, nutrient uptake, pest forecasting etc 
where the ill-effects of climate change are bringing out huge losses in the existing germplasm, 
annual turnover of the farmers and emergence of unheard pests and diseases. An invincible 
foresight or preparedness against such vagaries can be brought out by efficient modelling 
mechanisms combining the physiology, phenology and vital requirements of fruit trees with the 
interacting ecosystem of the land where it is present. Extrapolating such models from the local level 
to a general situations always gives fruitful results and it further aids in strengthening the present 
protocols. With the advancement of machine learning and deep learning in precision agriculture, 
problems of farmers and orchardists are being solved at a faster pace with the help of sensors in 
identification of problems and its alleviation using fast and error-free processing at pre-harvesting, 
harvesting and post-harvesting stages of fruit crops. In fact it is also one of the major concerns 
among people regarding the complete replacement of human power in the crucial decision support 
systems for agriculture and farming. 
 

 
Keywords: Modelling; phenology; machine learning; deep learning. 
 

1. INTRODUCTION 
 
A good decision support system is based on 
contemplating on the real picture of the situation 
and formulating procedures or solutions to bring 
it under control. [1] defined a model as the 
“schematic representation of the system”. As we 
are in an era witnessing the brunt of catastrophic 
climate change, the use of crop modelling will 
definitely help in saving our crops from the 
dreadful effects of biotic and abiotic stresses to a 
great extent with a scientific conviction of 
practical actions and futuristic vision. During the 
last two decades, horticulture has also developed 
in the area of crop modelling. Like in every field, 
some of the concepts, tools, approaches and 
bottlenecks are also applicable in this field. 
Plenty of information has been contributed to the 
horticulture community in the field of crop 
modelling by three working groups of 
International Society for Horticultural science 
(ISHS) namely, the ‘Modelling plant growth, 
environmental control and green house 
environment’ group, the ‘computer modelling in 
fruit research and orchard management’ group 
and the ‘Timing field production of vegetables’ 
group [2][3] opined that it may be anticipated that 
a branch of science will reach the stage where 
the linkages between theory and experiment are 
most effectively made by using the language of 
mathematics as it moves from the qualitative to 
the quantitative. USDA in the year 2007 defined 
crop models as computer programmes that 
simulate how crops grow and develop. 
 
Tree modelling is a thorough revision of crop 
phenology linked to changing climatic conditions 

and it uses a variety of models, such as 
phenological models of diverse plant systems, 
water models, nutrition and nitrogen dynamic 
models etc to predict the specific behaviour of 
plants in a changing climate [4]. The majority of 
horticultural plants have discontinuous canopies, 
which have complicated effects on gas 
exchange, light interception, and aerodynamics 
and because of these problems, coupled 
techniques that combine crop physiology and 
micrometeorology have been justified [5], [6]. 
Studies by [7] reported on the impact of rising 
global temperature on stone fruits and thereby 
stressing the significance of lowering the winter 
chilling requirements and shifting the areas of 
production explicitly. Crop modelling is also a 
very useful tactic which can be used at the 
operational level to stimulate some of the short 
term processes such as CO2 and water vapour 
exchange that interact with the green house 
climate, thereby maintaining the day-day carbon 
accumulation in the plant which further helps in 
the crop growth [8] as shown in Fig. 1. 
 
Models are the most used teaching aids for 
communicating horticultural principles to the 
students. A simulation model of the carbon 
supply and demand for reproductive and 
vegetative growth in peach trees (PEACH) was 
developed using the premise that carbohydrate 
partitioning is controlled by competition among 
individual plant organs, based on each organ's 
growth potential. Scientists get a lot of benefits 
from crop modelling in prioritising research areas 
and understanding the importance of certain 
parameters involved in the interactions in soil-
plant-atmosphere system [9]. Crop models based 
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on phenology, epidemiology and insect control 
helps in taking strategic management decisions 
and optimisation of resources with accurate 
predictions and warning systems. The 
introduction of machine learning models and 
artificial intelligence technology helps in flawless 
predictions from unseen data sets and leads to 
smart decision support systems. Now a days 
protected cultivation techniques and post-harvest 
industries automated with high resolution sensor 
technologies avoids the perils of human error 
and brings out maximum productive results. The 
main objective of this review is to narrow down 
the technological gap between the conventional 
and modern technologies in the area of crop 
modelling in horticulture crops and to know the 
ways in enhancing decision support systems with 
the use of such models on a timely basis so as to 
bring fruitful results throughout the production 
cycle of fruit crops. 
 

2. CLASSIFICATION OF MODELS 
 
Models can be classified in to conceptual, 
mathematical and physical [10]. Conceptual 
models are centred on a hypothesis from a deep 
thought or scientific imaginations. Physical 
models are experimental subsystem unit 
representing a whole system and are not 

involved in the explanation of biological systems. 
Mathematical models are the most widely used 
one where the behaviour of the system is 
described mathematically through equations and 
assumption of hypothesis is done quantitatively 
with deduction of its consequences. Different 
classes are there within the mathematical models 
of which empirical models and mechanistic 
models are most important. Both empirical and 
mechanistic models can be deterministic which 
includes the use of definite quantitative 
predictions or stochastic which uses random 
predictions and have a range of distributions [11]. 
They can either be continuous or discrete. 
Simulation models and optimisation models 
depends on mathematical modelling.  
 

2.1. Empirical Models 
 
It includes direct descriptions of observed data 
without any scientific content which are usually 
expressed as regression equations and are used 
to obtain the final data. Regression equation is 
based on one or a few factors. This model is 
used to study the effect of fertilizer application 
with the crop yield, relationship between leaf 
area and leaf size in a given plant species [12]. 
The mechanisms behind the processes which 
gives rise to response isn’t studied here. 

 
 

 
Fig 1. Representation of an organised structure for managing greenhouse climate and crop. 
On-line control sets point tracking and transfer of informations and conveying actions, crop 
modelling represents the operational level which stimulates transient factors interacting with 

the green house climate. Tactical level uses models needed to link the comprehensive 
approach of crop management throughout the crop cycle and climate control to yield 

formation [8] 
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2.2. Mechanistic Models 
 
A mechanistic model is one that breaks down a 
system's behaviour into its lower-level properties. 
The lowest levels therefore have a mechanism, 
understanding, or explanation (such as cell 
division). This model has the ability to resemble 
important physical, chemical or biological 
processes and also describes how and why a 
particular response occurs [12]. This model 
explains the relationships of dependent variables 
influencing a process. The first mechanistic 
model was that of processed-based models 
focusing on photosynthesis, respiration, 
transpiration and its influence on the growth of 
the plant and here plant growth is modelled as a 
process dependent on environmental conditions 
such as light, temperature, and CO2 
concentrations [13], [14]. Some of the processed-
based models are given in Table 1. 

 
2.3. Deterministic Model 
 
A deterministic model makes accurate 
predictions for quantities for eg: rainfall or crop 
yield without any probability distribution, variance 
etc. In some cases it brings unsatisfactory results 
e.g. in rainfall prediction. The more uncertain the 
system, the less useful deterministic models are. 

 
2.4. Stochastic Models 

 
According to [22], different outputs are provided 
along with probability for each combination of 
fixed inputs. It is advisable to create a stochastic 
model that provides an expected mean value as 
well as the related variance when variation and 
uncertainty are at a high level. Whenever proper 
results aren’t obtained from an experiment, it is 
advisable to use stochastic models. 

 

2.5. Simulation Models 
 
This model is designed for the purpose of 
replicating a system's behaviour. Computer 
models that represent a system in the actual 
world are used in simulation models with 
mathematical representation. Estimating 
agricultural productivity as a function of weather, 
soil, and crop management is one of the 
fundamental objectives of crop simulation 
models. It requires a large amount of input datas 
and satisfactory management strategies for the 
model to function properly at a lower cost. 
Simulation models are designed to provide 
dynamic, quantitative and frequently visual 

solutions to scientific concerns [23]. The other 
advantages of simulation models include 
climatically-determine the yield in various crops, 
scoping best management practices under a 
given cropping system, to study the potential 
climate change projections, improvement in the 
experiment documentation and data organisation 
and breeding new crop varieties by 
understanding the genotype × environment 
interactions. 

 

2.6. Static and Dynamic Model 
 
With relation to the time, static model describes 
static objects which doesn’t get changed with the 
influence of time and dynamic model, when the 
state of the object changes according to the time. 
 

2.7. Optimising Models 
 

This model serves the purpose of finding out the 
best option in terms of management inputs for 
the successful operations of the system. Some 
important set of instructions are adopted which 
can fit best with the intriguing problem. 
 

2.8. Functional- Structural Plant Models 
(FSPM) 

 
This model can determine the 3D architecture of 
the plant influenced by the natural physiological 
processes which are affected by environmental 
factors. It can combine structural information with 
physiological functions making it as a useful tool 
in describing the realistic growth and the 
development of the crops [24]. Different 
modelling strategies have been utilised in 
different models with different elementary units 
[25], [26]. The different elementary units are 
“metamer/phytomer” which consist of node with 
axillary leaf, axillary buds and an internode [25], 
“growth unit”, a part of an axis that is formed as a 
result of non-stop elongation [27], “axis” which is 
a sequence of units of growth in same general 
direction from one (monopodial) or more 
(sympodial) meristems [26] and “branching 
system” which is an organisation of branches 
within the same plant [28]. Different formalisms 
have been proposed for the developmental 
processes, of which language based using L-
system grammar [29] is most commonly used 
one. An insight in to the source-sink relation is 
also obtained from FSPMs such as L-peach [30], 
L-Kiwi [31] and Lignum [32]. The GreenLab 
model is a stochastic and discrete mathematical 
functional structural plant model which make use 
of the conjunction of functional and structural 
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descriptions for physiological processes with the 
elemental repeats like “phytomer” [33]. FSPM 
takes in to account other components such as 
photosynthesis, respiration, nutrient uptake and 
light interception besides canopy structure & 
architecture and root system of the trees. 

 
2.8.1 Structure and architecture of perennial 

fruit trees 

 
The fundamental elements of tree development 
are identified by the architectural models of trees. 
A few fundamental ideas, including axis types 
with monopodial or sympodial ramifications and 

axial or terminal flowering are the foundation of 
architectural forms and their repetitions. Today it 
is commonly acknowledged thatwith the structure 
of plants is the consequence of a succession of 
elemental repeats like “metamer” /“phytomer” (a 
structure comprising an internode which ends in 
a node on which organs such as leaves, fruits 
and axillary meristems are attached), “axis” 
(represents meristem’s functioning), “branching 
process” prevailing in a tree and finally the 
“growth unit” (a part of an axis formed as a result 
of nonstop elongation). The different examples of 
models with the corresponding species and its 
elemental repeats are given in Table 2. 

 
Table 1.  List of some processed-based model along with the corresponding species and the 

process which it deals with along with references 
 

Name of 
the model 

Species Processes it related with References 

- Actinidiadeliciosa Acquisition of carbon and its utilization, 
hydrolysis and restoration of carbon 
reserves and maintenance of perennial 
biomass 

[15] 

PEACH Prunuspersica Carbohydrate partitioning, growth, 
photosynthesis, respiration, carbon supply 
& demand  

[16] 

ALMOND Prunusdulcis Carbohydrate partitioning, growth, 
photosynthesis, respiration, carbon supply 
& demand 

[17] 

QualiTree Prunuspersica Horticultural practices: (thinning, pruning 
and irrigation) influence fruit quality and 
growth 

[18] 

VitiSim Vitisvinifera Carbon partitioning and carbon balance, 
respiration of organs and daily 
photosynthetic rate 

[19] 

OliveCan Oleaeuropaea Water balance: root water uptake, soil 
evaporation, drainage and precipitation 

Carbon balance: partitioning of assimilates, 
maintenance and growth and respiration 

[20] 

MaluSim Malus× domestica Fixed carbon, respiratory costs, carbon 
exchange among the plants, effect of 
environmental changes and cultural 
practices on dry matter 

[21] 

 
Table 2. List of models along with the corresponding crops using different elemental repeats 

and its reference 

 
Name of the model Crop scientific name Elemental repeats Reference 
LIGNUM Pinussylvestris L. Growth unit [34] 
INCA Juglansregia Growth unit [35] 
L- KIWI Actinidiadeliciosa metamer [36] 
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2.8.2 Canopy architecture of perennial fruit 
trees 

 
[27] reported some models based on canopy 
architecture and called as 
architectural/geometrical models. Plant 
architecture description is based on three types 
of information: composition, geometry and 
topology [37], [38]. The definition of the three 
types of information given by the authors are 
given    below: 

 
Composition: Different types of elements which 
composes the plant constitutes its composition. 
Plant architecture is described from simplest to 
most detailed by some representations like 
globular, modular and multi-scale [38]. In 
globular representations, plants are considered 
as whole. Some of the geometric figures like 
ellipses and cylinders are used to describe the 
trunk and canopy of the plants. In modular 
approach, plant is described by selecting any of 
the repeating units that composes the plant i.e. 
metamers, growth units and axis [39]. Multiscale 
representation is based on objects that can be 
described at every scale [40], which can 
completely describes the complexity of plant 
architecture. The multi-scale tree graph (MTG) is 
the result of several tree graphs, each one at 
different scale. 

 
Geometry: shape and spatial position of 
components like leaves, fruits, internodes or 
different types of growth units. The spatial 
distribution of leaves can be associated with the 
light interception and arrangement of roots and 
its ramifications predict its uptake efficiency to 
nutrients and water present in the soil. 
Geometrical representations always provides a 
detailed perception about the interaction                      
of plants with its micro-environment [41], [42], 
[43]. 

 
Topology: characterizes the connection between 
the elements. They can be described by using 
specific formalisms such as Lindenmayer-system 
or L-system. In L systems, a module is defined 
as repeated plant units such as metamer, apex 
and branch. It mainly consists of a set ofrewriting 
rules. Problems with carbon partitioning are also 
addressed using plant topology [38]. Pipe model 
theory is used to simulate the thickness of 
stimulated stems and roots as well as xylem and 
phloem conduits [44], [45]. According to the "pipe 
model theory," the total cross sectional area of 
stems and branches at a given height is 
proportionate to the total number of leaves 

present above that height [46]. By joining 
together unit pipes that represent plant parts, 
complex branching systems can be modelled. 
With the aid of magnetic or sonic digitizers [47], 
[48], allometric relationships [49], [50] or by the 
use of photographs [51] plant topology can be 
evaluated. 

 
2.8.3 Aerial parts of perennial fruit trees 
 
According to [52], it is very important to study the 
types of shoots (long/ short shoots/ shoots with 
already formed/ newly formed organs and 
diameter), organ development and form 
(phyllotaxy, shape, orientation and size), types of 
branches (monopodial/sympodial) and form of 
the tree (cone/globular). A Markov process is a 
stochastic process that satisfies the Markov 
property, also known as "memorylessness," 
which essentially states that one can predict a 
process's future based only on its current state, 
i.e., the system's present state determines both 
its future and past states [53]. For assessing the 
branching patterns along the trunks of various 
apple cultivars, local-scale empirical models 
were created [54]. Markov models were used to 
observe and empirically describe a sequence of 
separate homogenous zones along the trunk 
[55]. These Markov models were also used to 
analyse the zones seen in peach tree shoots of 
various lengths [56]. Markov models and semi-
Markov models are used to statistically assess 
the transitional probability between two zones 
[57]. Some of the examples in which Markov’s 
models and semi- markov’s is applied in fruit 
crops are GrapevineXL in grapevine [58], L-
ALMOND in almond [59], [60], L-KIWI in Kiwi 
[61], L-PEACH in peach [30] and MappleT in 
Apple [62]. 

 
2.8.4 Root system of perennial fruit trees 

 
To accurately depict the functioning of the entire 
plant, root apparatus modelling is essential [63], 
[64]. Since the root system is underground, 
mapping root architecture is more challenging 
than mapping the canopy since invasive and 
destructive approaches are required to 
investigate it [65]. In FSPMs roots are poorly 
represented and they are collectively considered 
as single module only and in herbaceous crops, 
it is widely dealt with considering each and every 
aspects of root system. In perennial fruit crops, 
there are some complexities like the root 
mortality of fine roots and structural roots. Some 
of the root apparatus modelling used in fruit 
crops are given in Table 4. 
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Table 3. List of root apparatus modelling used in the fruit crops along with its purpose and 
references 

 

Crop FSPM Model name Purpose References 
Walnut INCA Root system is described very simply 

by three compartments: (taproot, 
coarse root and fine root) 

[35] 

Walnut SIMWAL 
(SIMulatedWALnut) 

Root system is described very simply 
by three compartments: (taproot, 
coarse root and fine root) 

[66] 

Plum - Dynamic 3D representation of the root 
system architecture of plum including 
two information levels (i) typology of 
root axes and (ii) a set of basic 
processes like axial & radial growth, 
ramification & reiteration and decay 

[67] 

Kiwi L-KIWI Root growth is modelled considering 
only the fibrous roots 

[31],[45] 

Almond drainage lysimetermodel Emperical experiments regarding the 
effect of nutrients 

[68] 

 

Table 4. List of models focusing on light interception in tree canopies with its purposes and 
the approach it is based on along with references are given below 

 

FSPM Model name Purpose Approach which it 
is based on 

References 

The nested radiosity 
model 

Modelling of distribution of natural 
light 

Turbid medium 
approach (Monsi 
and Saeki 1953) 

[41] 

RATP Simulates the spatial distribution 
of radiation absorption, 
transpiration and photosynthesis 
inside the canopy 

Turbid medium 
approach (Monsi 
and Saeki 1953) 

[71] 

Quali Tree model Computation of photosynthetic 
active radiation (PAR) 
considering the canopy 
composed of geometric figures  

Attenuation based 
on Beer-Lambert’s 
law 

[18] 

 
2.8.5 Light interception in fruit tree canopies 
 

Light harvesting capacity of the tree canopy has 
an important role in enhancing the productivity of 
the fruit trees. There are different strategies for 
modelling the light interception in trees. Monte 
Carlo ray tracing method [69] is one of the most 
important effective tool in computing the path and 
interaction of multiple photons with the leaf 
surfaces until they leave the tree surface or get 
absorbed [70]. Later a new approach came out 
from this method called QuasiMS and was first 
used in the model L-KIWI. Some of the models 
focusing on light interception in the canopy of the 
trees are given below in Table 4. 
 

2.8.6 Photosynthesis and respiration 
 

Photosynthesis provide energy and carbon 
skeleton for various biological processes and its 

estimation is done by noting leaf area at a given 
amount of light in various time intervals of 
minutes to hours and then summed up for total 
daily photoperiod, estimation of canopy 
photosynthesis and usage of a very concise 
programming language called “L-systems”. The 
different models useful in calculating canopy 
photosynthesis along with their use is given in 
Table 5. 
 

2.8.7 Carbon partitioning in fruit crops 
 

The general equation followed in plants 
regarding net photosynthesis is gross 
photosynthesis minus respiration in plants. When 
photosynthesis takes place in mature leaves, the 
photosynthates moves through the phloem in to 
the sink organs such as fruits, shoots and roots. 
Quali tree model used in Prunuspersica make 
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use of carbon balance computation from the 
cumulative addition of photosynthesis from the 
carbohydrate reserves. After that, carbohydrates 
are allocated to each organ to fulfil the 
maintenance respiration and the growth of new 
leaf shoots and then to the organs where carbon 
supply didn’t reach for maintenance respiration. 
After meeting all the requirements, finally the 
remaining carbon allocation gets done for the 
growth requirement of plants. Similarly the fruit 
tree models along with the principle of 
carbohydrate distribution is given below in Table 
7. 
 

2.8.8 Uptake of nutrients through roots and 
hydraulics in perennial fruit trees 

 

To create a plant nutrition model, it is necessary 
to understand the distribution and architecture of 

roots [77]. According to [78], main factors 
regarding the carbon acquisition depends on light 
intensity while nitrogen uptake depends on its 
concentration in the soil. Some of the functional 
structural plant models and plant based models 
which has been integrated with the nutrient 
modelling are found in peach [79] and in 
grapevines [80], [81]. Pipe model theory can be 
used to model xylem circuit in which stems as 
well as branches are considered as the 
assemblage of pipe units each supporting one 
leaf [46]. Some of the models like L-KIWI 
employs an aspect-oriented approach 
considering water flow which takes into account 
leaf transpiration fluxes, leaf water potential and 
soil water potential. 

 

Table 5. List of models useful in calculation of canopy photosynthesis with its purpose along 
with the references are given below 

 

Name of the 
model/Approach/Strategy used 

Purpose References 

Big leaf model Used to estimate canopy photosynthesis as a 
daily canopy light response to daily intercepted 
radiation based on incident radiation and 
fractional interception using Beer’s law and 
exposed leaf photosynthesis 

[72] 

“L-Systems Base on plant growth pattern, it can calculate 
light interception and canopy photosynthesis 
and was first used to model a peach tree 

[73] 

Farquhar-von Caemmerer-Berry 
(FvCB) model 

Biochemical model of photosynthesis of C3 
plants using light responsive curve 

[74] 

Coupled approach  It considers environmental and leaf parameters 
as well as stomatal conductance (gs). 

[75] 

 

Table 6. List of models useful in carbon partitioning along with the principle by which the 
carbon flow is based on and the references are given below 

 

Name of the model Principle by which the carbon flow is based on References 
LIGNUM Functional balance (Nikinmaa, 1992) with pipe model 

hypothesis (Shinozaki et al. 1964 a) describes the 
relationship between biomass and tree cross-sectional area 

[34] 

INCA Potential source: carbohydrates pool and sink demands [35] 

L-PEACH Potential growth [30] 

L-KIWI Carbohydrate availability from sources [31],[45] 

L-ALMOND Location of sources relative to sink with tree architecture and 
the resistance between source and sink 

[60] 

L-PEACH Carbon transport resistance allocation model (C-TRAM) 
(Prusinkiewiczet al. 2007) 

[30] 

L-system approach Munch hypothesis (Münch, 1927) 
Michaelis–Menten sources and sinks (Thornley and Johnson 
1990) 

[76] 

SIMWAL Based on proportional model (Wilson, 1967), photosynthates 
allocated to each sink were proportional to its demand without 
exceeding it 

[66] 
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2.9 Phenology Based Models in Perennial 
Fruit Crops 

 
Perennial fruit trees responds to the 
environmental cues at different rates. 
Temperature, solar radiation and water 
availability are assumed to be the key regulators 
of plant phenology [82]. For crop management 
practises including irrigation, fertilisation, 
pesticide application and harvesting, planning at 
the farm scale and assessment of the 
phenological stages is crucial [83], [84], [85], 
[86]. When pesticides and fertilisers are applied 
more effectively at the right time and irrigation 
&crop harvesting activities are planned properly, 
production costs and environmental risks are 
decreased to a great extent and the realisation of 
these objectives are met by phenological models 
[87]. The 1950s witnessed the first time 
introduction of the concept “growing Degree 
Days” for the creation of phenological models 
[88]. The chilling hours model, which dates back 
to the 1800s is the most reliable way to calculate 
how many units of low temperature are required 
to break a plant's absolute dormancy and this 
model assumes that effective temperatures fall 
between 0 and 7.2 degrees Celsius, and that 
each hour at these temperatures counts as one 
chilling hour and gets accumulated throughout 
the dormant period [89]. With the advancement 
of technologies for meteorological data 
recorders, simulation models for the dependence 
of plant growth and development on weather 
have been developed in the field of horticulture. 
 
Spring apple phenophases are facing the 
consequences of global warming and recently 
the gradual increase in the warm temperatures in 
the late winter or the early spring accelerates 
their premature development resulting in 
breaking of its endo and ecodormancy and its 
susceptibility to subsequent frost [90], [91]. [92] 
evaluated the phenological dynamics and late-
spring frost risk on apple trees 
(MalusdomesticaBorkh. cv. Fuji) in the Loess 
Plateau of China, taking into account the entire 
phenophase of apple trees in spring using four 
phenological models and the quantification of 
late spring frosts with two frost indices like AFD 
(accumulated frost days) and AFDD 
(accumulated frost degree days). [93] reported a 
novel simulation model (SIMBA-POP) based on 
the cohort population ideain order to forecast 
phenological patterns of the population and 
harvest dynamics in banana cropping systems. 
The model was calibrated and verified using field 
data from the French West Indies (Guadeloupe 

and Martinique) for Musa spp., AAA group, cv. 
Cavendish Grande Naine. It is capable of 
predicting banana harvesting dynamics (date and 
quantity of harvested bunches) that vary over 
time pretty accurately. In order to anticipate the 
yield of jujube (Zizyphusjujuba) orchards of 
various ages, [94] improved the WOFOST model 
by using the total dry weight (TDW) of new 
organs (initial buds and roots) and the outcomes 
showed that one of the crucial factors for 
precisely predicting the output of these fruit trees 
is the age of the orchard. Additionally, WOFOST 
proved effective at simulating the stages of 
phenological development of ripe fruits 2 to 3 
days ahead of field observations. 

 

2.10 Epidemiological Models of Fungal 
Diseases in Fruit Crops 

 
Climate change is the root cause for various 
diseases in fruit crops. According to [95], the 
climate has a substantial impact on plant 
diseases since it may change the physiology and 
resistance of the host as well as the rates at 
which pathogens develop. Epidemiology deals 
with the interaction of host, pathogen and 
environmental factors which forms the back bone 
of disease triangle. There are multiple reasons 
behind the formation of a disease in plant by an 
invading pathogen and its pathogenicity. Abiotic 
stresses including heat and drought can change 
general defence mechanisms that impair plant 
resistance in addition to increasing plants' 
vulnerability to infections [96]. Any pathogen can 
only survive in a specific range of temperatures, 
and its experiencing temperatures on a particular 
location can also affect the pathogen's 
production times [97]. Similarly one of the major 
factor such as precipitation also affects the 
dynamics of plant diseases by changing the 
physiological makeup of plants as well as the 
pathogens' capacity to live, spread, and infect 
hosts [98], [99]. When predicting the growth of 
grapevine plants and the spread of powdery 
mildew, [100] suggested a detailed deterministic 
simulation model that takes into account air 
temperature, wind speed, and direction as 
climatic inputs. One of the most dangerous 
diseases of stone fruit is brown rot, which is 
caused by Moniliniaspp and it is prevalent 
throughout all temperate zones and affects 
species with significant economic significance 
such as peach, plum, apricot, cherry, and almond 
[101]. A Susceptible Exposed Infectious (SEI) 
model was suggested by [102] to characterise 
the temporal dynamics of brown rot spreading in 
fruit orchards and assess the resulting 
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marketable yield. [103] integrated compartmental 
epidemiological model for brown rot diffusion with 
fruit tree growth model with major emphasis on 
agronomic practices over fruit quality. They 
suggested giving a moderate water stress in the 
final weeks of fruit development which in turn 
gives a moderate fruit load and thereby 
decreasing the spread of brown rot in the 
orchard. Compartmental SIR- type (Susceptible-
Infected-removed)epidemiological models in 
stone fruits simulating various epidemic patterns 
and the detailed analysis of possible impacts of 
climate change on the disease induced yield loss 
has been reported by [104]. This smart climate-
driven model could simulate the epidemic 
patterns with temperature and precipitation as 
the key factors behind the epidemic and also 
dealt with the synergism of pathogen vulnerability 
with that of varying phenology of the peach tree. 
CIPRA (computer centre for agricultural pest 
forecasting software) software was 
conceptualised in the year 1960s and it helped 
the users with the forecasting of 13 insects, two 
diseases and two storage disorders and it has 
improved over the past 13 years in giving out 
detailed epidemiological models based on air 
temperature, relative humidity and leaf wetness 
duration [105]. 
 

2.11 Insect Control Forecasting Model in 
Fruit Crops 

 
Insects cause the greatest crop losses (34%) 
among the several types of pests, followed by 
diseases (31%), weeds (27%), and viruses (8%), 
in that order [106]. Pest control in the fruit 
orchards primarily relied on the use of broad-
spectrum pesticides in the past, which were 
having lot of negative effects like the extinction of 
beneficial insects &microorganisms, resurgence 
of more threatening forms of pests, potential 
threats to pesticide users as well as the 
bystanders and vicious biomagnification of the 
chemical compounds in the food web present in 
the ecosystem. Policy makers have been 
expressing their heightened fears surrounding 
these issues which sparked alternate ways to 
minimise the usage of pesticides and the 
adoption of integrated pest management [107]. 
One of the goals under European Union green 
deal is the implementation of biodiversity strategy 
to 2030 to combat such dreadful usage patterns 
of harmful chemical compounds in crops. 
Population of natural biological controls should 
be maintained as a healthy way to manage the 
rising pest menace and incorporate farmer’s 
decisions in the application in a collective 

manner towards the journey of sustainable 
agriculture. So far we don’t have location specific 
ecological models to predict natural pest control, 
but only a generic model based on landscape 
composition or configuration which limits the 
predictive management tool for stakeholders 
[108]. [109] studied generic landscape models of 
natural pest and biocontrol agent in cherry trees 
with aphids and pollen beetle as natural enemies 
and reported the difficulties of enhancing the 
predictive power of generic models without using 
spatial planning of agricultural areas, inclusion of 
soil conservation systems like conservation 
tillage and specific association between crop, 
pest and biocontrol. Insect forecasting models 
involves the consideration of various inherent 
characteristics of insects such as its 
developmental stages as well as the influential 
environmental and host-related factors [105]. 
[110] reported about the SOPRA forecasting 
model used in fruit orchards of Switzerland with 
the main focus on the optimisation of monitoring 
time of pests, management and control 
measures of eight major insect pests such as 
rosy apple aphid, European apple sawfly, codling 
moth, apple seed moth, pear psylla, European 
cherry fruit fly, apple blossom weevil and 
summer fruit tortix moth. This model utilizes time-
varying distributed delay approaches (effect of 
environment factors on insect phenology may not 
occur suddenly and can vary over time). 
Phenology based models considering the 
environmental variables like air temperature, soil 
temperature and incident solar radiation on an 
hourly basis were established. Phenology has a 
direct relationship with the intricate decision 
support systems, details of the age structure of 
insect pest population present in the locality and 
plant protection products to be used. Through the 
website www.sopra.info, results from this model 
will be available to growers and consultants. 
 

2.12 Innovative Probabilistic Machine 
Learning Models in Fruit Crops 
Replacing Conventional 
Mathematical Models 

 
Probabilistic models are statistical approaches 
which helps in comprehensive understanding of 
uncertainties associated with predictions of 
possibility of future results and it offers critical 
data for strategic decision making process. In 
order to identify novel solutions for agricultural 
problems, contemporary environmental and 
precision agriculture research has recently 
combined with machine learning (ML) techniques 
[111]. One of the most crucial components of 
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Table 7. List of CNN models, their objective and the technique which it uses along with the 
references are given below 

 

Name of the 
CNN model 

Objective Technique which it is 
based on 

References 

modified 
MobileNet 
model 

Automatic detection of avocado fruit 
disease 

Image processing 
technique 

[127] 

V2IncepNet  Detection of lesion areas on mango 
leaves and identification of level of 
infection and diagnosis of the 
anthracnose disease. 

Pattern identification and 
image characterisation 

[128] 

3-layer 
Convolutional 
Neural Network 
(CNN) 

Automated classification and 
grading of eight cultivars of 
harvested mangoes based on 
quality features such as color, size, 
shape and texture 

images rotation, 
translation, zooming, 
shearingand horizontal flip 

[129] 

Yolo 
conventional 
neural network 

Automatic identification of citrus 
huanglongbing 

Deep learning based 
method and sensory 
detection 

[130] 

Banana 
squeezeNet 

Identification of leaf diseases such 
as bacterial soft rot, cordana, 
panama, pestalotiopsis, sigatoka 
and pest attack of banana fruit 
scarring beetle, pseudostem weevil 
and banana aphids 

Deep learning and 
Bayesian optimization in 
effectively diagnosing 
banana leaf diseases from 
images without any 
human intervention 

[131] 

ESDNN 
(Ensembled 
stack deep 
neural network) 

Helps in the earlier automatic 
detection of mango leaf diseases 
such as powdery mildew, 
anthracnose etc with great accuracy 

AI based solution to detect 
and classify leaf diseases 

[132] 

Yolo papaya Detecting diseases in fruits at an 
early stage is crucial to mitigate 
losses and ensure the quality and 
health of fruits. 

YoloV7 detector with the 
implementation of a 
convolutional block 
attention module (CBAM) 
attention mechanism 

[133] 

 
machine learning and artificial intelligence are 
artificial neural networks and they are modelled 
after the structure of the human brain and 
operate as though they were made of 
interconnected nodes where simple processing 
operations are performed [112]. With the help of 
this model, people were able to address a variety 
of practical issues that had previously proven to 
be challenging [113], [114], [115]. Deep learning, 
one of the advancing areas of data science is an 
extension of research on artificial neural 
networks including the convolutional neural 
network [116], the recurrent neural network [117] 
and the deep belief network [118]. Convolutional 
neural networks (CNN) was proven to be a 
promising technique that outperforms current 
popular image-processing methods in terms of 
precision and classification accuracy [119]. CNN 
has got various applications ranging from fruit 
flower detection, fruit detection at various stages, 
fresh fruit production, and fruit harvesting & 

grading contributing a key role in each link of fruit 
production [120]. Some of the applications of 
CNN in fruit crop is given below in Table 7. The 
use of computer vision, machine learning, and 
IoT applications will assist boost productivity, 
enhance quality and ultimately increase the 
profitability of farmers and related industries 
[121]. Machine learning models were used as an 
alternative tool to evaluate and validate 
prediction models for date palm mite infestation 
based on meteorological variables and 
physiochemical properties of Khalas and Barhee 
dates [122]. Similarly there are reports of 
advantages of machine learning models in fruit 
crops regarding metabolomics selection based 
machine learning which improves fruit taste 
prediction [123], identification of iron chlorosis in 
plants using deep learning [124], integration of 
remote sensing and weather variables for mango 
yield prediction with machine learning approach 
[125] and so on. Artificial neural networks with 
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internet of things (IoT) devices is very much 
useful in enhancing the productivity and 
efficiency of greenhouse plants by the automatic 
disease and pest identification as well as the 
greenhouse climate management [126]. 
 

2.13 Application of Crop Modelling in 
Fruit Crops in the Current Scenario 

 
Almond: 
 

1. On the basis of shortwave and 
temperature data, remote sensing methods 
based on surface energy flow models, 
such as the two-source energy balance 
(TSEB) model coupled with high spatial 
resolution of sentinel-2 and the high revisit 
time of sentinel-3 (daily) were employed to 
calculate actual evapotranspiration (ETa) in 
almond orchard under four different 
orchard irrigation regimes [134] 

2. In order to estimate almond fresh weight at 
the tree level, a convolutional neural 
network (CNN) model with a spatial 
attention module was used to take the 
multi-spectral reflectance picture replacing 
the traditional linear regression and 
machine learning methods for accurate 
and robust tree level yield estimation [135] 

3. The FAO56 dual-Kc technique and the 
SIMDualKc model were used to compute 
the soil water balance for each orchard 
and estimate the crop evapotranspiration 
(ETc). The model accurately predicted the 
soil water contents in fruit trees such as 
almond. Olive, citrus and pomegranate 
across two growth seasons in distinct fields 
by validation followed by derivation and 
evaluation of Kc(crop-coefficient) and 
Kcb(basal transpiration coefficient) standard 
and actual crop coefficients in a water 
saving perspective for crops using dual-kc 
approach [136] 

 

Apple: 
 

1. A fruitlet growth model to predict thinner 
response of apple has been reported by 
[137]. The model relies on the idea that a 
fruit will fall away if its rate of growth during 
the measurement period is less than 50% 
of the rate of the fastest-growing fruit on 
the tree during the same growth period, 
whereas it will persist if its rate of growth 
exceeds 50% of the fastest-growing fruit. 

2. A convolutional neural network (CNN) 
model detects apple plant diseases using 

leaf images using publicly available 
dataset plant village in the identification of 
scab, black rot and cedar rust in apple with 
smaller number of layers and lowered 
computational burden [138] 

3. STICS model was used in simulating apple 
phenology &yield and to quantify the yield 
loss with frost damage during flowering at 
Shaanxi province so as to mitigate frost 
disasters in apple production [139] 

 

Apricot: 
 

1. Mathematical models were used to 
mitigate reduced fruit quality due to 
mildew, browning and sand dust from 
natural drying under low temperatures and 
humidity through three different methods of 
drying such as natural drying under desert 
conditions, ventilated drying in air-drying 
house and hanging them on trees. The 
Wang and Singh model provided the most 
precise explanation of the apricot’s natural-
environment drying mathematical model 
[140] 

2. Numerical models that use experimental 
data on the emergence of plants from a 
deep dormant condition and the combined 
effect of temperature and photoperiod on 
the process of spring development has 
been reported by [141] so as to predict 
when apricot trees will flower and also in 
increasing the profitability of fruit 
production 

 

Banana: 
 

1. The long-term dynamics of the banana 
crop at the field scale were simulated using 
a phenological model. According to 
simulations, the nematicide application 
programme, climate and banana field 
planting date all affect the mean 
fosthiazate concentration in fruits. Utilising 
this technique will assist farmers in 
reducing the amount of harvested bunches 
that have fosthiazate residues above a 
threshold [93] 

2. An improved agro deep learning model 
detects panama wilt disease which helps in 
predicting the severity of diseases and its 
consequences based on arrangement of 
leaf color and shape changes. It helps 
farmers to rely on accurate decision 
support systems in a timely manner and 
prepare them how best to tackle the 
problem [142] 
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Cherry: 
 

1. CRPSM, a transpiration-yield model on the 
basis of transpiration competition between 
tree crop and grass cover accurately 
described differences in tree growth and 
production [143] 

2. A Growing Degree Day Based (GDD)-IPM 
model was used for the control of Spotted 
Wing Drosophila, a major insect that has a 
negative impact on Michigan's tart cherry 
output and it helps in the identification of 
the best time to apply pesticides based on 
a mix of partial budget analysis, daily 
meteorological data, and phenological data 
[144] 

3. Based on a three-dimensional (3D) cherry 
tree canopy point cloud model fused by 
several sources, a method for forecasting 
canopy light distribution in cherry trees was 
put forth and it provides technical support 
for scientific and judicious cherry tree 
pruning [145] 

 
Citrus: 
 

1. Different micro irrigation systems such 
aspartial root-zone drying techniques 
(PRD) which involves exposing half of the 
root system in drying state and remaining 
roots in wetted state so as to alter the 
irrigated roots on time and regulated deficit 
irrigation (RDI) While water is typically 
supplied at levels below the maximum rate 
of crop transpiration throughout specified 
growing season times. FAO-56 agro-
hydrological model is used to evaluate the 
eco-physiological response of citrus 
orchards to such different water-saving 
irrigation management strategies [146] 

2. Using a non-linear neural-network model 
and an ensemble system, an integrated 
sugar-content prediction model in three 
species of citrus genus was developed. 
This is indeed a non-destructive technique 
of accurately measuring the sugar content 
of the fruits and the producers can supply 
high quality, high value fruits [147] 

 

Dragon fruit: 
 

1. Michaelis-Menten based respiration model 
extended with a modified Arrhenius 
equation incorporating the Boltzmann 
distribution fuctionwas used for the 
respiration kinetics of dragon fruit under 
different storage conditions [148] 

2. RESNET 152, a deep learning 
convolutional neural network was utilized 
to identify the mellowness of dragon fruit 
and determination of its harvest time [149] 

Grapes: 
 

1. SimulateurmuLTIdisciplinaire pour les 
Cultures Standard (STICS) is a dynamic, 
feasible decision support tool in short and 
long term strategic planning in Portugeese 
viticulture considering the impacts of 
climate change on several site-specific 
parameters for climate, soil and several 
management practices and it simulates the 
phenological stages, yield and water stress 
in grapes thereby helping in carrying out 
the vineyard operations and wine making 
practices efficiently [150] 

2. STICS crop model was used to assess the 
potential impacts of heat waves in wine 
growing regions of Europe and dealt with 
the mitigation measures of upcoming heat 
waves in near future [151] 

3. AquaCrop model simulates canopy cover, 
actual evapotranspiration, total soil water 
content, biomass and fruit yield of table 
grapes vineyards and it has an important 
role in the evaluation of irrigation 
scheduling by the farmer as well as to 
assess the water productivity in the arid 
and semi-arid regions where availability of 
water is a major problem [152] 

4. In order to create higher-quality wine, the 
grape wine business needs accurate fruit 
counts to help with planning and decision-
making prior to harvest and due to the 
current fruit tracking and counting 
techniques with low real-time performance 
and the vast shape variations of cluster-
like fruits, there are currently no reliable 
counting techniques available. A 
lightweight YOLOv5s cluster detection 
model based on channel pruning algorithm 
that reduces model parameters and 
complexity in detection coupled with SORT 
algorithm enables real time time tracking 
and counting of grape clusters in the field 
based on video datas [153] 

5. A real time grape disease identification 
model in the field based on improved 
YOLOXS (GFCD-YOLOXS) has been 
reported by Wang et al. (2023). This model 
utilizes a dataset of 11,056 grape disease 
images in 15 categories. Two modules 
such as FOCUS (reduces the lack of 
information related to grape diseases) and 
the CBAM/ Convolutional Block Attention 
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Module (at the prediction level focusing on 
key features of grape diseases and 
mitigating the influence of natural 
environment) are the components of this 
model which enhances its fastness as well 
as efficiency in the identification of 
diseases. 

 

Mango: 
 

1. V-Mango a functional-structural plant 
model broadened the simulation of 
cultivation practices of mango by modelling 
complex architectural development of 
mango tree over several growing seasons 
using a multi-scale approach. Different 
sub-models such as thermal time models, 
eco physiological models formalize the 
growth and development of individual 
growth units, inflorescences & fruits on an 
daily scale and fruit growth respectively 
[154] 

2. A novel active mathematical model was 
created using an enzyme kinetics-based 
respiration rate model linked with the 
Arrhenius equation under active conditions 
to construct an active modified 
atmospheric storage systems (MAS) for 
100 kg of mango and they were handled 
and stored in the farm using the designed 
active system at a temperature of 27°C 
with the main goal to establish an early 
dynamic equilibrium state inside the MAS 
system having ideal amount of gas 
concentrations [155] 

 

Mangosteen: 
 

1. Mathematical models using fractals and 
computers were used in accurately 
understanding the growth and form 
complexity of gamma irradiated plant root 
systems in Mangosteen [156] 

2. ResNet50, a deep convolutional neural 
network was utilized for classifying the 
ripeness of mangosteen and classifying 
them accordingly to the market segments 
such as export market, domestic market, 
local market and ungraded mangosteens 
[157] 

 
Olive: 
 

1. A stochastic weather generator model, 
ClimaSG was very useful in the calculation 
of crop water requirements and irrigation 
designs & planning under low density 
rainfed (LD) and super high density 

irrigated (SHD) olive orchards in Spain 
[158] 

2. U2 net deep learning model has been used 
in Olive trees in China to monitor its growth 
and predicting the fruit yield thereby 
helping in the robust monitioring and 
management of orchard trees [159] 

3. Olive can, a process based simulation 
model of olive orchards has been used for 
analysing the role of cover crops for 
minimising the erosion rates [160] 

 

Papaya: 
 

1. In order to forecast fruit size and harvest 
dates, one must be aware of the papaya 
fruit's growth dynamics and its thermal 
requirements measured in Growing 
Degree Days (GDD) from bloom to 
ripening. Considering this, research work 
carried out by [161] developed the best 
model representing papaya fruit growth 
and the GDD necessary for fruit ripening in 
four cultivars such as BH-65, Calimosa, 
red lady and Siluetchosen for their diverse 
vigour and fruit size. The findings 
demonstrated that papaya fruits develop 
along a straightforward sigmoid curve and 
using the Gompertz equation helps in 
describing papaya fruit growth due to its 
simplicity and excellent fitting results. Also 
the use of heat units was found to be more 
useful tool in predicting harvest dates than 
counting the calendar dates. 

 

Passion fruit: 
 

1. DynamiCROP, a dynamic and crop-
specific pesticide uptake model in passion 
fruit takes into account the amount of spray 
deposition of difenconazole, tebuconazole 
and deltamethrin on plant surfaces, uptake 
mechanisms, dilution owing to crop growth, 
degradation in plant components and 
decrease due to food processing (peeling) 
as well as the time between pesticide 
application and harvest and the time 
between harvest and consumption [162]. 
This model is also useful in                        
advising farmers regarding the judicious 
choice of pesticides and its application 
schemes. 

 
Peach: 
 

1. Compartmental SIR- type epidemiological 
(susceptible infected-removed) model has 
been utilized by [104] in peach for 
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simulating the different epidemic patterns 
and for evaluating the impacts of climate 
change in brown rot disease in peach 
orchard. The model predicts temperature 
and precipitation as the main causal 
agents for brown rot epidemics. In this 
study, a synergism between alterations in 
the crop phenology and vulnerability to 
pathogens has also been studied. 

2. Ordinary differential equations (ODE) 
kinetic model in peach has been reported 
by [163] in simulating the different 
developmental stages of peach with the 
accumulation of different sugars. This 
model made use of two approaches such 
as genotype based strategy (GBS) and 
population based strategy (PBS) in 
developing reliable gene to phenotype 
models. 

3. The effect of rootstock micropropagation 
method as an alternative to conventional 
grafting of peach varieties with rootstocks 
propagated on cuttings has been reported 
by [164] using linear mixed-effects models. 
The main objective of this study was to 
control the variance bought out by 
environmental as well as cultural factors on 
the agronomical results in the woody 
plants with long life cycle. 

4. Vis(visible)-NIRS (near-infrared 
spectroscopy) collaborated with individual 
cultivar specific datas helps in the accurate 
non-destructive internal fruit quality (dry 
matter content) and maturity assessment 
(index of absorbance, IAD) of seven peach 
cultivars [165] 

 
Pecanut: 
 

1. Growth models involving heat units is a 
very useful tool in predicting the different 
nut growth stages in pecanut by taking in 
to account of three phenotypic traits such 
as shuck, shell and embryo. Comparison 
of different non-linear growth models 
reported by [166] indicated that the logistic 
model was found to be efficient in 
modelling shell growth and Gompertz 
model fits best in embryo development 
modelling. Their study found to be a pivotal 
role in the analysis of role of irrigation in 
the water stages of pecanut and thinning at 
the late water stages prior to nut filling 
stages. Minimum use of pesticides at the 
shell lignification stage was also suggested 
as a part of this study. 

 

Pineapple: 
 

1. A process-oriented model called ALOHA 
PINEAPPLE v. 2.1 simulates the growth, 
development, and production of the mother 
plant crop of the pineapple variety known 
as "Smooth Cayenne." The model runs on 
a daily time step and takes observation of 
inputs like daily meteorological data, 
characteristics of the soil profile and 
management information [167] 

2. The SIMPIÑA model, which simulates the 
growth and development of the "Queen 
Victoria" pineapple cultivar depends on 
stress brought on by nitrogen and water 
deficiency into account [168] 

3. The price of pineapple is valued by its 
sweetness in Thailand whose 
determination has been made possible 
with the help of Alexnet deep learning 
models in categorizing in to different 
sweetness level based on physical 
attributes [169] 

 

3. CONCLUSION 
 
The major advantage of functional structural 
plant model is the integration of most basic 
physiological processes such as photosynthesis, 
respiration, nutrient allocation and branching 
processes using techniques like pipe model, L 
system of framework, semi-markovian models. 
However further researches should be done in 
the line of root architecture because it is complex 
in the sense that the development of roots are 
not represented on the basis of elemental 
repeats. Phenology based models are more 
robust in simulation of the growth and 
development of trees with the climate. They help 
in efficient spring frost warnings and harvesting 
dynamics of the horticultural produce. 
Epidemiological models gives out the temporal 
outbreak of diseases with the interacting 
environmental factors. Compartmental 
epidemiological model in fruit crop considers the 
integration of agronomical practices with the fruit 
quality parameters with respect to the diffusion of 
disease in the fruit orchard. It helps in enhancing 
the monetary returns of the farmers. Insect 
forecasting models should progress from generic 
to specific level giving due consideration to the 
beneficial insects present in a particular 
landscape and the decision making process of 
farmers & stakeholders in the use of plant 
protectants. The rise of innovative machine 
learning models helps in the popularisation of 
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precision agriculture in developing countries in 
near future. 
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