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The majority of massive disk galaxies in the local Universe show a stellar barred 
structure in their central regions, including our Milky Way1,2. Bars are supposed to 
develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence 
typical of disk galaxies at high redshift suppresses or delays bar formation3,4. Moreover, 
simulations predict bars to be almost absent beyond z = 1.5 in the progenitors of Milky 
Way-like galaxies5,6. Here we report observations of ceers-2112, a barred spiral galaxy 
at redshift zphot ≈ 3, which was already mature when the Universe was only 2 Gyr old. 
The stellar mass (M★ = 3.9 × 109 M⊙) and barred morphology mean that ceers-2112 can 
be considered a progenitor of the Milky Way7–9, in terms of both structure and mass- 
assembly history in the first 2 Gyr of the Universe, and was the closest in mass in the 
first 4 Gyr. We infer that baryons in galaxies could have already dominated over dark 
matter at z ≈ 3, that high-redshift bars could form in approximately 400 Myr and that 
dynamically cold stellar disks could have been in place by redshift z = 4–5 (more than 
12 Gyrs ago)10,11.

The barred nature of ceers-2112 (right ascension = 214.97993 degrees; 
declination = 52.991946 degrees; J2000.0) is identified through the  
multiwavelength analysis of the James Webb Space Telescope Near Infra-
red Camera ( JWST/NIRCam) images taken during the first epoch (21–22 
June 2022) of the Cosmic Evolution Early Release Science (CEERS12) 
campaign. The galaxy was not classified as barred during a visual 
inspection of the CEERS sample13, owing to its low surface brightness 
in the outer regions, especially at short wavelengths where the stellar 
disk is barely detected. But, at longer wavelengths, ceers-2112 resem-
bles a spiral disk galaxy and the bar component is clearly detected by 
analysing the composite image obtained by stacking all seven point- 
spread-function-convolved (PSF-convolved) NIRCam images (Fig. 1a).

The first piece of evidence for the presence of a stellar bar in ceers-
2112 is provided by the strong residuals obtained from modelling 

the galaxy with a Sérsic component (Fig. 1b). Our findings highlight 
prominent features in correspondence of the spiral arms and edges 
of the bar, which reveals that one morphological component is not 
enough to account for the complex structure of the galaxy (for exam-
ple, twist of isophotes at small galactocentric distances and strong 
residuals). Thus, we performed a multicomponent two-dimensional 
(2D) photometric decomposition of ceers-2112, assuming that its 
surface-brightness distribution is the sum of a double-exponential 
disk and a Ferrers bar (Fig. 1c) and found that the galaxy has a stellar 
bar with length rFerrers = 0.42 ± 0.03 arcsec (3.3 kpc). The decomposi-
tion of the azimuthal luminosity surface-density distribution into the 
Fourier m-components using the composite ceers-2112 image provided 
the third piece of evidence that the galaxy has a prominent bar (maxi-
mum relative amplitude of the m = 2 to m = 0 component I2/I0 > 0.4) 
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with strength Sbar = 0.23 ± 0.01 (refs. 14,15). The m = 2 peak (Fig. 1d) 
uniquely describes the barred elongated structure and allowed us to 
rule out the possibility that the bar could be misinterpreted as spiral 
arms departing from a compact bulge16.

Combining the Hubble Space Telescope Advanced Camera for Sur-
veys (HST/ACS), Hubble Space Telescope Wide Field Camera 3 (HST/
WFC3) and JWST/NIRCam datasets, we carefully measured ceers-2112 
photometry and derived that the galaxy has a photometric redshift of 
z = 3.03phot −0.05

+0.04. Taking advantage of the unprecedented spatial reso-
lution, wide wavelength coverage and depth provided by JWST obser-
vations, combined with HST datasets, we also derived the 2D spectral 
energy distribution (SED) of ceers-2112 (ref. 17). We inferred the galaxy 
star formation history (SFH) from detailed SED fitting (Fig. 2a) and 
found that it has a total stellar mass of M★ = 3.9 × 109 M⊙ and a mass- 
weighted age of 620−160

+150  Myr (Fig. 2b). By comparing ceers-2112 with 
the assembly history of Milky Way progenitors (Fig. 3), we demon-
strated that it can be considered the furthest progenitor of the Milky 
Way both in terms of structure and assembly history9,18. This analysis 
suggests that the stellar disk of ceers-2112 assembled at z ≈ 5 and that 
the bar component formed 200 Myr later, assembling in about 400 Myr, 
which provides an observational hint on the formation timescale of 
bars and spiral structures at these early times. The stellar density map 
built from the spatially resolved stellar population analysis (Fig. 2c) 
provides an additional independent confirmation of the presence of 
a stellar bar component, which has log(Σ) ≈ 8.4 M⊙ kpc−2.

The observational discovery of barred galaxies at z > 2 (ref. 19), such 
as ceers-2112, has strong implications for our understanding of galaxy 

evolution, in particular, in the first gigayears after the Big Bang. On 
the one hand, it implies that dynamically cold stellar disks could have 
formed when the Universe was only a few gigayears old; on the other 
hand, it puts strong constraints on the dark matter distribution in these 
galaxies (with baryons dominating over dark matter).

Lambda cold dark matter (ΛCDM) models predict that galaxies at 
z > 5 experienced a phase of gas accretion, forming stars at a very high 
pace and sustaining the growth of black holes20,21. The baryonic cycle 
of this turbulent phase is balanced by strong outflows due to feedback 
from active galactic nuclei and supernovae22,23. In the state-of-the-art 
cosmological simulations, different feedback implementations are 
able to efficiently disperse baryons over large radial scales. However, 
to build up cold stellar disks and barred galaxies at z ≳ 3, and Milky Way 
systems such as ceers-2112 (Fig. 3), models should be able to reproduce 
baryon-dominated disks with M★ < 1010 M⊙ and net rotation at early 
times. Recently, it has been shown that some massive disk galaxies 
(M★ > 1010 M⊙) in the TNG50 cosmological simulation could have been 
present as early as z ≈ 4 and that bars could have already started form-
ing at those times16. However, despite these findings, cosmological 
simulations still struggle to produce barred galaxies beyond z > 1.5, 
especially at lower masses5,6,24.

Owing to their low entropy, galaxy disks with highly ordered rotation 
are very sensitive to perturbations. However, high-z galaxies are more 
gas-rich (and turbulent) than local galaxies3,25–27 and gas-rich stellar 
disks stay near-axisymmetric much longer than gas-poor ones, which 
prevents or delays the formation of the bar component28. Because 
ceers-2112 has a mass-weighted age of approximately 600 Myr, the 
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Fig. 1 | Morphological modelling of ceers-2112. a, Combined stack image of 
ceers-2112, with isophotal contours showing an elongated barred structure in 
the inner region and spiral arms departing from it. b, One-component Sérsic 
residuals, which highlight the bar and spiral structures (black and green 
contours, respectively). c, Two-dimensional bar + disk model, which shows a 
stellar bar of length rFerrers = 0.42 ± 0.03 arcsec (3.3 kpc). The bar component is 

shown as a red solid line and the bar + disk isophotes are shown as black dashed 
contours. d, Radial profiles of the relative amplitude of the odd (dashed lines) 
and even (solid lines) Fourier components, derived from the deprojected  
stack image of ceers-2112. The m = 2 mode shows a prominent bar (maximum 
I2/I0 > 0.4) with strength Sbar = 0.23 ± 0.01. Shaded region represents 1σ 
confidence interval for the m = 2 mode.
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Fig. 2 | Stellar population properties of ceers-2112. a, Fiducial spatially 
resolved SFH derived with synthesizer (delayed-τ model). b, Two-dimensional 
mass-weighted age map of ceers-2112. c, Stellar mass-density map of ceers-2112. 

The isophotal contours of the stack image are superposed on the mass-weighted 
age and mass-density maps. Maps in b and c are 53 × 53 px2, which corresponds 
to 1.59 × 1.59 arcsec2 (12.5 × 12.5 kpc2 at z = 3.03).



Nature | www.nature.com | 3

high gas fraction usually observed in high-z galaxies could have been 
rapidly consumed during the stellar disk growth before the stellar 
bar component could start developing29. Thus, this result highlights 
the need to investigate the interplay between gas abundance and star 
formation efficiency in disk galaxies at z > 2, which will be fundamental 
in constraining the formation timescale of bars and the early evolution 
of disk galaxies. Our findings allow us to speculate that ceers-2112 went 
through a fast episode of gas consumption when the Universe was only 
approximately 2 Gyr old (z ≈ 4; Fig. 2) that allowed the stellar disk to 
become dynamically cold and unstable enough to allow a bar to form 
and grow in less than 400 Myr (ref. 29), which indicates a quick forma-
tion of dynamically relaxed systems and their possible notable role in 
stellar migration to the nuclear region. Using Atacama Large Millimeter/
submillimeter Array (ALMA) observations, previous works reported 
the existence of cold gaseous disks at z ≈ 5 (refs. 10,11). However, we 
observationally confirm that also stellar disks could be dynamically 
cold at these early times.
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Methods

Cosmological model
We assume a flat ΛCDM cosmology with Hubble constant H0 =  
67.7 km s−1 Mpc−1 and matter density Ωm = 0.310 (ref. 34). All magnitudes 
are in the absolute bolometric system.

Data
JWST/NIRCam data used in this work were taken during the first epoch 
(21–22 June 2022) of the CEERS program, one of 13 early release science 
surveys approved for JWST Cycle 1. In particular, we focus on data from 
CEERS pointing labelled NIRCam1, which is covered with seven filters: 
F115W, F150W, F200W, F277W, F356W, F410M and F444W (ref. 35). The 
final mosaics in all of the filters have a pixel scale of 0.03 arcsec px−1 
and a PSF full-width at half-maximum (FWHM) ranging from 0.066 
to 0.161 arcsec, reaching a point-source limiting magnitude (5σ) of 
approximately 29 mag (refs. 35,36). The root mean square astromet-
ric alignment quality is less than approximately 5–10 mas per source 
between NIRCam filters35. In Extended Data Fig. 1, we show the cutouts 
of ceers-2112 in all NIRCam bands.

For studying the morphology of ceers-2112, we built a stack image 
combining all seven NIRCam bands. We converted individual images 
in counts and PSF convolved them to match the angular resolution of 
the F444W image. Empirical PSFs for the CEERS datasets are created as 
described in ref. 36, whereas kernels to match bluer PSFs to F444W are 
created using the pypher Python-based routine37. Finally, we combined 
all PSF-convolved images using the ccdproc.combine v.2.4.0 astropy 
image reduction package38.

For studying the stellar population properties of ceers-2112, we 
extended the NIRCam wavelength baseline with HST images (F606W, 
F814W, F125W, F140W and F160W) from the Cosmic Assembly 
Near-infrared Deep Extragalactic Legacy Survey (CANDELS) collabo-
ration39,40. These data were recalibrated by the CEERS team and drizzled 
to match the same angular scale of the JWST observations35 (v.1.9).

Morphology
We analysed the morphology of ceers-2112 by modelling its surface- 
brightness distribution to characterize its structural components using 
four different diagnostics: (1) isophotal analysis; (2) Fourier decom-
position; (3) one-component Sérsic photometric modelling; and  
(4) two-component bar + disk photometric modelling.

Firstly, we considered the radial surface-brightness profile of ceers-
2112 and modelled its isophotes with the photutils.isophote astropy 
package41,42 using three short wavelength bands (that is, F115W, F150W 
and F200W; Extended Data Fig. 2a,d) and three long wavelength bands 
(that is, F277W, F356W and F444W; Extended Data Fig. 2b,e). We cre-
ated ellipticity and position angle profiles by keeping the centre fixed 
to the average value measured in the inner region of the galaxy. Then, 
we checked that ceers-2112 satisfied the criteria19,43,44 of hosting a puta-
tive bar-dominated region: (1) the galaxy became elongated in the bar 
region (ellipticity ε > 0.25) and the position angle remained almost 
constant along the bar (|Δ position angle| < 15°); and (2) the ellipticity 
dropped in the outer region of the galaxy (Δε = 0.1), where the disk com-
ponent dominates. Our findings suggest the presence of a bar, which 
appears more prominent at longer wavelengths, with an ellipticity 
always greater than 0.4 up to a radius of r ≈ 0.45 arcsec. It is worth noting 
that the analysis of individual bands is complicated by the presence of 
spiral arms, which could drive the mild change in position angle (and 
slightly affect the ellipticity) in the outskirts of the galaxy. As a caveat, 
the disk component is very mildly detected (in particular, in short wave-
length bands), leading to a small change in bar-to-disk ε and position 
angle. For this reason, we decided to further analyse the morphol-
ogy of ceers-2112 using the combined image obtained by stacking all  
NIRCam filters, to increase the final signal-to-noise ratio, in particular, 
in the outskirts of the galaxy. In the combined image (Extended Data 

Fig. 2c,f), our analysis showed an inner bar-dominated region (ε > 0.4, 
Δ position angle < 15°), a region where mild spiral arms develop from 
the barred structure and the outer disk-dominated region, where the 
ellipticity and position angle drop45,46.

Secondly, we analysed the deprojected combined stack image of 
ceers-2112 and decomposed its azimuthal luminosity surface-density 
distribution into the Fourier m-components47. To project the galaxy into 
the face-on view keeping the flux preserved, the image was stretched 
along the disk minor axis by a factor of cos(idisk)−1, where idisk is the disk 
inclination derived from the disk ellipticity. In particular, from the iso-
photal fitting of the combined image we derived εdisk = 0.23 (idisk = 41°), 
taking the median values in the outer isophotes (0.6 < r < 0.7 arcsec) 
where the influence of the bar is negligible (Extended Data Fig. 2c,f). 
In Fig. 1d, we show the radial profiles of the relative amplitude of the 
m = (2, 4, 6) components. In particular, the m = 2 component shows 
the characteristic behaviour of bars14,16: increasing with radius (with 
a prominent peak I2/I0 > 0.4) and then decreasing in the disk region. 
The phase angle ϕ2 of the m = 2 component is quite constant in the 
bar region (|Δϕ2 | < 10° with respect to the I2/I0 peak), which provides 
an additional confirmation of the presence of the bar component. We 
further tested our findings by repeating the Fourier decomposition 
assuming both different position angles (Δ position angle ± 5°) and 
inclinations (Δi ± 5°) for the galaxy (eight different configurations). No 
systematics were found in the bar identification due to galaxy deprojec-
tion effects. Furthermore, it is worth reporting that the bar/interbar 
intensity contrast based on the Fourier decomposition provides results 
about the length and strength of the bar that are consistent with those 
of the m = 2 Fourier analysis14,48. It is also worth noting that our Fourier 
analysis allows us to rule out the possibility that the stellar bar could 
be misled by spiral arms developing from a compact bulge. Indeed, 
this latter case would not produce an m = 2 peak in the inner region 
of the galaxy16.

Thirdly, to disentangle the contribution to the surface brightness of 
bar and spiral arms, we modelled the galaxy with a single Sérsic compo-
nent and looked at the residual image (Fig. 1b). We used the Python pack-
age statmorph49 to retrieve both the parametric and non-parametric 
morphology of the galaxy. The best-fitting model provides a quite low 
Sérsic index n = 0.65 (disky galaxy), with the residual image highlight-
ing prominent features in correspondence of the spiral arms and edges 
of the bar component. Our findings suggest that the one-component 
Sérsic model is not sufficient to describe the complex morphology 
of ceers-2112.

Finally, we perform a 2D photometric decomposition of ceers-2112 
using the galaxy surface photometry 2D decomposition algorithm 
(GASP2D50,51). We model the galaxy (Fig. 2c) by assuming that its 
surface-brightness distribution is the sum of a double-exponential 
disk52 and a Ferrers bar53. GASP2D returns the best-fitting values of the 
structural parameters of each morphological component by minimiz-
ing the χ2 after weighting the surface brightness of the image pixels 
according to the variance of the total observed photon counts due 
to the contribution of both galaxy and sky (Extended Data Fig. 4c,d). 
Because GASP2D does not fit the spiral arm components, we mask 
them to avoid possible contamination in retrieving the ellipticity and 
position angle of the bar. The mask for the 2D bar + disk decomposition 
is built by growing the spiral arms residuals, excluding the bar region. 
Because the formal errors obtained from the χ2 minimization are usually 
not representative of the real errors, we estimated the uncertainties on 
the bar and disk parameters by analysing a sample of images of mock 
galaxies built with Monte Carlo simulations54.

As a caveat, as the composite stack image covers the wavelength 
range from the rest-frame ultraviolet to near infrared, dust attenu-
ation and spatially variable younger stellar populations may result 
in a composite light distribution that does not follow the stellar dis-
tribution. To support our analysis, we then created combined short 
wavelength (F115W, F150W and F200W) and long wavelength (F277W, 



F356W and F444W) stack images, following the procedure described in 
the previous section. The short wavelength stack image was convolved 
to F200W, whereas the long wavelength stack image was convolved 
to F444W. The isophotal analysis of short wavelength stack and long 
wavelength stack images is shown in Extended Data Fig. 3c,d). We see a 
similar trend at short and long wavelengths, with two main differences: 
(1) the position angle is almost constant in the long wavelength stack 
image, although it shows a mild variation in the short wavelength stack 
image, making the identification of the bar less clear in the ultraviolet–
optical rest-frame regime; and (2) the signal-to-noise ratio, in particular, 
in the inner and outer regions, is very low in the short wavelength stack 
image with respect to the long wavelength stack image. The Fourier 
analysis of these images is shown in Extended Data Fig. 3e. We see that 
the bar component is clearly detected at longer wavelengths (m = 2 
component stronger than any other component), whereas, at shorter 
wavelengths, we see both prominent m = 1 and m = 2 components. This 
is due to the non-asymmetry (lopsidedness) of the elongated struc-
ture seen at short wavelengths. Again, while the evidence for the bar 
structure is present both at short and long wavelengths, the bar is more 
evident in the redder bands, as expected from near infrared studies in 
the local Universe55.

For the reasons described above, we based our main analysis on 
the image obtained by combining all seven NIRCam bands. Our mor-
phological analysis provided four independent estimations of the bar 
length: (1) Rbar,1 = 0.49 ± 0.09 arcsec, from the outer radius of the FWHM 
of I2/I0 (ref. 56); (2) Rbar,2 = 0.44 ± 0.04 arcsec, from the outer radius of 
the FWHM of the bar/interbar contrast48; (3) Rbar,3 = 0.49 ± 0.02 arcsec, 
from the radius at which there is the first minimum after the (depro-
jected) ellipticity peak45; and (4) Rbar,4 = 0.42 ± 0.03 arcsec, from the 
Ferrers bar modelling53.

Redshift estimation
We carefully measured the ACS, WFC3 and NIRCam photometry with  
the rainbow code57,58, using small elliptical apertures (radius of 0.44  
arcsec; ε = 0.35) to retrieve reliable colours and avoid possible photo-
metric contamination by a foreground extended source (zphot = 1.1; 
projected distance of approximately 3.5 arcsec). Then, we measured 
the photometry on slightly larger apertures (radius of 0.84 arcsec) 
to obtain the integrated emission. Finally, we normalized the SED 
measured on small apertures using the median difference of the flux 
measured in the small and large apertures. Photometric errors were 
estimated by measuring the background noise locally around ceers-
2112, which accounted for correlated noise introduced by drizzling 
the ACS, WFC3 and NIRCam images57,59.

The fiducial photometric redshift was derived using EAZYpy60 includ-
ing the tweak_fsps_QSF_12 _v.3 set of 12 Flexible Stellar Population 
Synthesis templates61,62. The combined HST + JWST SED, the values of 
the photometric redshift and the corresponding probability density 
functions are shown in Extended Data Fig. 5. We further tested the 
photometric redshift estimation against different codes (that is, Dense 
Basis63; Prospector64) and found consistent results (see Extended Data 
Fig. 5, inset panel).

Stellar population properties
We derived the fiducial spatially resolved SFH of ceers-2112 with syn-
thesizer57, assuming delayed-exponential SFHs. We adopt timescale 
values τ between 100 Myr and 5 Gyr, ages between 1 Myr and the  
age of the Universe at the redshift of ceers-2112, the entire set of discrete 
metallicities provided by the Bruzual and Charlot models65, a Calzetti 
et al. attenuation law66 with V-band extinction values between 0 and 
5 mag and a Chabrier initial mass function67. The nebular continuum 
and emission lines were added to the models57.

We further tested the systematics related to the stellar population 
modelling by deriving the integrated stellar population properties of 
ceers-2112, using both parametric and non-parametric SFHs (Extended 

Data Fig. 6 and Extended Data Table 1). For this purpose, we fitted the 
integrated HST + NIRCam photometry using the Fitting and Assessment 
of Synthetic Templates (FAST) code68, Dense Basis63 and Prospector64. 
For the FAST algorithm, we assumed an exponentially declining star 
formation history. We used Bruzual and Charlot stellar population 
synthesis models65, Calzetti et al. extinction law66 with attenuation 
0 < AV < 4 mag, and a Chabrier initial mass function67. For Dense Basis, 
we use a uniform prior for the stellar mass log(M★/M⊙) between 7 and 
12, uniform prior for the metallicity log(Z/Z⊙) between −1.5 and 0.25, 
a Calzetti et al. attenuation law66 with exponential prior and V-band 
extinction values between 0 and 4 mag, and a Chabrier initial mass 
function67. For Prospector64,69, we used both a delayed-exponential 
and a non-parametric SFH. For the τ-model, we used stellar ages rang-
ing between 1 Myr and the age of the Universe at the redshift of ceers-
2112 and the star formation scale in the range 0.1 < τ < 20 Gyr. For the 
non-parametric model, we used an SFH with the continuity prior69. We 
adopted five lookback time bins in this fit, with the star formation rate 
being constant within each bin. The first bin was fixed at 0 < t < 30 Myr to 
capture the recent episodes of star formations. We used uniform priors 
on all of the following parameters: stellar mass log(M★ /M⊙) between 5 
and 12, metallicity log(Z/Z⊙) between −1.5 and 0.5 and effective V-band 
optical depth between 0 and 5 mag. We adopted the Chabrier initial 
mass function67 and the Calzetti et al. dust attenuation law66.

Data availability
This study used CEERS JWST/NIRCam data, which are publicly available 
from the Mikulski Archive for Space Telescopes (MAST; http://archive.
stsci.edu) under program ID 1345 (principal investigator: Finkelstein). 
Calibrated NIRCam data products from the CEERS team are available 
at https://ceers.github.io/releases.html.

Code availability
JWST NIRCam data are calibrated using the JWST Pipeline70 (v.1.7.2, 
reference mapping 0989; https://github.com/spacetelescope/jwst). 
Photometric redshifts and/or stellar population properties are 
measured using EAZYpy60, FAST68, synthesizer57, Dense Basis63 and  
Prospector64. The morphological analysis was performed using  
photutils.isophote41,42, statmorph49 and GASP2D50. The Fourier analysis 
is based on the implementation described in ref. 14.
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Extended Data Fig. 1 | Multiwavelength view of ceers-2112. Postage stamps 
of ceers-2112 (RA = 214.97993 degrees; DEC = 52.991946 degrees; J2000.0) in all 
NIRCam filters used in this work. The cutouts are 53 × 53 px2, which corresponds 

to 1.59 × 1.59 arcsec2 (12.5 × 12.5 kpc2 at z = 3.03). We report the angular 
resolution as 2 × FHWM of the PSF and the isophotal contours (white solid 
lines).
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Extended Data Fig. 2 | Isophotal analysis of ceers-2112. In each panel, the 
shaded regions mark the size of the PSF FWHM in the different bands, while 
error bars show the 1σ standard deviation of each point. a, Radial profiles of 
ellipticity derived from the isophotal analysis of ceers-2112 in the F115W (pink), 
F150W (blue) and F200W band (light green). b, Radial profiles of ellipticity 
derived from the isophotal analysis of ceers-2112 in the F277W band (dark 
green), F356W (orange) and F444W band (red). c, Radial profiles of ellipticity 

derived from the isophotal analysis of ceers-2112 in the combined stack image 
(all seven NIRCam filters). The region of the bar, spiral arms and outer disk are 
shown as black, grey and cyan datapoints. d, As panel a, but for the position 
angles. e, As panel b, but for the position angles. f, As panel c, but for the position 
angles. The inset panel shows some of the ellipses superposed to the composed 
stack image (1.59 × 1.59 arcsec2).



Extended Data Fig. 3 | Isophotal and Fourier analysis of SW and LW stack 
images of ceers-2112. a, Postage stamp of the stack SW image (F115W, F150W 
and F200W) with some of the ellipses superposed (1.59 × 1.59 arcsec2). b, Postage 
stamp of the stack LW image (F277W, F356W and F444W) with some of the 
ellipses superposed (1.59 × 1.59 arcsec2). c, Radial profiles of ellipticity derived 
from the isophotal analysis of ceers-2112 in the stack SW image (blue) and stack 
LW image (red). The shaded regions mark the size of the PSF FWHM in the 

different bands, while error bars show the 1σ standard deviation of each point. 
d, As c, but for the position angles. e, Radial profiles of the relative amplitude  
of the m = 1 (blue lines) and m = 2 (red lines; shaded regions: 1σ confidence 
intervals) Fourier components derived from the deprojected combined SW 
image (dashed lines) and the deprojected combined LW image (solid lines) of 
ceers-2112.
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Extended Data Fig. 4 | Parametric morphological modeling of ceers-2112.  
a, One-component Sérsic model of ceers-2112. b, One-component Sérsic 
residuals, which highlight the bar and spiral structures (black and green 
contours, respectively) c, Two-dimensional bar+disk model, which shows a 
stellar bar of length rFerrers = 0.42 ± 0.03 arcsec (3.3 kpc). d, Two-dimensional 

bar+disk model residuals. The bar and spiral structures (black and green 
contours, respectively) are superposed to the image. The black dashed line 
marks the break radius of the double-exponential disk model, where the 
surface brightness of the model rapidly declines.



Extended Data Fig. 5 | SED and redshift of ceers-2112. Black empty squares 
(blue circles) denote our fiducial (model) photometry from HST/ACS + WFC3 
and JWST/NIRCam instruments, respectively. The EAZYpy model spectrum is 

shown in blue. Error bars show the 1σ standard deviation of each point. The 
inset plot shows the P(z) distributions.
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Extended Data Fig. 6 | SFH modeling of ceers-2112. Comparison of different 
model assumptions: exponentially-declining SFH (τ-model; FAST code; blue 
dashed line); delayed exponentially-declining SFH (delayed-τ model; Prospector; 
gray dashed line); two-dimensional delayed exponentially-declining SFH  
(2D delayed-τ model; synthesizer; red solid line); non-parametric SFH (Dense 
Basis and Prospector; orange and green dashed lines, respectively).



Extended Data Table 1 | Mass and SFR50 of ceers-2112 derived from different model assumptions
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