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ABSTRACT 
 

The aim of this study is to evaluate and compare machine learning algorithms when various feature 
extraction techniques are employed together and determine the optimal feature combinations for 
the models studied. The TIMIT online database was used where 5 male and 5 female non-native 
English speakers from five American locations were selected. Each speaker had ten 3-second 
utterances, totaling 500. Mel frequency cepstral coefficients (MFCC), linear predictive cepstral 
coefficients (LPCC), gammatone frequency cepstral coefficients (GFCC), discrete wavelet 
transforms (DWT) and pitch features were extracted using MATLAB and concatenated. The 
concatenated features were used to train and evaluate three classifier models—Random Forest 
(RF), Linear Discriminant Analysis (LDA), and Logistic Regression (LR)—using Python software. 
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The results obtained showed that as the number of features combinations increased, the models’ 
performances improved as well. This improved performance was observed when all the cepstral 
features were part of the combinations. This implies that cepstral features are more robust and 
improve speaker identification systems. The best average score of accurate predictions of ≈ 76% 
for the LR model was obtained for the MGL (39 features) features combination and dropped to 70% 
for the highest number of feature combinations MGDLP (53 features). This indicates that more 
training data improves system performance, however, too much data does not translate to even 
better performance because the system will eventually achieve its peak performance. This 
information is useful for applications where limited data can present a problem.  
 

 
Keywords: Speaker identification; feature extraction; machine learning; evaluation metrics. 

 
1. INTRODUCTION  

 

Biometrics is an area of research that is rapidly 
adopting other means of identification such as 
voice in addition to already existing biometrics 
like the iris, finger print [1] and facial 
identification. According to [2] the human voice 
contains characteristics that are unaffected by 
the substance of the speaker’s conversation and 
these voice characteristics such as pitch, tone, 
rhythm, and pronunciation contain information [3] 
that can be used by a speaker identification 
system to automatically identify a speaker from a 
recording of their voice or speech utterance. It 
aims to classify an unknown utterance 
anonymously as belonging to one of a set of N 
reference speakers [4]. Speaker identification is 
reliant on the presence of the speaker's voice 
biometrics in the database of speakers' voice 
templates or models, which are categorized as 
either open-set or closed-set. In the case of 
open-set speaker identification, the unidentified 
speaker's utterance is compared with the 
speaker model that does not contain the input 
speaker's registered template. If there is no exact 
match, the input speaker is rejected [5]. 
Conversely, in closed-set identification, the 
unidentified speaker's utterance is compared 
with the pre-existing utterances of registered 
templates in the model, which includes the input 
speaker.  
 

The most critical step in speaker identification is 
feature extraction, where different feature 
extraction techniques [6] have been applied to 
extract useful features from the speech data. 
 

2. LITERATURE REVIEW 
 

There are numerous researches [7] [8] that have 
been done to evaluate the performance of 
machine learning models on extracted features 
from the speech data. Recent research directions 
have shown that different speech features have 
complementary effects on each other and that 

feature combination is a very effective feature-
domain method to improve the performance of 
speech and speaker recognition system [9] [10]. 
The work of [11] demonstrates the effects of 
combining Mel-frequency cepstral coefficients 
(MFCC) and spectro-temporal time-frequency 
cepstrum (TFC) while using LDA to delimit the 
redundant information. The experimental results 
on the NIST SRE2008 show that the combination 
approach effectively outperforms both MFCC and 
TFC raw features. 
 
Paulose [12] implemented recognition systems 
using both spectro-temporal features and voice-
source features. from TIMIT database 100 
speakers with 10 speech signals each were used 
for the implementation. Of the 10 signals, 7 were 
used for training and 3 for testing each speaker. 
The pre-processing stage involved using the 
parameters Zero Crossing Rate (ZCR) and 
energy to separate the voiced and unvoiced 
parts of the speech signal. To acquire the voiced 
speech signals, all frames with a power greater 
than 0.5 or ZCR less than 100 were taken and 
then the speech was normalized in the range -1 
to +1. Each of these signals were framed into 
25ms frames with 15ms overlap and the 
hamming window function was used. From each 
frame of the speech signal, 39 MFCC and 64 
IHC coefficients were extracted. Pitch and 
formants were appended to the MFCC and IHC 
coefficients and the alterations in the accuracy 
rates were observed. Classification was done 
with GMM and two different classifiers for i-vector 
method (CDS and PLDA) and the accuracy rates 
were compared. The results showed that full 
speech recognition was better with both features 
(MFCC+IHC) for both GMM with 32 features and 
i-vector with 100 features.  
 
[13] introduces an isolated word speaker 
identification system based on a new feature 
extractor and using Artificial Neural Network. For 
both text independent and text dependent 
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speaker identification system for English words, 
combinations of MFCC and UMRT are taken and 
are used as feature extractors. The classification 
of the features is done using Multi-layer 
perceptron with back propagation algorithm. The 
accuracy achieved is around 97.91% for speech 
dependent systems while for speech 
independent system the accuracy is around 
94.44% when the combination of both MFCC and 
UMRT based features are used.  This new 
feature extractor provides better results as 
compared to either MFCC of UMRT, and with 
lesser number of input neurons thus reducing 
system complexity. 
 

[14] proposed a speaker identification system, 
which deals with defining the speaker's identity 
based on features extraction (discrete wavelet 
transformation and curvelet) including Principal 
Component Analysis (PCA) for reducing the 
number of features. Apart from studying the 
effect of appropriate extracted features from 
various levels of discrete wavelet transformation 
(DWT), this study also presents the effects of the 
concatenation of two feature extraction 
techniques (discrete wavelet and curvelet 
transform). Two various datasets were formed 
which include: a dataset of discrete wavelet 
transformation (DWT) features only, and a 
dataset of (DWT + Curvelet). The methodology 
involved speech pre-processing, feature 
extraction, feature selection and recognition. The 
practical results showed the best accuracy of up 
to 100% when applying (DWT + curvelet) on the 
backpropagation (BP) neural network classifier.  
 

These progresses have made the manipulation 
of acoustic data for speaker feature extraction 
from speech wave [3] [15] and applying pre-
processing techniques to improve the 
performance of a recognizer easier and 
expanded the applications of speaker 
identification systems in the areas of biometric 
identification most especially speech and 
speaker recognition. 
 

As a relatively new research area, due to these 
advances, there is still so much to be researched 
on and this paper focuses on contributing 
knowledge to this area of research by assessing 
and comparing the performance of some popular 
machine learning algorithms on the concatenated 
features obtained from popularly used feature 
extraction techniques [12] [16] [17]. This work will 
find relevance in forensic and smart security 
surveillance systems [18] related applications 
that need high and reliable accuracies. It can 
also serve as the identification phase of speaker 

recognition systems that serve as access 
verification for applications such as cell phone 
authentication, smart home authentication and 
remote banking applications. 
 

3. METHODOLOGY  
 
The proposed method for the evaluation of 
machine learning algorithms using combined 
feature extraction techniques was executed in 
the steps summarized in the flow diagram as 
depicted in Fig. 1. 
 

3.1 Speech Database Collection 
 
The Texas Instruments/Massachusetts Institute 
of Technology (TIMIT) database was used for 
data collection.  TIMIT is a diverse and well-
annotated collection of American English speech 
data for training, testing, and evaluating speech 
recognition systems serving as a valuable 
resource for researchers and developers in the 
field of speech recognition [19]. A total of 50 non-
native English speakers comprising of 5 male 
speakers from 5 different regions (25 speakers) 
and 5 female speakers from 5 different regions 
(25 speakers) were chosen. Each speaker had 
10 utterances of 3 seconds duration, making it a 
total of 500 utterances. Table 1. summarizes the 
specifications of the TIMIT database. 
 

3.2 Data Pre-Processing 
 
The 500 utterances of speech data obtained from 
the TIMIT database were pre-processed by 
applying voice activity detection (VAD), 
resampling and normalization. 
 
3.2.1 Voice activity detection  
 
Voice activity detection (VAD) is a common 
technique used in speech signal processing to 
detect voiced and unvoiced portions in speech 
signals. This method filters the speech signals to 
exclude silent and particularly noisy segments 
that may otherwise biased the training stage [20]. 
The VAD system implemented in this work 
employed level-crossing sampling for voice 
activity detection where useless samples and 
non-speech parts of the signal were eliminated 
due to the activity-dependent nature of this 
sampling scheme. Power density, entropy, zero 
crossing rate (ZCR) and root mean square 
(RMS) value were the VAD measures 
implemented and their combined thresholds were 
used to identify the speech portions in the 
utterances.  
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Fig. 1. Flow diagram of the methodology 
Source: The Researcher, 2023 

 

Table 1. Summary of TIMIT database 
 

Parameter Values 

Language spoken English 

No. of utterances 10 per speaker 

No. of speakers 25 Males and 25 Females = 50 speakers 

Nationality of speakers A wide range of dialects and accents, five major dialects of 
American English found across the United States. 

Dataset Distribution a) 9 utterances from the 50 speakers (450 utterances) for the 
training dataset 

b)  1 Utterance from the 50 speakers (50 utterances) for the testing 
dataset 

Duration of utterances 3 secs 

Sampling rate 16kHz 

Recording Environment quiet space 
Source: Researcher, 2023 
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The power density of the speech signal was 
computed using the Welch method. This method 
was performed by dividing the framed speech 
signal into successive blocks 𝐾, windowing each 
frame and computing the modified periodogram 
for each block or segment.  The Welch power 

spectrum  (𝑃𝐷𝑠
𝑊̂) was determined using [21] as 

given in Equation 1 by averaging the modified 
periodograms to reduce the variance of the 
individual power measurements.  
 

𝑃𝐷𝑠
𝑊̂(𝜔𝑘) ≜

1

𝐾
∑ 𝑃𝑠𝑘,𝑀(𝜔𝑘)𝐾−1

𝑘=1                        (1) 

 

where 𝑃𝐷𝑠
𝑊̂(𝜔𝑘) is the Welch power density of 

the windowed 𝑘𝑡ℎ  block, and 𝑃𝑠𝑘,𝑀(𝜔𝑘)  is the 

modified periodogram of the 𝑘𝑡ℎ block as given in 
Equation 2. 
 

𝑃𝑠𝑘,𝑀(𝜔𝑘) =
1

𝑁
∑ |𝐹𝐹𝑇𝑁,𝑘(𝑠𝑖(𝑛))|

2𝑁−1
𝑛=1          (2) 

 

where |𝐹𝐹𝑇𝑁,𝑘(𝑠𝑖(𝑛))|
2
 is the squared magnitude 

of the DFT result. 
 
Power density represents the distribution of 
power in the frequency domain and provides 
information about the energy distribution across 
different frequency components of the speech 
signal [21] . In voiced speech segments, the 
energy tends to be concentrated around the 
fundamental frequency (pitch) and its harmonics, 
resulting in a distinct spectral pattern. On the 
other hand, unvoiced speech segments exhibit a 
more uniform distribution of energy across 
frequencies. 
 
Zero-crossing rate (ZCR) [20] is the number of 
times the signal changes value, from positive to 
negative and vice versa, divided by the length of 
the frame. Voiced speech signals exhibit a 
relatively low ZCR compared to unvoiced speech 
or background noise. This is because the 
vibrations produced by vocal cord vibrations in 
voiced speech tend to have a more periodic 
waveform, resulting in fewer zero crossings. On 
the other hand, unvoiced speech or noise tends 
to have a higher ZCR due to its more random 
and turbulent nature. In this work, the ZCR (𝑖) is 
defined in Equation 3 as 
 

𝑍𝐶𝑅(𝑖) =
1

2𝑁
∑ |𝑠𝑔𝑛[𝑠𝑖(𝑛)] − 𝑠𝑔𝑛[𝑠𝑖(𝑛 −𝑁

𝑛=1

1)]|                                                              (3) 
 
where 𝑠𝑖(𝑛) is the framed speech signal, 𝑁 is the 

number of samples in a frame, and 𝑠𝑔𝑛() is the 
sign function given in Equation 4. 

𝑠𝑔𝑛[𝑠𝑖(𝑛)] = {
 1,           𝑠𝑖(𝑛) ≥ 0

−1,            𝑠𝑖(𝑛) < 0   
          (4) 

 

Equation 5 was used in the computation of the 
signal energy entropy [20] for each speech 
frame. Speech signals have most of its energy 
collected in the lower frequencies, whereas most 
energy of the unvoiced speech exists in the 
higher frequencies. The signal energy entropy 
was calculated by dividing each short-term frame 
into 𝐾 sub-frames of fixed duration and then the 
energy for each subframe computed. 
  

𝐻(𝑖) = − ∑ 𝐸𝑘
𝐾
𝑘=1 𝑥 log2 𝐸𝑘                       (5) 

 

where 𝐸𝑘 is the given in Equation 6 
 

𝐸𝑘 =
𝐸𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒

𝐸𝑓𝑟𝑎𝑚𝑒
                        (6) 

 

where 𝐸𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒 is the energy of each subframe 

given in Equation 7 and 𝐸𝑓𝑟𝑎𝑚𝑒 is the total energy 

of the frame given in Equation 8. 
 

𝐸𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒 =
1

𝑁
∑ [𝑠𝑖(𝑛)]2𝑁

𝑛=1                        (7) 

 

𝐸𝑓𝑟𝑎𝑚𝑒 = ∑ 𝐸𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒
𝐾
𝑘=1            (8) 

 
where 𝑁  is the number of samples in the sub-
frame. 
 

The RMS [22] value for each frame was 
calculated by taking the square root of the 
average of the squared samples within the frame 
as given in Equation 9. The RMS value of each 
frame was then compared with the RMS value of 
the entire speech utterance. 
 

𝑅𝑀𝑆𝑓𝑟𝑎𝑚𝑒 = ∑
[𝑠𝑖(𝑛)]2

𝑁

𝑁
𝑛=1            (9) 

 

Table 2. summarizes the values of the 
parameters and the thresholds used in achieving 
VAD 
 

3.2.2 Resampling 
 

After feature extraction from the framed 
segments of speech obtained from VAD,                          
it was observed that the sample sizes                          
were different for the different speaker 
utterances. To avoid mismatch during feature 
classification and identification resampling was 
done to balance the sample sizes.  
 

3.2.3 Per-emphasis 
 
A high-pass filter was applied to the speech 
signal to amplify the higher frequency 
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components to achieve a balanced spectrum of 
voiced sounds which often have a steep roll-off in 
the high frequency band. Due to the glottal 
source, voiced sounds typically have a negative 
12 dB/octave slope which is offset by a +6 
dB/octave boost induced by acoustic energy 
radiating from the lips [23]. The recordings for 
this work were done using a mobile phone 
microphone which introduces a downward slope 
of approximately -6 dB/octave compared to the 
true spectrum of the vocal tract obtained. The 
pre-emphasis filters remove some of the glottal 
effects in the vocal tract parameters [24] The 
most commonly used pre-emphasis filter was 
used which has a transfer function represented 
by Equation 10. 
 

𝐻(𝑧) = 1 − 𝑏𝑧−1                                       (10) 
 

where the value of b controls the slope of the 
filter and is usually between 0.4 and 1.0 [25]. 
 

3.2.4 Framing and windowing 
 

The next pre-processing stage was segmenting 
the samples into short frames of 30ms durations 
to make the signals quasi-stationary. Each frame 
was overlapped with the adjacent frame by 60% 
of the frame size (see information in Table 2) and 
windowed to prevent discontinuities between 
successive frames. The Hamming window 
function, a tapered and smoothing mathematical 
function, was applied to the edges of the window 
by multiplying each frame of the signal by the 
window function to reduce the impact of spectral 
leakage and artefacts that may arise from 
framing. Windowing is particularly advantageous 
when processing signals using Fourier-based 
algorithms such as the Fourier transform or the 
discrete Fourier transform (DFT), which assume 
the signal to be of infinite length. Examples of 
other window functions are the rectangular 
window, the Hanning window, the Hamming 
window, and the Blackman window, each with 
distinct features and trade-offs.  
 

The mathematical expression of the Hamming 
window function used is presented in Equation 
11. 
 

𝑤(𝑛) = 0.54 − 0.46 cos(
2𝜋𝑛

𝑁−1
), 0 ≤ 𝑛 ≤ 𝑁   (11) 

 

where N = number of samples in each frame.  
 

The result of windowing is presented in Equation 
12. 
 

𝑦(𝑛) = 𝑥(𝑛) 𝑥 𝑤(𝑛)                                (12) 

Where 𝑥(𝑛) is the discrete signal, 𝑦(𝑛) is the 
result of windowing The DFT of each windowed 
frame is performed using equation 13 to obtain 
the magnitude spectrum of the signal.  
 

𝑋(𝑘) = ∑ 𝑥(𝑛) 𝑒
−𝑗2𝜋𝑛𝑘

𝑁 ; 0 ≤ 𝑘 ≤ 𝑁 − 1𝑁−1
𝑛=0   (13) 

 

where N is the number of points used to compute 
the DFT.  
 

3.2.5 Normalization 
 

The different utterances take from different 
speakers in the TIMIT database introduces 
different signal amplitudes and to account for 
these variations, utterance-level normalization 
was performed to reduce the influence of 
irrelevant variations in the speech signals to 
ensure a uniform scale for comparison, analysis 
and processing. This also ensures robustness 
and a more reliable speaker modelling and 
identification stage. 
 

3.3 Feature Extraction 
 

Different feature extraction techniques were used 
to extract different sets of features and capture 
different aspects of the data. A total of 53 short-
term features (13 Mel frequency cepstral 
coefficients, 13 Gammatone frequency cepstral 
coefficients, 13 linear prediction cepstral 
coefficients, 13 discrete wavelets transform 
components and 1 pitch) were extracted for each 
frame using MATLAB version R2019a software. 
The unique features identifiers extracted from the 
speech samples were parameterized into 
numerical characteristics representing unique 
entities of each speaker for the purpose of 
machine learning. 
 
3.3.1  Mel frequency cepstral coefficient 

extraction technique 
 
Fast fourier transform (FFT) is applied to each 
windowed frame of the speech signal and is 
transformed to the frequency domain where the 
Mel spaced filter banks, which imitates the 
human auditory dynamics, are applied to get the 
Mel-spectrum. The block diagram of the 
implemented mel frequency cepstral coefficient 
(MFCC) feature extraction process is shown in 
Fig. 2.  
 
The mel frequency warping is done using 
Equation 14 
 

𝑚𝑒𝑙(𝑓) = 2595 x 𝑙𝑜𝑔10(1 + 𝑓 700⁄ )           (14) 
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where mel(f) is the frequency (mels) and f is the 
frequency (Hz). 
 

Hamming function was implemented using 
Equation 11 and the DFT of each windowed 
frame was performed using Equation 13. Finally, 
the MFCC was calculated according to the 
formula in Equation 15 with the mean of the 
MFCC coefficients across all frames subtracted 
from each coefficient to reduce speaker-specific 
information. 
 

𝐶̂(𝑛) = ∑ log10(𝑋̂𝑘) cos
𝜋𝑛(𝑚−0.5)

𝑀
; 𝑛 =𝑀−1

𝑚=0

0,1,2, … , 𝐶 − 1                              (15) 
 

where 𝐶̂(𝑛) are the cepstral coefficients, C is the 
number of MFCCs, and  

𝑋̂𝑘is the output of filter bank.  
 

Thirteen (13) coefficients for MFCC were 
extracted and these coefficients are reliable and 
robust to different speaker and variable recording 
conditions [26] [27] [28] 
 

3.3.2 Linear prediction cepstral coefficient 
extraction technique 

 

Linear prediction cepstral coefficient (LPCC) are 
the coefficients of the Fourier transform 
instances of the logarithmic magnitude spectrum 
of LPC (Linear Prediction Coding) which imitates 
the human vocal tract dynamics and the value of 
the signal is expressed as a linear combination of 
previous values [12]. The block diagram of the 
LPCC process is shown in Fig. 3 and the linear 
prediction cepstral coefficients were computed 
using Equation 16. Thirteen (13) coefficients for 
LPCC were extracted. 
 

𝐶𝑚 =  𝑎𝑚 + ∑ [
𝑘

𝑚
]𝑚−1

𝑘=1 𝐶𝑘𝑎𝑚−𝑘                   (16) 

                
Where 𝐶𝑚 = cepstral coefficient, and 𝑚 =linear 
prediction coefficient 

 
3.3.3 Discrete wavelet transform extraction 

technique 
 
After pre-processing, framing and windowing to 
enhance the relevant speech information, the 
speech signal was decomposed using discrete 
wavelet transform (DWT) extraction (see 
Equation 19) into different frequency sub-bands 
by passing the signal through a series of high-
pass filters and a low-pass filters (see Equations 
17 and 18) that simultaneously decompose the 
signal and provide a multi-resolution analysis of 
the signal [16]. The scaling function 

∅(𝑡)  and wavelet function φ(t),  facilitate the 
decomposition, approximation, reconstruction, 
and analysis of signals at different resolutions. It 
captures the low-frequency information and 
enables multiresolution analysis. The outputs 
give the detail coefficients (from the high-pass 
filter) and approximation coefficients (from the 
low-pass). The filter output of the high pass filter 
is discarded while the output of the low-pass filter 
is down sampled by 2 and further processed by 
passing it again through a new low-pass filter 
and a high- pass filter with half the cut-off 
frequency of the previous one. 
 

Table 2. Summary of parameter values for 
voiced activity detection 

 

Frame Parameter Values 

Sampling frequency 16,000 samples/s 
Frame size 30 ms 
Overlap length 60 % of the frame size 
Subframe size 10 samples 

Thresholds  

Power density > 50 dB 
Zero crossing rate < 1000 
Energy entropy > 4.5 
RMS > RMS value of the 

entire utterance 
Source: The Researcher, 2023 

 
At each level in Fig. 4 the signal is decomposed 
into low and high frequencies. Due to the 
decomposition process the input signal must be 
a multiple of   2𝑛 where 𝑛 is the number of levels.  
This decomposition is repeated to further 
increase the frequency resolution while the 
approximation coefficients get decomposed with 
high- and low-pass filters and then down-
sampled. 

 
The decomposition results in a set of wavelet 
coefficients that capture the frequency content of 
the signal at different scales or resolutions. The 
wavelet coefficients obtained from the DWT 
decomposition are used as features for speaker 
identification and the energy distribution is 
calculated over the coefficients in these sub-
bands to extract relevant information [30]. 
Thirteen (13) DWT features were extracted. 
 

∅(𝑡) = ∑ ℎ[𝑛]𝑁−1
𝑛=0 √2∅(2𝑡 − 1)  (17) 

 
where ∅(𝑡) = scaling function, h[𝑛] = impulse 
function of low pass filter 

 

𝜑(𝑡) = ∑ 𝑔[𝑛]𝑁−1
𝑛=0 √2∅(2𝑡 − 1) (18) 

 

https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/Low-pass_filter
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Fig. 2. Block diagram of MFCCs feature extraction 
Source: Researcher, 2023 

 
where φ(t)  = wavelet function, and 𝑔[𝑛]  = 
impulse function of high pass filter DWT of a 
discrete signal is given as 
 

𝐷𝑊𝑇(𝑚, 𝑘) =
1

√𝑎𝑜
𝑚 ∑ 𝑥[𝑛]. 𝑔(

𝑛−𝑛𝑏𝑜𝑎𝑜
𝑚

𝑎𝑜
𝑚 )𝑛   (19) 

 

where 𝑔(∗) is the mother wavelet, and 𝑥[𝑛]  = 
discrete signal 
 

3.3.4 Gammatone frequency cepstral 
coefficients extraction technique 

 

Gammatone frequency cepstral coefficients 
(GFCC) are time-frequency features commonly 
used in audio processing that simulates the 
human hearing [30] similar to the MFCC 
technique.  By simulating the characteristics of 
the human auditory system through gammatone 
filters, the GFCC feature extraction technique 
enables the extraction of perceptually meaningful 
features from audio signals. However, instead of 
triangular filter banks like MFCC, it uses an array 
of overlapping band pass filters called 
gammatone filter banks [29] with a high impulse 
response similar to the magnitude characteristics 
of the human auditory filter. The superior noise 
and reverberation robustness exhibited by the 
GFCC technique [17]  makes it a first choice for 
extricating feature vectors from the corrupted 
speech sample for use in the recognition phase 
[31].  
 

After pre-processing, framing and windowing to 
enhance the relevant speech information, 
gammatone filter was applied to the speech 
signal and then passed through an envelope 
extraction stage where a nonlinear half-wave 
rectification operation was performed to extract 
the envelope or the energy information from the 

filtered signal. The output from this stage was a 
log-compressed envelope which was 
transformed into the cepstral domain using a 
discrete cosine transform (DCT). The DCT 
coefficients represent the spectral shape of the 
signal and capture relevant information about the 
signal's harmonics and temporal dynamics. 
Since not all DCT coefficients are equally 
informative for the specific task at hand, a subset 
of the DCT coefficients, known as GFCCs, is 
selected based on their relevance and the final 
output consists of 36 coefficient values made up 
of cepstral coefficients, first order derivatives and 
second order derivatives. In this work, 13 
cepstral coefficients were extracted. The block 
diagram of GFCC feature extraction is shown in 
Fig. 5. 
 

3.4 Feature Combinations 
 

After extracting features from each frame, 
multiple features (MFCC, LPCC, GFCC, DWT 
and Pitch) were combined by concatenating the 
feature vectors from each frame into a single 
feature vector for the entire audio segment over 
a longer frame to capture speaker 
characteristics. The various combinations yielded 
different unified feature representations that were 
used for the evaluation of machine learning 
algorithms for speaker identification. Table 3. 
shows the feature combinations and the number 
of features involved (see appendix I).  
 

3.5 Algorithm Selection  
 

The choice of machine learning algorithms was 
made on the basis of the most popular ones 
encountered in recent researches [7]. Other 
considerations made were nature of the problem 
with respect to speaker identification, the amount 
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of data available for training and testing, and 
computational requirements of the system used 
for this work. The machine learning classifiers 
selected for this work were the random forest 

(RF), logistic regression (LR), and linear 
discriminant analysis (LDA). The testing and 
training of the selected machine algorithms was 
performed using Python software.   

 

 
 

Fig. 3. Block diagram of LPCC feature extraction 
Source: The Researcher, 2023 

 

 
 

Fig. 4. A 3-level signal decomposition using DWT 
Source: [29] 

 

 
 

Fig. 5. GFCC feature extraction Block Diagram 
Source: [32] 
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3.6 Model Training  
 
The random forest (RF), logistic regression (LR), 
and linear discriminant analysis (LDA) algorithms 
were used to construct the respective models 
using the concatenated features representations 
of the speech signals. The data was split into into 
training and testing sets. The method employed 
for data splitting was the 10-fold cross validation 
method and the models were trained on the 
training datasets and then used to predict the 
identity of the speakers from the utterances. 
 
3.6.1 Random forest classifier 
 
The supervised learning random forest algorithm 
was utilized in its classification capacity to 
classify the speaker features. It operates by 
constructing numerous decision trees during the 
training phase and determining the class that 
appears most frequently (for classification) from 
the collective outputs of the individual trees [33]. 
 
Using bootstrap aggregation, random forest was 
used to build individual decision trees and to train 
each decision tree on different subset of the 
data. The recursive partitioning of the data for 
each tree based on the selected data was done 
without any hyperparameter tuning. At the end of 
building the decision trees, the random forest 
classifier made predictions by aggregating the 
outputs of individual trees which was done by 
majority voting where the class that appeared the 
most among the trees was selected as the final 
prediction. This randomness helps to reduce the 
correlation between individual trees and 
improves the diversity of the ensemble. 
 
3.6.2 Logistic regression classifier 
 
Logistic Regression is a reliable and precise 
statistical modelling technique. In this paper, 
logistic regression was chosen because of its 
limited number of parameters and inclusion of a 
bias parameter to address overfitting. It also has 
the advantage of being extended to handle 
multiclass problems [34] [8] using techniques 
such as one-vs-rest or softmax regression. It was 
used to model the relationship between the linear 
combination of predictors and response using the 
logistic sigmoid function (see equation 20) on the 
labelled data. Using the maximum likelihood 
estimation (MLE) optimization technique, the 
logistic regression coefficients estimated were 
used to obtain the maximum likelihood of the 
observed data. After training the model, new data 
was introduced by plugging in the values of the 

predictor variables into the logistic function and 
allowing the model to predict the probability of 
the event occurring for new observations 
because the datasets were labelled and the 
values of the predictors and the corresponding 
outcomes were known. A standard sigmoid 
function [35] is given by: 
 

 𝑓(𝑥) =
1

1+𝑒−𝑥                      (20) 

 
where x is input to the sigmoid function, and e is 
Eulers number given by 2.781 
 
3.6.3 Linear discriminant analysis classifier 
 
Linear Discriminant Analysis (LDA) is a statistical 
technique used for dimensionality reduction and 
classification tasks. It aims to find a linear 
combination of features that maximally separates 
different classes in a dataset [36].  
 
In this work, the labelled datasets were fed as 
input to the LDA machine learning classifier 
where the mean vectors and covariance matrices 
for each class in the datasets were computed to 
obtain the between-class scatter and within-class 
scatter [37]. These scatter matrices provide 
information about the separability of the classes. 
The scatter matrices were then used to find the 
linear discriminants which define the subspace 
where a linear classifier is applied to determine 
the class labels. LDA has several advantages as 
a classifier when the classes are well-separated 
in the feature space. It can handle datasets with 
strong linear relationship between independent 
variables (multicollinearity), reduces the 
dimensionality of the data, and is relatively 
resistant to overfitting. However, it assumes that 
the data is normally distributed and that the class 
covariances are equal. 
 

3.7 Performance Evaluation Metrics 
 
The performances of the different models were 
evaluated using the pandas, numpy and sklearn 
libraries in python. The aim was to assess the 
performance of the model [38] and to determine 
which set of concatenated features best suit 
which model. It provides insights into the 
interactions between the different algorithms and 
the concatenated features. This process will aid 
in providing understanding of the synergic or 
complementary nature of the concatenated 
features and their contribution to enhanced 
model performance as well as better accuracy, 
robustness, and generalization capabilities of 
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machine learning models [22]. The following 
evaluation metrics were used to evaluate the 
performance of the different models. 
 
3.7.1 Accuracy 
 
The accuracy evaluation metric was used to 
measure the proportion of correctly classified 
instances in the datasets. It shows how 
frequently the classifier predicts the correct 
values and gives the percentage of the samples 
which were correctly classified from all the 
samples given [39]. It was calculated as the 
number of correct predictions divided by the total 
number of predictions. It gives an intuitive 
measure of the model's performance for a 
balanced dataset and an evaluation of the overall 
performance. Accuracy is given by  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
     (21)  

 
3.7.2 Average prediction (%) 
 
The average prediction (%) was used to indicate 
the overall confidence of the model in the 
predictions made for a specific speaker. After 
training the model to categorize speech 
segments as either belonging to a certain 
speaker or not, each categorization choice was 
assigned a probability or confidence score by the 
model that indicates the likelihood that the 
segment belongs to the designated speaker. This 
score makes up the average prediction score. A 
high average prediction score for a speaker 
indicates that the model consistently assigns 
high confidence scores to that speaker across 
multiple speech segments, suggesting that the 
model is effective at identifying that speaker. On 
the other hand, a low average prediction score 
indicates that the model is less confident about 
the identity of the speaker, or that the speaker's 
speech segments are more difficult to distinguish 
from those of other speakers. 
 

4. RESULTS  
 
In all the results presented from Fig. 7 to 10, the 
(a) part shows the left axis of the plot 
representing the speakers’ prediction accuracy in 
percentage, while the number of features is 
plotted on the right axis. On the bottom axis bars 
are used to represent the number of 
concatenated features and the plot markers 
represent the performance of the three different 
ML algorithms. In Fig. (b), the left axis of the plot 
represents the average score of accurate 

predictions in percentage while the number of 
features is plotted on the right axis. On the 
bottom axis, bars are used to represent the 
number of concatenated features, and the plot 
markers represent the performance of the                 
three different ML algorithms. These results 
show the effects of different combinations of 
these extracted features on the performance of 
the three considered machine learning 
algorithms. 
 

4.1 Results for Voice Activity Detection 
(VAD) Stage 

 
The results of voice activity detection (VAD) 
performed on the datasets obtained from the 
TIMIT database using power density, entropy, 
zero crossing rate and root mean square 
measures are presented in Fig. 6.  
 
Fig. 6 shows that the portions (frames) of the 
utterance containing voice activities were 
successfully detected and enveloped as seen in 
(e) for TIMIT database. The frames enveloped 
had a power density value above 50 dB, entropy 
of more than 4.5, zero crossing rate of                         
less than 1000, and RMS value of more                      
than the overall utterance’s RMS value.                   
These  enveloped frames were the ones whose 
features were extracted for model training and 
testing. 
 

4.2 Evaluation of the Performance of the 
Different ML Algorithms with LPCC 
Features in Combination with other 
Features 

 
Fig. 7 shows (a) speaker prediction accuracy and 
(b) average score of accurate predictions results 
with feature combinations with LPCC. For each 
bar, the horizontal axis represents the feature 
combinations with LPCC while the right vertical 
axis represents the number of combined features 
for each bar (see Table 3 appendix I). The 
results indicate that the performance of ML 
models vary as the number and type of features 
change. For both figures (a) and (b), as the 
number of combined features increase                        
from LO (13 features) to MGDLP (53 features) 
the performances of the different machine 
learning models are increasing with speaker 
prediction accuracy ranging from 55% to 70% 
and average score of accurate predictions 
ranging from 30% at LO to above 80% with a 
higher number of features (MGDLP) with 53 
features.  



 
 
 
 

Iwok et al.; J. Eng. Res. Rep., vol. 25, no. 8, pp. 197-216, 2023; Article no.JERR.105995 
 
 

 
208 

 

 
 

Fig. 6. Plots of voice activity detection results for TIMIT dataset: (a) power density; (b) entropy; 
(c) zero crossing rate; (d) root mean square value; (e) speech signal with the framed sections 

over the regions of voice activity. Source: Researcher, 2023 
 

4.3 Evaluation of the Performance of the 
Different ML Algorithms with GFCC 
Features in Combination with Other 
Features 

 

The performance results of the ML models with 
GFCC features and its combinations is shown in 
Fig. 8 
 

In Fig. 8(a), the speaker prediction accuracy for 
all ML algorithms for GO (13 features) was 
between 70% and 80% and with a higher number 
of features MGDLP (53 features) all three ML 
algorithms achieved a speaker prediction 
accuracy close to 100%. In Fig. 8(b) for the 

average score of accurate predictions, the 
performances of all ML algorithms were between 
50% and 60% at GO (13 features) and with 
MGDLP (53 features), the performance of the 
other ML algorithms varied between 55% and 
100%. 

 
4.4 Evaluation of the Performance of the 

Different ML Algorithms with MFCC 
Features in Combination with Other 
Features 

 
Fig. 9 shows speaker prediction results with 
MFCC features and its combinations.  
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Fig. 7. Speaker prediction results with LPCC features and its combinations 
Source: Researcher, 2023 

 

.  
 

Fig. 8. Speaker prediction results with GFCC features and its combinations 
Source: Researcher, 2023 
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Fig. 9. Speaker prediction results with MFCC features and its combinations 
Source: Researcher, 2023 

 

The machine learning (ML) model performance 
results vary as the number of features 
combinations change. In Fig. 9(a), the speaker 
prediction accuracy results for the different ML 
models evaluated on MO (13 features) was 
between 80% and 90%. When the number of 
features increases to MGDLP (53 features), 
speaker prediction accuracy results for all three 
ML models was above 90%. In Fig. 9(b) the 
average score of accurate predictions results for 
all the ML models were above 55% at MO (13 
features) and as the number of combined 
features increase to MGDLP (53 features), the 
performance of the ML models increases from 
55% to 90%.  
 

4.5 Evaluation of the Performance of the 
Different ML Algorithms with DWT 
Features    in Combination with Other 
Features 

 
The speaker prediction results with DWT 
features and its combinations is shown in Fig. 10. 
 
Fig. 10 also demonstrates the effects of different 
DWT features combinations on the performance 

of machine learning (ML) models. In Fig.10(a) 
speaker prediction accuracy results show that for 
a relatively low number of features DO (13 
features) the ML models performance range from 
below 30% to above 90% when the number of 
features increases to MGDLP (53 features). In 
Fig.10(b), the average score of accurate 
predictions fall below 40% at DO (13 features) 
and increases to approximately 80% at MGDLP 
(53 features).  
 

5. DISCUSSION 
 
This section gives a brief results analysis and 
implications drawn from the findings made from 
the results presented in Fig. 6 to 10. These 
results show a trend in the performance 
evaluation of the machine learning models. 
There were three major observations made from 
the results obtained when the models were 
evaluated using different numbers of features 
combinations.  
 
The first observation was that each model 
showed a relative improvement from its previous 
performance when the number of features 
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combinations were lower to when the number of 
features combinations increased. The implication 
is that the larger the data size the more 
information there is for the models to use in 
identifying the speakers. This kind of 
performance will benefit real world scenarios 
were abundant data exists for speaker 
identification such as musical audio classification 
tasks. However, some variations in the models’ 
performance in between the upper and lower 
numbers of features combinations boundaries 
were noticed, indicating the impact of the types 
of features combinations sets on the 
performance of the ML models'. This leads to the 
second observation. 
 
The second observation made was that the more 
cepstral features present in the features 
combinations the better was the performance of 
the ML models. This was seen more significantly 
in the performance of the logistic regression (LR) 

model (see Fig. 7, Fig. 8 and Fig. 9). Research 
has shown that MFCC features in particular [40]  
and cepstral features in general outperform other 
feature types because they are robust for 
speaker identification systems. This can also be 
seen in the conclusions made by [38] about the 
superiority of cepstral domain features. This 
implies that in processing real life data for 
speaker identification applications the presence 
of more cepstral features will enhance system 
performance.  
 
The results presented support and extend 
current theories in the field of speaker 
identification and provides more understanding of 
the subject matter regarding the kinds of features 
combinations that are complementary and can 
positively impact the performance of ML models 
as well as features combinations that provide no 
significant improvement in the models’ 
performance.  

 

 
 

Fig. 10. Speaker prediction results with DWT features and its combinations 
Source: Researcher, 2023 
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A final take away from the results presented 
showed that for the highest number of feature 
combinations MGDLP (53 features), the LR 
model had an average score of accurate 
predictions result of approximately 70% and then 
approximately 76% at the MGL (39 features) 
features combination. From this result, two 
implications can be drawn – firstly, not all models 
require very large datasets to perform well. 
Secondly, datasets cannot be increased 
indefinitely because at saturation the models 
performance will hit a ceiling. In real-life 
scenarios such as medical diagnosis and rare 
diseases, fraud detection, energy grid anomalies, 
natural disaster prediction and space exploration, 
machine learning practitioners often face the 
challenge of making the most of the limited data 
available due to difficulties, cost or time 
constraints. Thus, information on model selection 
and evaluation can help mitigate the limitations of 
small datasets. 
 

6. CONCLUSION 
 

In conclusion, this work presented the evaluation 
of machine learning algorithms with combined 
feature extraction techniques for speaker 
identification. A brief description of the data 
collection, data processing, feature extraction, 
model training, evaluation and results have been 
presented to show the performance of the 
different machine learning models under different 
combinations of datasets.  
It is therefore inferred that –  
 
i. cepstral features have a more positive 

effect towards the performance of speaker 
recognition systems. 

ii. the performance of the machine learning 
models can indeed be affected by different 
features sets. This therefore means that 
the right feature combinations can offer 
complementary synergy which can 
improve the performance of the models. 
 LR model performed best with average 
score of accurate predictions 
approximately 70% for the maximum 
number of feature combinations (MGDLP) 
and also had the best performance for 
average score of accurate predictions 
(approximately 76%) at the MGL. This 
means that the optimal performance for LR 
was at the MGL (39) features set and as 
the features sets increased further the 
model hit a ceiling and the performance 
started to decline. This implies that an 
increase in speaker specific training data 

will increase the performance of the 
system, however, too much training data 
has been proven to be unnecessary 
because the performance of the system 
will eventually reach its highest point [41].  

 
The LR model outperformed all other models and 
it was observed that this performance occurred 
where all three cepstral features (MFCC, GFCC 
and LPCC) were part of the concatenated 
features. Also, as the number of features 
increased the performance of the LR model hit a 
ceiling and did not improve further. This work can 
be applied to biometric applications such as 
forensics, security access and in remote access 
for financial institutions.  
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APPENDIX  
 

Table 3. Extracted features combinations and number of features 
 

S/N Feature Combination Acronym No. of 
features 

1 Mel-frequency cepstral coefficients only  MO 13 
2 Gammatone cepstral coefficients only  GO 13 
3 Linear prediction cepstral coefficients only  LO 13 
4 Discrete wavelets components only DO 13 
5 Mel-frequency cepstral coefficients + pitch  MP 14 
6 Gammatone cepstral coefficients + pitch GP 14 
7 Linear prediction cepstral coefficients + pitch  LP 14 
8 Discrete wavelets components + pitch  DP 14 
9 Mel-frequency cepstral coefficients + Gammatone 

cepstral coefficients  
MG 26 

10 Mel-frequency cepstral coefficients + Linear prediction 
cepstral coefficients  

ML 26 

11 Mel-frequency cepstral coefficients + Discrete wavelets 
components 

MD 26 

12 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + pitch 

MGP 27 

13 Mel-frequency cepstral coefficients + Linear prediction 
cepstral coefficients + pitch  

MLP 27 

14 Mel-frequency cepstral coefficients + Discrete wavelets 
components + pitch 

MDP 27 

15 Gammatone cepstral coefficients + Linear prediction 
cepstral coefficients 

GL 26 

16 Gammatone cepstral coefficients + Discrete wavelets 
components 

GD 26 

17 Gammatone cepstral coefficients + Linear prediction 
cepstral coefficients + pitch 

GLP 27 

18 Gammatone cepstral coefficients + Discrete wavelets 
components + pitch 

GDP 27 

19 Linear prediction cepstral coefficients + Discrete 
wavelets components 

DL 26 

20 Linear prediction cepstral coefficients + Discrete 
wavelets components + pitch  

DLP 27 

21 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Linear prediction cepstral 
coefficients 

MGL 39 

22 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Discrete wavelets components 

MGD 39 

23 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Linear prediction cepstral 
coefficients + pitch 

MGLP 40 

24 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Discrete wavelets components + 
pitch 

MGDP 40 

25 Gammatone cepstral coefficients + Linear prediction 
cepstral coefficients + Discrete wavelets components 

GDL 39 

26 Gammatone cepstral coefficients + Linear prediction 
cepstral coefficients + Discrete wavelets components + 
pitch 

GDLP 40 

27 Mel-frequency cepstral coefficients + Linear prediction 
cepstral coefficients + Discrete wavelets components 

MLD 39 
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S/N Feature Combination Acronym No. of 
features 

28 Mel-frequency cepstral coefficients + Linear prediction 
cepstral coefficients + Discrete wavelets components + 
pitch 

MLDP 40 

29 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Linear prediction cepstral 
coefficients + Discrete wavelets components  

MGDL 52 

30 Mel-frequency cepstral coefficients + Gammatone 
cepstral coefficients + Linear prediction cepstral 
coefficients + Discrete wavelets components + pitch  

MGDLP 53 

Source: Researcher, 2023 
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