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Abstract 
 

In this paper, we suggest a novel divergence metric on a fuzzy set. Some scholars have used the fuzzy set 

extension and one that integrated with other theories. Axioms are proven in order to demonstrate the viability 

of measure. We create a way about decision-making criteria using the suggested measure and provide a 

workable method. We discuss the divergence metric metric for fuzzy sets in this post. The discussed 

properties of the proposed proposal. Multicriteria decision making is a very useful technique with a wide 

range of applications in the real world.                                                               
 

 

Keywords: Fuzzy set; divergence metric; decision making.  
 

1 Introduction  
 

The fuzzy set theory introduced by Zadeh [1] has achieved great success in a variety of domains. The actual 

world is full of uncertainty. When dealing with uncertainty and fuzziness, entropy is a crucial tool. Information 
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theory and fuzzy theory are used to tackle problems in the study of information distribution, storage retrieval, 

and decision-making. Entropy is the term used to describe the measure of information theory for the first time, 

according to Shannon [2]. The measure of information related to the two probability distributions of discrete 

random variables is then evaluated by Kullback and Liebler [3], and is given as 

 

𝐷(𝑝, 𝑞) = ∑ 𝑝𝑖  𝑙𝑜𝑔
𝑝𝑖

𝑞𝑖

𝑛
𝑖=1    

 

referred to as guided divergence. The fuzzy set theory was developed by L. Zadeh [1] and is utilised in many 

branches of research and industry, including image processing, pattern identification, and decision-making. 

 

Renyi [4] introduced a new divergence metric, 

 

𝐷𝛼  (𝑝, 𝑞) =
1

𝛼−1
ln ∑ 𝑝𝑖 𝑞𝑖

1−𝛼 , 𝛼 ≠ 1𝑛
𝑖=1   

 

Havrda–Charvat [5] also gave a new measure of divergence metric, 

 

𝐷𝛼 (𝑝, 𝑞) =
1

𝛼−1 
(∑ 𝑝𝑖

𝛼 𝑞𝑖
1−𝛼 − 1),    𝛼 ≠ 1𝑛

𝑖=1   

 

The definitions of closeness measure and roughly equal fuzzy sets as well as the idea of approximating fuzzy 

values have all been introduced in [6]. a similarity index based on the greatest difference between equivalent 

membership grades, was implied, along with several hazy qualities sets related to this metric were displayed. 

They evaluated the similarity of fuzzy value measurements .The metrics looked at in [7] include:   

  

(1) The measurement that is based on intersection and union procedures. 

(2) The maximal difference-based measure. 

(3) The measurement that takes into account membership grade disparities and the total.  

 

It has been proven by earlier researchers [6-8] that a fuzzy set's entropy is a measure of its fuzziness. Zadeh was 

the first to suggest fuzzy entropy as a fuzziness indicator; Pal and Pal studied classical Shannon information 

entropy; Kosko thought about the connection between distance measurement and fuzzy entropy; and Liu put 

forth an axiomatic definition of entropy, distance measures, and similarity measures and discussed the 

connections between these three ideas. This study is significant since it may offer us some helpful information 

for choosing an appropriate similarity metric in fuzzy set applications. 

 

In this research, we expand the work of [9] to further explore fuzzy value similarity measures. the matching 

function S that we provided in [10]. The choice of the measures to be employed in fuzzy set applications may be 

influenced by the fact that it has been demonstrated that some qualities are shared by various measures and that 

others do not hold for all of them. The definitions of o composition and composition from [11] are briefly 

reviewed in the comming sections. 

 

Now, The ∘ composition of  the vector 𝑎 =  (𝑎1, 𝑎2, … … . . , 𝑎𝑚),corresponding to the fuzzy subset A of U, with 

the mat𝑟𝑖𝑥    𝑅 = [𝑟𝑖𝑗],corresponding to the fuzzy relation R of  U×V, where U×V = ∑ ∑ 𝑢𝑖𝑣𝑗
𝑛
𝑗=1

𝑚
𝑖=1  and is 

denoted by  𝑎 ∘ 𝑅 and is equal to the vector C=  (𝑐1, 𝑐2, … … . . , 𝑐𝑛), where 

 

 𝑐𝑗  =   ⋃(𝑎𝑖  ∩  𝑟𝑖𝑗) 

 

∩ denotes the minimum operator, and ∪ denotes the maximum operator. The α composition of a scalar x with a 

scalar y which is denoted by is 𝑥𝛼𝑦 is defined by 

 

𝑥𝛼𝑦 = {
   1       𝑖𝑓 𝑥 ≤ 𝑦
𝑦    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Bhandari and Pal [12] used the idea of fuzzy measure conditioning, which corresponds to Kullbck and Leibler 

[3] probabilistic divergence metric, to develop a fuzzy distance measure between two fuzzy sets. A measure was 

introduced by Bhandari and Pal [12]. 
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𝐼(𝐴, 𝐵) = ∑ 𝜇𝐴  (𝑥𝑖 )𝑙𝑜𝑔
𝜇𝐴  (𝑥𝑖 )

𝜇𝐵 (𝑥𝑖 )

𝑛
𝑖=1 + (1 − 𝜇𝐴 (𝑥𝑖 ))𝑙𝑜𝑔

(1−𝜇𝐴 (𝑥𝑖 ))

(1−𝜇𝐵 (𝑥𝑖 )
  

 

Later, according to the exponential fuzzy entropy provided by Pal and Pal [5], Fan and Xie [13] offered 

discriminating of fuzzy information of fuzzy set against. A generalised divergence metric measure similar to 

Havrda and Charvat [5] was introduced by Kapur [14]. Along with R-norm divergence metric, Hooda and Bajaj 

[15] proposed a divergence metric measure. A measure of the divergence metric of two sets was provided by 

Bhatia and Singh [16]. Some form of fuzzy divergence metric was proposed by Tomar, Ohlan, Priya, and Tomar 

[17, 18]. In their article "Decision-making with Parameterized Hesitant Fuzzy Soft Set Theory," Zahari Md 

Rodzi and Abd Ghafur Ahmad [19] established this concept. We suggest divergence metric while keeping in 

mind the aforementioned literature, and certain significant properties are also investigated.  

 

It has been demonstrated that the suggested measure is widely applicable. A brief study on the fuzzy set, 

measure, and divergence metric is provided in section IInd. A novel divergence metric measure is discussed in 

section III. Properties are provided together with their proof in section IV. Section Vth discusses how the 

proposed measure would be applied. The sixth segment concludes the work discussed previously. 

 

1.1 Preliminaries  
 

In this part, we define a few terms and notations related to divergence metric measure and fuzzy sets. We shall 

outline the features of the fuzzy set and its measure that will be relevant to our upcoming discussion. 

 

Definition 1. Let  𝑃 = (𝑝1,𝑝2,……..𝑝𝑛  ), 𝑝𝑖  ≥ 0 is the set of all complete finite discrete probability distribution 

then measure of information was defined firstly by Shannon as.  

 

𝐻(𝑃) = ∑ 𝑝𝑖  log 𝑝𝑖 ,    
𝑛
𝑖=1   

 

Definition 2. Let 𝑋 = {𝑥1,𝑥2,…………𝑥𝑛  }be universe of discourse then   𝐴 = {< 𝑥, 𝜇𝐴 (𝑥𝑖 ) >/𝑥 ∈ 𝑋} is called 

fuzzy set where 𝜇𝐴 (𝑥𝑖 )  : 𝑋 → [0,1]is a membership function defined as follows 

 

𝜇𝐴 (𝑥𝑖  ) =  0 𝑖𝑓 𝑥  𝐴  

𝜇𝐴 (𝑥𝑖  ) =  0 𝑖𝑓 𝑥 ∈ 𝐴  

𝜇𝐴 (𝑥𝑖  ) =  0.5 𝑖𝑓 𝑥  𝐴 or 𝑥 ∈ 𝐴  

 

 Some notation for two fuzzy set  

 

1. 𝐴 ∪ 𝐵 = {< 𝑥, max (𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)) >/𝑥 ∈ 𝑋} 

2.  𝐴 ∩ 𝐵 = {< 𝑥, min (𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)) >/𝑥 ∈ 𝑋} 

3. 𝐴 = 𝐵 = {< 𝑥, 𝜇𝐴 (𝑥) = 𝜇𝐵 (𝑥) >/𝑥 ∈ 𝑋}  

4. 𝐴. 𝐵 = {< 𝑥, 𝜇𝐴  (𝑥). 𝜇𝐵 (𝑥) >/𝑥 ∈ 𝑋} 

5. 𝐴𝑐  = {< 𝑥, 𝜇𝐴 (𝑥) = 1 − 𝜇𝐴  (𝑥) >/𝑥 ∈ 𝑋 

 

Definition 3. Let 𝑋 = {𝑥1,𝑥2,…………𝑥𝑛  }          be universe of discourse and F(X)  be the set of all family subset. A 

mapping  𝐼: 𝐹(𝑋)   ×    𝐹(𝑋) → 𝑅 is called divergence measure between fuzzy sets if  

 

i. 𝐼(𝐴: 𝐵) ≥ 0 

ii. 𝐼(𝐴: 𝐵) = 𝐼(𝐵: 𝐴) 

iii. 𝐼(𝐴: 𝐵) = 0   𝑖𝑓𝑓 𝐴 = 𝐵 

iv. 𝑀𝑎𝑥{𝐼(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶), 𝐼(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶)} ≤ 𝐼(𝐴: 𝐵) 

 

Bajaj et.al. [20] define the measure of fuzzy divergence metric as  

 

𝐼𝛼   (𝐴: 𝐵) =
1

𝛼−1
∑ log [𝜇𝐴   

𝛼  𝑛
𝑖=1 (𝑥𝑖  )𝜇𝐵

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴  (𝑥𝑖  ))𝛼   (1 − 𝜇𝐵  (𝑥𝑖  ))1−𝛼 ]   
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𝐼𝛼,𝛽  (𝐴: 𝐵) =
1

1−2𝛽−1 
∑ {[𝜇𝐴

𝛼  (𝑥𝑖  )𝜇𝐵
1−𝛼  (𝑥𝑖  ) + (1 − 𝜇𝐴  (𝑥𝑖 ))

𝛼   
(1 − 𝜇𝐵  (𝑥𝑖  ))

1−𝛼 
]

𝛽−1  

𝛼−1 
− 1}𝑛

𝑖=1   

 

Entropy measure for fuzzy sets was introduced by Prakash et al. [21] as 

 

𝐻𝛼
𝛽  (𝐴) =

1

(1−𝛼)𝛽
 ∑ {[𝜇𝐴

𝛼 (𝑥𝑖   ) + (1 − 𝜇𝐴  (𝑥𝑖 ))
𝛼  

]
𝛽 

− 1}𝑛
𝑖=1  ; 𝛼 > 0, 𝛼 ≠ 1, 𝛽 ≠ 0 

 

2 Our Results 
 

2.1 New Divergence Metric Measure 
 

In accordance with Prakash et al. [21], we suggest the following fuzzy divergence metric measure: 

 

𝐻𝛼,𝛽  (𝐴, 𝐵) =
1

(𝛼−1)𝛽  
∑ log{ [𝜇𝐴

𝛼   (𝑥𝑖   )𝜇𝛽
1−𝛼    (𝑥𝑖  ) + (1 − 𝜇𝐴  (𝑥𝑖    ))

𝛼   
(1 − 𝜇𝐵   (𝑥𝑖  ))

1−𝛼 
]

𝛽    

− 1}𝑛
𝑖=1   

                                                                                                          ; 𝛼 > 0, 𝛼 ≠ 1, 𝛽 ≠ 0                                   (1) 

 

Theorem 1.  Show that 𝐻𝛼,𝛽  (𝐴, 𝐵)  is valid measure of fuzzy divergence metric. 

 

Proof.  To show that proposed measure in (1) is valid we have to prove following axioms 

 

1. We can clearly check in figure that   𝐻𝛼,𝛽  (𝐴, 𝐵) is non – negative.   

 
Fig. 1.  𝑯𝜶,𝜷  (𝑨, 𝑩) 

 

2. 𝐻𝛼,𝛽  (𝐴, 𝐵) ≠ 𝐻𝛼,𝛽  (𝐵, 𝐴) 

3. 𝐻𝛼,𝛽  (𝐴, 𝐵)  = 0, if A = B 

4. We have to check the convexity of 𝐻𝛼,𝛽  (𝐴, 𝐵) 
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So now, 

 
𝜕𝐻𝛼,𝛽

𝜕𝜇𝐴  (𝑥𝑖   )
= {𝛼𝛽 [𝜇𝐴

𝛼−1  (𝑥𝑖   )𝜇𝛽
1−𝛼 (𝑥𝑖  ) + (1 − 𝜇𝐴  (𝑥𝑖  ))

𝛼−1 
  (1 −

𝜇𝛽  (𝑥𝑖  ))
1−𝛼 

] [𝜇𝐴
𝛼   (𝑥𝑖   )𝜇𝐵

1−𝛼 (𝑥𝑖   ) + (1 − 𝜇𝐴  (𝑥𝑖   ))
𝛼  

(1 − 𝜇𝐵  (𝑥𝑖  ))
1−𝛼 

]
𝛽−2 

}  

 
𝜕2  𝐻𝛼,𝛽

𝜕𝜇𝐴
2  (𝑥𝑖 )

= {𝛼(𝛼 − 1)𝛽 [𝜇𝐴
𝛼−2  (𝑥𝑖  )𝜇𝐵

1−𝛼  (𝑥𝑖   ) + (1 − 𝜇𝐴  (𝑥𝑖  ))
𝛼−2  

(1 −

𝜇𝐵  (𝑥𝑖 ))
1−𝛼  

] [𝜇𝐴
𝛼   (𝑥𝑖  )𝜇𝐵

1−𝛼   (𝑥𝑖   ) + (1 − 𝜇𝐴   (𝑥𝑖  ))
𝛼    

(1 − 𝜇𝐵   (𝑥𝑖   )
1−𝛼  ]

𝛽−2  
+ 𝛼(𝛽 −

1)𝛽 [𝜇𝐴
𝛼−1 (𝑥𝑖  )𝜇𝐵

1−𝛼   (𝑥𝑖 ) + (1 − 𝜇𝐴   (𝑥𝑖 ))
𝛼−1 

(1 − 𝜇𝐵  (𝑥𝑖  ))
1−𝛼 

] [𝜇𝐴
𝛼    (𝑥𝑖  )𝜇𝐵

1−𝛼  (𝑥𝑖   ) +

(1 − 𝜇𝐴 (𝑥𝑖   ))
𝛼   

(1 − 𝜇𝐵  (𝑥𝑖 ))
1−𝛼 

]
𝛽−3   

}  

 
𝜕2  𝐻𝛼,𝛽

𝜕𝜇𝐴
2  (𝑥𝑖)

 > 0             𝑓𝑜𝑟 𝛼 > 0, 𝛽 > 0, 𝛼 ≠ 1, 𝛽 ≠ 1,2  

 

Similarly we can show that  
                

⇒  
𝜕2  𝐻𝛼,𝛽

𝜕𝜇𝐵
2  (𝑥𝑖)

 > 0   𝑓𝑜𝑟 𝛼 > 0,    𝛽 > 0, 𝛼 ≠ 1,2   𝛽 ≠ 1  

 

Therefore, it follows that the proposed measures are sound axiomatically. 
 

2.2 Some Important Properties 
 

Assume that the family of all fuzzy set of universe X, is denoted by FS(X) and A, B, C  ∈ FS(X) is given  
 

𝐴 = [< 𝑥, 𝜇𝐴  (𝑥) >/𝑥 ∈ 𝑋]  
𝐵 = [< 𝑥, 𝜇𝐵 (𝑥) >/𝑥 ∈ 𝑋]  
𝐶 = [< 𝑥, 𝜇𝐶  (𝑥) >/𝑥 ∈ 𝑋]  

 

and we have   
     

∆1 = [𝑥𝑖 /𝑥𝑖  ∈ 𝑋, 𝜇𝐴 (𝑥𝑖 ) ≥ 𝜇𝐵  (𝑥𝑖 )]  
∆2   = [𝑥𝑖 /𝑥𝑖  ∈ 𝑋, 𝜇𝐴 (𝑥𝑖 ) < 𝜇𝐵 (𝑥𝑖 )]  

 

Theorem 2.  Prove that proposed measure in (1) satisfies the following properties [22]: 
 

1. 𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐴) + 𝐻𝛼,𝛽 (𝐴 ∩ 𝐵, 𝐴) = 𝐻𝛼,𝛽  (𝐵, 𝐴) 

2. 𝐻𝛼,𝛽  (𝐴, 𝐴 ∩ 𝐵) = 𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐵) 

3. 𝐻𝛼,𝛽 (𝐴, 𝐴 ∪ 𝐵) = 𝐻𝛼,𝛽 (𝐴 ∩ 𝐵, 𝐵) 

4. 𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐶) + 𝐻𝛼,𝛽 (𝐴 ∩ 𝐵, 𝐶) = 𝐻𝛼,𝛽  (𝐴, 𝐶) + 𝐻𝛼,𝛽 (𝐵, 𝐶) 

5. 𝐻𝛼,𝛽  (𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = 𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐵) + 𝐻𝛼,𝛽 (𝐵, 𝐴 ∩ 𝐵) 

6. 𝐻𝛼,𝛽  (𝐴, 𝐴𝐶 ) = 𝐻𝛼,𝛽 (𝐴𝐶 , 𝐴) 

7. 𝐻𝛼,𝛽 (𝐴𝐶 , 𝐵𝐶 ) = 𝐻𝛼,𝛽  (𝐴, 𝐵) 

8. 𝐻𝛼,𝛽 (𝐴, 𝐵𝐶 ) = 𝐻𝛼,𝛽 (𝐴𝐶 , 𝐵) 

9. 𝐻𝛼,𝛽 (𝐴, 𝐵) + 𝐻𝛼,𝛽 (𝐴𝐶 , 𝐵) = 𝐻𝛼,𝛽 (𝐴𝐶 , 𝐵𝐶 ) + 𝐻𝛼,𝛽 (𝐴, 𝐵𝐶 ) 

 

Proof: 
    

1. [𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐴) + 𝐻𝛼,𝛽 (𝐴 ∩ 𝐵, 𝐴)] =
1

(𝛼−1)𝛽 
∑ log {[𝜇𝐴∪𝐵 

𝛼 (𝑥𝑖 )𝜇𝐴
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴∪𝐵 (𝑥𝑖 ))

𝛼 
(1 −𝑛

𝑖=1

𝜇𝐴 (𝑥𝑖 ))
1−𝛼 

]
𝛽  

+ [𝜇𝐴∩𝐵
𝛼 (𝑥𝑖 )𝜇𝐴

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴∩𝐵 (𝑥𝑖 ))
𝛼 

(1 − 𝜇𝐴  (𝑥𝑖 ))
1−𝛼 

]
𝛽  

− 2}  
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     =
1

(𝛼−1)𝛽 
{∑ 𝑙𝑜𝑔 {[𝜇𝐴

𝛼   (𝑥𝑖 )𝜇𝐴
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼  
(1 − 𝜇𝐴 (𝑥𝑖 ))

1−𝛼 
]

𝛽  

− 1} +∆1

∑ 𝑙𝑜𝑔 {[𝜇𝐵
𝛼 (𝑥𝑖 )𝜇𝐴

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐵 (𝑥𝑖 ))
𝛼  

(1 − 𝜇𝐴 (𝑥𝑖  ))
1−𝛼 

]
𝛽 

− 1} } +∆2

{∑ 𝑙𝑜𝑔{[𝜇𝐴
𝛼   (𝑥𝑖  )𝜇𝐴

1−𝛼  (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖  ))
𝛼  

(1 − 𝜇𝐴 (𝑥𝑖 ))
1−𝛼 

]
𝛽

∆1
− 1} +

∑ 𝑙𝑜𝑔 {[𝜇𝐵
𝛼(𝑥𝑖 )𝜇𝐴

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐵 (𝑥𝑖 ))
𝛼 

(1 − 𝜇𝐴 (𝑥𝑖 ))
1−𝛼 

]
𝛽 

− 1} } ∆2
  

 

=
1

(𝛼−1)𝛽
∑ log {[𝜇𝐵

𝛼 (𝑥𝑖 )𝜇𝐴
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝛽 (𝑥𝑖 ))

𝛼 

(1 − 𝜇𝐴(𝑥𝑖 ))
1−𝛼 

]𝛽 𝑛
𝑖=1 − 1}   

 

Hence we can say that 

 

𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐴) + 𝐻𝛼,𝛽 (𝐴 ∩ 𝐵, 𝐴) = 𝐻𝛼,𝛽 (𝐵, 𝐴)  

 

2.  𝐻𝛼,𝛽 (𝐴, 𝐴 ∩ 𝐵) =
1

(𝛼−1)𝛽
 ∑ 𝑙𝑜𝑔 {[𝜇𝐴

𝛼 (𝑥𝑖 )𝜇𝐴∩𝐵
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼 
(1 − 𝜇𝐴∩𝐵 (𝑥𝑖 ))

1−𝛼 
]

𝛽

− 1}𝑛
𝑖=1    

=
1

(𝛼−1)𝛽
 {∑ log {[𝜇𝐴

𝛼 (𝑥𝑖 )𝜇𝐵
1−𝛼(𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼 
(1 − 𝜇𝐵 (𝑥𝑖 ))

1−𝛼 
]

𝛽 

∆1
− 1} +

∑ 𝑙𝑜𝑔 {[𝜇𝐴
𝛼 (𝑥𝑖 )𝜇𝐴

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))
𝛼 

(1 − 𝜇𝐴  (𝑥𝑖 ))
1−𝛼 

]
𝛽 

− 1 }∆2
}   

 

3.  =
1

(𝛼−1)𝛽
 {∑ 𝑙𝑜𝑔 {[𝜇𝐴

𝛼 (𝑥𝑖 )𝜇𝐵
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼 
(1 − 𝜇𝐵 (𝑥𝑖))

1−𝛼 
]

𝛽

− 1}} ∆1
 

 

𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐵) =  
1

(𝛼−1)𝛽 
∑ 𝑙𝑜𝑔 {[𝜇𝐴∪𝐵

𝛼 (𝑥𝑖 )𝜇𝐵
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼
 (1 − 𝜇𝐵 (𝑥𝑖 ))

1−𝛼 
]

𝛽 

− 1}𝑛
𝑖=1   

  =
1

(𝛼−1)𝛽 
{∑ 𝑙𝑜𝑔 {[𝜇𝐴

𝛼 (𝑥𝑖 )𝜇𝐵
1−𝛼(𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼 
(1 − 𝜇𝐵 (𝑥𝑖 ))

1−𝛼 
]

𝛽 

− 1} +∆1

∑ 𝑙𝑜𝑔 {[𝜇𝐵
𝛼 (𝑥𝑖 )𝜇𝐵

1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐵 (𝑥𝑖 ))
𝛼 

(1 − 𝜇𝐵 (𝑥𝑖 ))
1−𝛼 

]
𝛽 

− 1}} ∆2
  

 

=
1

(𝛼−1)𝛽
 {∑ 𝑙𝑜𝑔 {[𝜇𝐴

𝛼 (𝑥𝑖 )𝜇𝐵
1−𝛼 (𝑥𝑖 ) + (1 − 𝜇𝐴 (𝑥𝑖 ))

𝛼 
(1 − 𝜇𝐵 (𝑥𝑖 ))

1−𝛼 
]

𝛽 

− 1}} ∆1
  

 

Hence we can say that  

 

𝐻𝛼,𝛽 (𝐴, 𝐴 ∩ 𝐵) = 𝐻𝛼,𝛽 (𝐴 ∪ 𝐵, 𝐵)  

 

All other properties can be proved as above 

 

3 Conclusions  
 

We describe the divergence metric measure for fuzzy sets in this study. The discussed properties of the proposed 

proposal. We tested the proposed function in this research and found that it satisfies all the crucial criteria. We 

see that the proposed function has more application flexibility due to the presence of the argument in it. 

Therefore, whenever alterations are made or limiting constraints are put in place, we have produced some 

significant and intriguing findings that may be helpful for the generalised fuzzy divergence metric. Finally, 

several other significant findings are made that are helpful in statistics and information science. 
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