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ABSTRACT 
 

The aim of the current research was to develop and characterize curcumin-gamma cyclodextrin 
inclusion complexes in order to enhance solubility and rate of dissolution of poorly soluble 
curcumin. Based on the stoichiometric ratio of 1:1, the inclusion complexes of curcumin with γ-
cyclodextrin were prepared by freeze drying method. The prepared dried and solidified inclusion 
complexes were characterized with the help of infrared spectroscopy, differential scanning 
calorimetry, and X-ray diffractometry. The comparative evaluation of solubility and rate of 
dissolution were investigated and compared with pure curcumin. Dissolution study demonstrated 
only 10% release from pure curcumin at 1 hour as opposed of approximately 72% release form 
freeze dried curcumin complexes. The freeze dried complexes exhibited almost complete release 
after 5 hours while only 34% release was observed from the pure curcumin during the same time 
period. Therefore, the freeze dried complex provided approximately 3 to 7-fold enhancement in the 
dissolution and release of curcumin over a period of 6 hours of dissolution testing.  The kinetics of 
the in vitro release behaviors of the curcumin and curcumin complexes were investigated by 
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applying various models such as zero order, first order, Higuchi and Peppas models. The release 
of the curcumin was observed to follow the first order release kinetics, since the correlation 
coefficient (R2) for the first order was the highest in comparison to other kinetic models. 
 

 
Keywords: Curcumin; γ-cyclodextrin; freeze dried inclusion complexes; dissolution; release kinetics. 

 
1. INTRODUCTION 
 
Curcumin is one of the most extensively studied 
natural compounds as herbal medicine. It is one 
of the main polyphenols of the widely used house 
hold spice, turmeric, obtained from Curcuma 
longa (Family. Zinziberaceae) [1]. Curcumin is a 
small molecule with molecular weight of 368.4 
g/mol and empirical molecular formula of 
C21H20O6 Fig. 1. Due to polyphenolic nucleolus, 
curcumin has been reported to have strong 
antioxidative and anti-inflammatory activities 
[2,3]. Furthermore, it has been shown to possess 
other pharmacological actions such as anti-
arthritic [4,5], anti-alzhiemer [6,7], anti-bacterial 
[8,9], anti-cancer [10,11], anti-diabetic [12,13], 
anti-viral [14-16], hepatoprotective [17-19] and 
nephroprotective actions [20-22]. Despite of 
several pharmacological action, curcumin fails to 
exhibit potential therapeutic benefits due to its 
poor bioavailability [23-25]. The bioavailability of 
curcumin has been reported to be as low as 1% 
or even undetectable and poor water solubility 
(0.6-8 µg/ml) has been reported to be the main 
reason of poor bioavailability [26-28]. 
  

 
 

Fig. 1. Chemical structure of curcumin 
(diferuloylmethane): (1E, 6E)-1,7-bis (4-

hydroxy- 3-methoxyphenyl) -1,6- heptadiene-
3,5-dione 

 
The development of inclusion complexes of 
poorly soluble drugs with cyclodexrtrins is 
considered as one of the most commonly used 
techniques of solubility and bioavailability 
enhancement. These are several reports of 

inclusion complexes of curcumin with alpha and 
beta-cyclodextrin or their derivatives [29-33]. 
However, there are few reports with gamma-
cyclodextrin [34,35]. The current study reports 
the development and characterization of solid 
inclusion complexes of curcumin with γ-
cyclodextrin for the improvement of solubility and 
dissolution of curcumin. 
 
2. MATERIALS AND METHODS 
 
Curcumin and gamma-cyclodextrin were 
purchased from Loba chemicals (Banglore, 
India.), and S. D. Fine Chemicals (India) 
respectively. Other chemicals and solvents used 
in this study were of analytical reagent grade. 
 

3. PREPARATION OF INCLUSION 
COMPLEXES 

 
The solid inclusion complexes were prepared in 
a molar ratio of 1:1 curcumin: cyclodextrin 
because the phase solubility diagram resulted in 
AL type correlation [36]. The complexes were 
prepared by freeze drying method as reported 
earlier [37]. Briefly, an accurately weighed 
equimolar quantities of curcumin and gamma-
cyclodextrin were mixed and dissolved in distilled 
water basified with 27% ammonia solution in 
order to facilitate the dissolution of curcumin. The 
resulting solution was kept in the freezer 
overnight. The frozen mixture was then freeze 
dried in the Lyph-lock 6 freeze drier (Labconco, 
MO, USA) for 8 hours. The freeze dried powder 
was passed through 100-mesh sieve to get 
homogenous product and stored in a desiccator 
for further characterization and investigation. 
 

4. CHARACTERIZATION OF INCLUSION 
COMPLEXES 

  

4.1 X-ray Diffraction Study 
 
The X-ray diffraction study of pure curcumin and 
its inclusion complexes with γ-cyclodextrin was 
performed by using X-Ray diffractrometer (PW 
1830, Phillips, Japan). The sufficient amount of 
sample was taken and scanned continuously at 
°2θ between 5-50° at an interval of 0.020 per 
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second, keeping the generator tension                        
and current at 30 kV and 25 mA respectively. 
The The X-RD traces of pure curcumin and 
freeze dried inclusion complexes were             
compared with regard to peak position and 
relative intensity, peak shifting and presence or 
lack of peaks in certain regions of °2θ values.  
 

4.2 Differential Scanning Calorimetry 
(DSC) 

 

The differential scanning calorimetry of the pure 
curcumin, γ-cyclodextrin and freeze dried 
inclusion complex of curcumin was                    
performed using differential scanning calorimeter 
(Pyris 6 DSC, Perkin Elmer, MA, USA). The 
sufficient quantity of samples (approximately 5 
mg) were accurately weighed and crimped in the 
aluminium pans (Perkin Elmer) to get the pallets. 
All the samples were then scanned between 50-
400oC at 10oC/min keeping flow rate of inert 
nitrogen gas at 20 ml/min.  

 
4.3 Fourier Transform Infra Red 

spectroscopy (FT-IR) 
 
The FT-IR spectroscopy of pure curcumin                   
and freeze dried inclusion complex were studied 
by using FT-IR instrument (Win-IR, Bio-Rad, 
California, USA). The samples were prepared by 
mixing curcumin or inclusion complex with 
potassium bromide in a clean glass pestle and 
mortar and compressed to get pellet. The pellets 
were scanned between wave number range of 
5000-500 cm

-1
 after base line correction.  

 
4.4 In Vitro Dissolution Study 
 
The in vitro dissolution study was                           
performed by using USP apparatus I, the basket 
method. The samples were prepared by filling of 
pure curcumin (20 mg) or inclusion                   
complexes (equivalent to 20 mg curcumin) in the 
hard gelatin shells. The dissolution was carried 
out in 900 ml of simulated gastric fluid (SGF) 
without pepsin, stabilized at 37 ± 0.5

o
C                       

with the basket rotating at 75 rpm.  The 
solublizer, 1% w/v of SLS was added in the 
dissolution medium to maintain the sink 
condition. The dissolution profiles of all the 
molecular inclusion complexes were subjected to 
the kinetic analysis to establish the drug-release 
mechanism. The release data were fitted to zero 
order, first order, matrix (Higuchi model), and 
Peppas models to ascertain the kinetic modeling 
of drug release [38].  

5. RESULTS AND DISCUSSION 
 
5.1 X-Ray Diffraction of Solid Complexes 
  
The X-ray diffraction (XRD) analysis of 
cyclodextrin based inclusion complexes has 
been extensively reported as one of the widely 
used techniques to characterize the formation of 
amorphous inclusion complexes [39,40]. X-ray 
diffractogram of curcumin showed various peaks 
at different angles with most intense one at an 
angle of 17.68°(100%) followed by 17.62°(92%) 
and 9.22°(80%) respectively, revealing the 
crystalline nature of curcumin, as shown in Fig. 
2. X-ray diffractogram of γ-CD also showed 
crystalline nature with peaks at 9.4°(89%), 
9.5°(96%), 12.8°(69%), 23°(100%) and 32°(75%) 
respectively whereas inclusion complex of 
curcumin-γ-CD showed humps only, suggesting 
amorphous nature of the complex. These 
findings are in agreement with the available 
findings of cucumin-beta-cyclodextrin inclusion 
complexes [41,42]. 
 

5.2 FT-IR Spectral Analysis 
  
The Fourier Transform Infra-Red spectroscopy 
(FTIR) of cyclodextrin based inclusion complexes 
has been extensively reported as one of the 
widely used techniques to characterize the 
formation of amorphous inclusion complexes [43, 
44]. Curcumin has a carbonyl-stretching band at 
1629 cm

-1
 and –OH band at 3511 cm

-1
, therefore, 

FT-IR could be used to detect guest interactions. 
The carbonyl-stretching region of IR spectra of 
curcumin and its complex with γ-CD are 
presented in Fig. 3. The IR spectra of 
cyclodextrin showed the peaks corresponding to 
the nature and position of functional groups 
present. The spectra of curcumin- γ CD inclusion 
complex did not show new peaks indicating that 
no chemical bonds were created in the formed 
complexes. Though, IR C=O stretching band was 
instead highly diminished, broader and shifted to 
lower frequency suggesting the inclusion of the 
drug in the cyclodextrin cavity. These 
observations are in agreement with those 
reported by other group of researchers [45,46]. 
 
5.3 Differential Scanning Calorimetry 

(DSC) 
 
The Differential Scanning Calorimetry (DSC) of 
cyclodextrin based inclusion complexes has 
been extensively reported as one of the widely 
used techniques to characterize the formation of 
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amorphous inclusion complexes [47,48]. A 
comparative DSC thermograms of curcumin and 
inclusion complexes are shown in the Fig. 4. The 
thermal curve of pure curcumin was typical of a 
crystalline anhydrous substance with a sharp 
endothermic peak at 176

o
C corresponding to the 

melting point of the drug as shown in Fig. 4a. 
The DSC curve of cyclodextrin showed the 
liberation of crystal water as an endothermal 

effect peaked between 80-150°C, followed by a 
peak at 287°C corresponding to melting point of 
γ-cyclodextrin Fig. 4b. The complete 
disappearance of the drug endothermal effect 
was observed with all curcumin-γ-cyclodextrin 
complexes suggesting inclusion of the drug and 
formation of amorphous compounds. These 
observations are in agreement with those 
reported by other group of researchers [49,50]. 

 

 
 

Fig. 2. Comparative X-ray differacto grams of curcumin gamma cyclodextrin and their freeze 
dried inclusion complexes 

(a) Curcumin, (b) γ-CD, (c) curcumin-γ-CD Freeze dried complex 
 

 
 

Fig. 3. Comparative FT-IR spectra of curcumin, gamma cyclodextrin and their freeze dried 
inclusion complexes 

curcumin, (b) γ-CD, (c) curcumin-γ-CD freeze dried complex 
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Fig. 4. Comparative DSC thermo grams of curcumin, gamma cyclodextrin and their freeze 
dried inclusion complexes 

(a) curcumin, (b) γ-CD, (c) curcumin-γ-CD freeze dried complex 
 

5.4 Dissolution Rate Profile of Curcumin 
and Curcumin Complexes 

 

The dissolution medium was optimized first by 
investigating UV responses of curcumin (10 
µg/ml) diluted with dissolved in 30% alcohol, 1% 
SLS (sodium lauryl sulphate), 0.1% Tween 20 
and 0.1% Tween 80. Based on preliminary 
investigate, 1% SLS was used as the co-solvent 
in the dissolution media. The dissolution              
profiles of curcumin and curcumin complexes        
are shown in Fig. 5. The dissolution study 
revealed that release of curcumin form                     
the complexes were faster as compared to 
curcumin alone. At one hour only 10.5%               
release of curcumin was observed from pure 
curcumin sample while curcumin complexes 
exhibited approximately 30% (physical mixture   
of  curcumin and gamma cyclodextrin) and         
72% release in the same time period            
(freeze dried complex of curcumin and gamma 
cyclodextrin). The freeze dried complexes 
exhibited almost complete release after 5 hours 
while only 34% release was observed from the 
pure curcumin during the same time period. 
Therefore, the freeze dried complex provided 
approximately 3-fold enhancement in the 
dissolution and release of curcumin. The 
curcumin-gamma cyclodextrin complexes 

investigated in this research provided may be 
considered better than other inclusion complexes 
of curcumin reported earlier [51-54]. For 
instance, Radjaram et al. 2013, reported only 8% 
release of curcumin from curcumin complex after 
1 hour as compared to 72% release in this 
investigation [51]. Likewise, Jantarat et al, 2014, 
also reported approximately 6% release of 
curcumin from freeze dried complexes of 
curcumin with hydroxypropyl betacyclodextrin 
[52]. Moreover, Mohammad et al, 2020 reported 
only 58% release of curcumin from curcumin-
beta-cyclodextrin complexes after 6 hours of 
release study while we have observed complete 
release of curcumin from gamma cyclodextrin 
complexes at 5 hours [53]. 
 
The kinetics of the in vitro release behaviors of 
the curcumin and curcumin complexes were 
investigated by applying various models. The 
release kinetics of curcumin and curcumin 
complexes applied to zero order, first order, 
Higuchi and Peppas models are shown in the 
Figs. 6, 7, 8 and 9 respectively. The release of 
the curcumin was observed to follow the first 
order release kinetics, since the correlation 
coefficient (R2) for the first order was highest in 
comparison to other kinetic models as shown in 
Tables 1.  
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Fig. 5. Release profile of curcumin and curcumin-γ-CD complexes in simulated gastric fluid 
without pepsin with 1% (w/v) of sodium lauryl sulphate 

 

 
 

Fig. 6. Zero order kinetic release of curcumin and curcumin complexes 
 

 
 

Fig. 7. First order kinetic release of curcumin and curcumin complexes 
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Fig. 8. Higuchi model kinetic release of curcumin and curcumin complexes 
 

 
 

Fig. 9. Peppeas model kinetic release of curcumin and curcumin complexes 
 

6. CONCLUSION 
 
The results obtained in the present investigation 
are significant from the point of view that freeze 
dried complex of curcumin-gamma cyclodextrin 
complexes have much better solubility and 
dissolution as compared to the pure curcumin. 
Inclusion complex formation resulted in 
amorphous compounds with improved solubility 
and dissolution of curcumin. The developed 
freeze died complexes of curcumin and 
cyclodextrin may further be explored for industrial 
applications.  
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