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Abstract 

 
The study aimed at using the Close-Knit Regression (CKR) technique to approximate values absent because 

of the missing completely at random mechanism. Bivariate datasets were generated and simulated for MCAR 

mechanism at low (10%) and high (60%) rates. The CKR method was used and compared alongside other 

single imputation techniques like mean imputation, simple regression and K- Nearest Neighbors (K-NN). The 

difference between parameter estimates like mean, correlation coefficient (r), maximum, minimum and 

standard deviation which were gotten using predicted data and those using the original data as well as 

assessment of error rates like mean absolute error (MAE) and root mean square error (RMSE) were used as 

metrics in deciding the efficiency of the techniques. Results showed that the CKR technique was the best 

from those considered, with its estimated data having parameter estimates closer to that of the original whilst 
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having the least error rates at 10% (MAE of 0.01 and RMSE of 0.047) and 60% (MAE of 0.021 and RMSE 

of 0.073) in comparison to other methods, CKR technique is a suitable single imputation technique which 

produces estimates close to the original data and parameters with low error rates when data are MCAR. 

 

 
Keywords: Missing completely at random; close knit regression; mechanism; parameter estimates; mean 

absolute error; root mean square error. 

 

1 Introduction 
 

The possession of high quality data is primarily important in research studies, a statistician, no matter his level 

of expertise can do from little to nothing without access to reliable information on the phenomena he wishes to 

asses.  

 

It is in fact safe to say, that one can not depend on the results of any investigation if the data source is not 

verifiable. In the real world however, data collection is affected by so many factors, ranging from human error 

or apparatus failure to voluntary or involuntary non response or invalid answers by some participants and even 

loss of life [1].  

 

While some of the aforementioned dynamics are mitigatable, most are not within the complete control of the 

researcher which makes avoiding them almost hopelessly inevitable [2], leading to unwanted errors, lack of 

consistency alongside redundancy and inadequacy in data sets. This in turn can heavily compromise the process 

and outcome of data analysis if not making it impossible to proceed in some cases.  

 

When there are no values recorded in required information fields during research, it is referred to as missing 

data [3]. It is the lack of input, where input is needed. It can also be referred to as information that should have 

been present but isn’t, for peculiar reasons [4]. According to McKnight et al. [5] the causes of missing data can 

be usually traced to: 

 

(a) The study participants, which entails errors on the part of subjects or their refusal to provide information 

for personal reasons (participant characteristics). 

(b) The study design, having to do with the structure of the data collection methods and how its tedious and 

overbearing nature could discourage participants from providing complete data (design characteristics). 

(c) The interaction of (a) and (b) above that has to do with the repercussions from the contact of study 

participants with design, an example of this is when some subjects in clinical trials are too sick to 

continue. There have also been cases of missing values due to the aforesaid reasons occurring in non-

indigenous forms, they camouflage among genuine data making the task of spotting them a strenuous one 

[6]. 

 

Prevention as they say is better than cure and this applies greatly to missing data, some of the ways researchers 

can curb the effect of missing data is by adopting a well organised study and being meticulous with data 

collection [2], if however missing values occurs as it is a near definite possibility [7], there are a plethora of 

methods for handling them. These methods depend largely on the underlying structures and reasons for 

occurrences of missing values. 

 

The course of action that led to missing values existing in a data set is referred to as the mechanism of missing 

data [8]. Little and Rubin [9] gave a deft classifying system of missing values basing mainly on their 

probabilities. When the probability of a variable being missing is independent of all other variables (observed 

and unobserved) in the data set, the mechanism in place is Missing Completely at Random (MCAR), a good 

example is skipping of certain items on a questionnaire by respondents due to oversight. Sometimes, the 

probability of a variable being missing is dependent on other observed variables in the data, this defines as 

Missing at Random (MAR), for example, women might exclude their age response in the demographic section 

of a questionnaire for sociological reasons. The last mechanism is Not Missing at Random (NMAR) and this 

happens when the probability of missing value occurrence is dependent on both observed and unobserved 

variables, take for example data on the IQ scores with data missing for subjects with low IQ values. The lack or 

presence of constancy in the way data are missing is referred to as its pattern. A univariate pattern happens 
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when values are absent for only one variable. When missing values are dependent on each other it is termed to 

have occurred in a monotonic pattern, arbitrary patterns occur in random fashion [5]. 

 

  
 

Fig. 1. Showing the effect of missing data on a scatter plot randomly generated 

 

Notwithstanding the advent of super computers with high end estimating powers in the 21
st
 century, the problem 

of missing value estimation has continued to trouble researchers and scientists alike [10]. Its predominance in 

datasets if not addressed, being one of the many causes of bias when estimating parameters [11], hence 

weakening the statistical and empirical powers of estimators. There are a plethora of techniques for handling 

missing data ranging from complete/available case analysis to single imputation methods, likelihood based 

approaches and multiple imputation techniques [12]. Single imputation being one of the most flexible and 

general methods is easier and more direct than other techniques this in turn makes it more popular. Single 

imputation techniques however, tend to ignore uncertainty and almost always underestimates variance, like it 

was evident in the research of Paniagua et al. [13].  

 

This study aimed to develop and apply the close-knit-regression (CKR) approach as a single imputation method, 

methods, investigate its advantages and disadvantages (if any) alongside three (3) other selected single 

imputation techniques in widespread use, which are mean imputation, simple linear regression and K-Nearest 

Neighbour (K-NN). Which for a wide scope, will make use of these methods tried on generated data which will 

be simulated for MCAR mechanism at low and high rates of 10% and 60% respectively under a univariate 

pattern.  

 

1.1 Assessment on data techniques from surveyed literature 
 

We could classify methods for handling missing data can into four [9,5], and these are: 

 

a) Data Deletion Methods: Which includes List wise deletion, Pairwise deletion, Available item analysis, 

Individual growth curve analysis, Multisample analysis etc.  

b) Data Augumentation Methods: Comprising of Maximum Likelihood based methods,Expectation 

Maximization, Markov Chain Monte Carlo Method, Weighing and Dummy Code Adjustments etc 

c) Single Imputation Methods: With the following methods 

 

i- Constant Replacement (like the Mean, ML mean, Median Substiution and Zero Imputation) 

ii- Random replacement (Hot Deck, Cold Deck), Model Based (Bayesian/Monte Carlo, ML) 

iii- Not Random replacement like the One Condition approach (Group Mean, Group Median, Last 

Observation carried Forward, Next Observation carried backward) and Multiple Conditions (Mean 

Previous Observations, Mean Subsequent Observations, Last and Next Average, Regression, 

Regression with Error) etc. 

 

d) Multiple Imputation Methods. 

 

We will now look at past methods used by researchers in handling missing data, which we cataloged with 

respect to the aforementioned methods. 
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1.1.1 Data deletion methods 

 

Nirelli et al. [14] on handling missing data, found the largest differences in standard errors between the original 

data and two simulated missing data mechanisms, MCAR and MAR to have occurred while using the complete 

case method. The further effect of bias apperance when using Complete Case Analysis (CCA) was seen in the 

work of Nakai [15] on a simulated longitudinal dataset, where even though estimated means were close to the 

original values showing no disadvantage,the Mean Square Error (MSE) of the estimate was doubled.They 

concluded that CCA method was best for low and fair missing rates (under 15%). Guan and Yusoff [11] on the 

other hand whilst also working a longitudinal study reported not just bias in standard error but a significant 

compromise in parameter estimate using CCA as opposed to the original data set and other imputation methods.  

 

Persisting problems of sample size and test efficiency reduction was also reported in Nakai [16] study when 

complete case analysis was used to predict missing values in a longitudinal analysis of 1000 MCAR datasets 

with constant variance and AR(1) for varying correlation structures,but still positives were taken from the 

results when computations were made at low missing and correlation rates of 5% and ρ=0.1 respectively. 

 

1.1.2 Data augmentation methods  

 

Dong and Peng [17] in their work on demonstrating three principled data methods,which were,Mulitple 

imputation (MI), Full information maximum likelihood (FIML) and EM. Standard errors from EM were closer 

to those based on the complete data. Susianto et al. [18] assessed the EM algorithm alongside four imputation 

methods in a comparative study. Peformances were compared using mean square error (MSE) and mean 

absolute error (MAE). EM algorithm performed better than Markov Chain Monte Carlo Method (MCMC) but 

came inferior to the Yates Method. MCMC was also outperformed by EM method in terms of accuracy in the 

work of Takahashi [19]. 

 

Dong and Peng [17] incorporated the FIML technique as mentioned earlier, similar results were obtained under 

the three missing data conditions of 20%, 40% and 60%. They prosit using FIML when parameters are to be 

estimated cause they don’t introduce “too much” randomness in data sets. The Missing Indicator 

Method/Missing Indicator has provided researchers with a sufficient alternative to listwise deletion, its main 

advantage is the sample size is usually not compromised. ML Methods have also being reviewed to be are more 

advantageous than MI methods [11,20,21]. 

 

1.1.3 Single imputation methods  

 

Literatures surveyed on single imputation methods indicate that The CN2 and C4.5 algorithms are peharps the 

two most simplest of all imputation methods, they in general replace missing values with the mode from entries 

of the variable considered. A study by Grzymala-Busse and Hu [20] categorized them both as not very good 

estimators of missing values. These findings were also supported by Batista and Monard [1] in later studies 

which compared the two aforesaid algorithms with more precise procedures like the K-NNI method. The mean 

imputation has been found to recurrently underestimate standard error of parameters [11,22,23]. Simple 

regression and using conditional means were both deemed more effective method than mean imputation [14]. 

 

1.1.4 Multiple imputation methods  

 

Nakai et al. [16] conducted a simulation study to investigate the efficiency of four typical imputation methods 

with longitudinal data setting under MCAR. Tests were done at varying missing rates (5%, 30%, 50%), MI 

method had the least bias and best coverage probabilty, it was concluded to be the most effective of all 

imputation methods (others tried were LOCF, CCA and mean imputation). Results from the work of Schmitt et 

al. [24] which compared 6 different types of imputation methods used multiple imputations by chained equation 

(MICE) to compare the performance of four real data sets under MCAR assumptions showed that MI’s 

performance was termed “not consistent” with its best results gotten in small data sets and the worst in large 

ones. It also took the longest time for estimation (about half an hour). From all six (6) techniques assessed. 

 

Given the number of repetitious cases of missing values post data collection, a good portion of statisticians have 

since proposed a variety of single imputation methods that handle such inconveniences The CKR was developed 

to make up for some of the shortcomings of other popular single imputation methods. The proposed CKR 
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method is expected to not overly underestimate variance while providing more accurate estimates since the 

imputations are conditionally random, systematic and likely to be different for each missing point.  

 

2 Materials and Methods  
 

Data simulations will be performed in R using the ampute function as proposed by Schouten et al. [25] which 

works with mice, vim and MASS packages. Continous defined datasets of one thousand observations (N=1000) 

will be generated, which will be composed of two fairly correlated variables (V1, V2) as most real world 

variables are, be aware that the covariance matrix should be semi definite. Summary of variables and conditions 

used in this study will be specified in Table 1 below. 

 

Table 1. Summary of variables and conditions used in this study 

 

Variables Correlation 

(r) 

Missing 

mechanism 

Missing 

pattern 

Distribution Missing 

rate 

Techniques 

V1(Independent 

variable) and 

V2(Dependent 

Variable) 

Fairly 

correlated 

(0.4) 

MCAR Univariate 

on 

dependent 

variable 

(V2) 

Both are 

standard 

normal V1, 

V2 ~ N (0,1) 

10% & 

60% 

Single 

Imputation: 

1) Mean 

Imputation 

2) K-NN 

3) Regression 

Imputation 

4) CKR 

(Proposed 

Method) 

 

2.1 Data set simulation 
 

After the data set generation is complete, ampute function has several other arguments which specify the nature 

of your missing data. First is the proportion, which in our study will vary from 10% to 60%. Next is the 

specification of missing mechanism which for our study will be of the univariate kind acting on the dependent 

variable. 
 

Another important argument in the ampute function is the one that lets you select the frequency of missing-ness 

across the data, ampute divides original data into multiple subsets, where the number of subsets which has 

values in proportions that sum must equal one using a single value will suit the univariate pattern assigned 

earlier.  
 

Specification of the mechanism to be MCAR is the next step after which assigning the weights which 

determines the relative missing-ness in the data set with respect to the variables, A weighted sum score uses a 

linear regression with coefficients assigned, it is of the form  
 

wssi= W1 · V1i + W2 · V2i                                                                                                             (1) 
 

where wssi is the weighted sum score of case i, V1i and V2i are the variable values of case i and W1 and W2 are 

the specified weights.  
 

Keeping in mind that MCAR is completely random and the variables don’t influence its being missing, a zero 

weight is assigned to both variables. The last argument in ampute is not applicable to the MCAR mechanism. 
 

2.2 Techniques considered in the study 
 

A total of four single imputation techniques were considered in this study, three (3) are already commonly used 

and the -last is the method proposed, they are: 
 

a) Mean Imputation 

b) K-NN 

c) Simple Regression 

d) CKR (Proposed Method) 
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A brief description of these methods will be in focus. 

 

 
 

Fig. 2. Flowchart showing steps in the ‘Ampute’ process (Adapted from Schouten et al. [25]) 
 

2.2.1 Mean imputation  
 

The mean imputation is one of the most popularly known methods. It replace the missing values in a variable 

with the mean of all present values for continous data, while it replaces the missing values with the mode in 

discrete data. The disadvantages of the mean method is mainly on how it tends to underestimate variance by 

repeating values since the mean is a constant, correlation coefficient values are also stunted cause of the 

repititive nature of its outcome. Mathematically If xij of the k-th class Ck is missing, then it is replaced by 
 

    =  
   

  
         

                                                                                                                              (2) 

 

2.2.2 K-Nearest Neighborhood (K-NN)  
 

The K-NN method replaces the missing values by considering the given number of occurences that are most 

similar to the value of interest.It has numerous advantages, as it can be used for both qualitative and quantitative 

features in a data set, it doesn’t make use of a predictive model too, the K-NN method also considers the 

correlation structure of the data. The first set back of this method is in the consideration of what distance 

function to use, it also requires a lot of time which is based on the choice of k. The procedure is as follows: 
 

a) Given a data set V2, Divide V2 into two parts. Let V2mis be the set containing the instances in which at 

least one of the features is missing. The remaining instances with complete feature information form a set 

called V2pres. 

b) For each vector V2 in V2miss: Divide the instance vector into observed and missing parts as V2 = [V2obs; 

V2miss]. Calculate the distance between V2 and all the instance vectors from the set V2pres. Use only those 

features in the instance vectors from the complete set V2pres, which are observed in the vector V2. 

c) Use the K closest instances vectors (K-nearest neighbors) and perform a majority voting estimate of the 

missing values for categorical attributes. For continuous attributes replace the missing value using the 

mean value of the attribute in the k-nearest neighborhood. The median could be used instead of the mean 

in cases of categorical data. 
 

The K-NN takes into consideration the correlation structure of the data set and is so an improvement on using 

the mean.  
 

2.2.3 Regression method  
 

This is usually used for univariate or monotone missing data pattern. The first step involves building a model 

from the observed data. Predictions for the incomplete cases are then calculated under the fitted model, and 

serve as replacements for the missing data. The demerits of this method is usually the model estimated values 

are usually more artificial than the true values, also the technique could suffer from a lack of precision 

especially if there are no relationships among the values in the data set and the attribute with missing data, it is 

sometimes a tedious process too, since depending on the number of variables with missing data, so many models 

could be created. 
 

Suppose that there are 2 variables V1, V2 in a data set and missing data are uniformly or to impute the missing 

values for a variable, one first constructs a regression model using observed data on V1 through V2. 
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                                                                                                                                          (3) 

 

The regression model in above yields the estimated regression coefficients        and the corresponding 

covariance matrix. Based on these results, one can impute one set of regression coefficient. from the sampling 

distributions of β. Next, the missing values in V2 can be imputed by plugging       into the above equation and 

adding a random error   resulting in one complete data set. 

 

2.2.4 Close-Knit Regression (CKR): Proposed method  
 

The proposed method combines certain aspects of the K-NN regression with simple linear regression, The close-

knit-regression has two stages, first the close-knit sample-selection-stage where numerical values present in the 

incomplete data set that we think would give us the best estimate of missing data points are selected. Then the 

estimation stage where linear regression is applied to the selected sample and a model is built to use in 

interpolating (preferably) or extrapolating missing data points. It was built to handle univariate missing patterns. 

 

Given two fairly correlated variables (V2,V1). Let V1 (v1i's) be the complete data set of the predictor variable, 

and V2(v2i's) the outcome variable with some missing values, for a univariate missing pattern in (V1,V2). To 

use the close-knit regression algorithm of V2 on V1 to estimate missing values in V2, we follow the steps 

below: 

 

a) Sort the entire data set, by re-arranging the complete predictor variable V1 in ascending or descending 

order. 

b) For a value say V2n missing in the outcome variable V2, compute all |V1n-V1i|'s, a set of absolute 

differences. 

c)  Say the smallest absolute difference is obtained at V1i=V1a 

 

 ==> |V1n-V1a| < all |V1n-V1i|'s for all values of i not equal to a. 

 

And it is so that V1a has a corresponding non-missing value in V2 say V2a. 

form a set of closely knitted samples, C and add (V1a,V2a) as the first set of element, that is             C= 

{(V1a,V2a)}, 

d)  i) If V1n-V1a>0 i.e V1n>V1a then for the next entry V1b with a corresponding V2b value, search for 

values closest to V1n i.e the smallest |V1n-V1b| where V1n-V1b < 0 i.e V1n < V1b. 
ii) If on the other hand, V1n-V1a<0 i.e V1n<V1a then for the next entry V1b with a corresponding V1b 

value, search for values closest to V1n. i.e the smallest |V1n-V1b| where V1n-V1b > 0 i.e V1n >V1b. 

iii) If no such values exists as in i or ii, then for the next entry V1b with a corresponding V2b value, only 

search for values closest to V1n i.e the smallest |V1n -V1b|. 
e) In similar fashion, sets of bivariate entries (V1,V2) are added to the set C till a chosen number of 

elements which is the close knitted sample size (n) is reached. 

 

n{C}=n 

 

f) Simple-linear regression involving the elements of C is then performed to obtain coefficients, these are 

then used to estimate the missing data point V2n. 

g)  The procedure is repeated till there are no missing data points in V2. 

 

The logic behind this method is straightforward, once a missing data point is located in our outcome variable 

V2, find data points in the predictor variable V1 that are nearest to value that was supposed to have generated 

the missing point in V2. Then use a selected number of those points in V1 to build a model involving non 

missing points in V1 and V2 which will be used to give the best predictor equation of the missing point in V2. 

The method is expected to produce good parameter estimates while not inflating their standard errors.  

 

2.3 Performance measures 
 

The indicators used to asses the precision of the missing data techniques relative to the complete data are the 

correlation coefficients (  , means, minimums, maximums, ranges, mean absolute errors and root mean square 

errors, they are described briefly below. 
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2.3.1 Comparison of parameters 
 

Firstly, the arithmetic mean of the complete data and imputed data will both be calculated and compared using 

the basic formula given by: 

 

   
 

 
    

 
                                                                                                                                        (4) 

 

Where    is the mean of the data in focus, n is the size, and     the data points. The mean will tell us about the 

comparative centrality of our datasets. Next, the correlation and standard deviation of the complete data and 

imputed data will also both be estimated and assessed comparatively using the Pearson correlation coefficient 

formula given by the two formulas respectively 

 

                                                                                     (5) 

 

      
 

 
     

 
                                                                                                                           (6) 

 

Where for n data points,             are the values of both complete and estimated data points of V1 and V2, 

with means and standard deviations       /        and  respectively. The values of each of the correlation 

gotten from MDTs will be compared with that of the complete data. Contrasting the correlation coefficients and 

standard deviation will tell us about the spread and the strength as well as direction of the bivariate linear 

relationships and existing in the full and imputed data sets respectively. 

 

The maximum and minimum values from the complete and estimated data points of the outcome variable Y in 

focus will gotten and there on, used to calculate the range to give us a quick sense of the spread. 

 

Maximum value of     =max (     , Minimum value of     =min (     ,  
 

Range     = max (      min (    . 

 

2.3.2 Comparison of errors 
 

We here will be comparing the error arising from the differences in values between the complete simulated data 

and that estimated we will be using the Mean absolute error (MAE) and the Root mean square error (RMSE). To 

compute the MAE and RMSE, the difference between the estimated dataset points (Dest.) and complete data set 

points (Dcom) will be used to get the MAE and RMSE which represents the sample standard deviation of the 

MAE [26]. 

 

                                                                                                                   (7)

   

      
        
        

 

 
                                                                                                                (8) 

 

3 Results and Discussion 
 

Results of data analysis after simulations are presented in this chapter, the techniques were applied to the 

datasets altered to suit the conditions given in Table 1.  
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3.1 Presentation of Results 
 

Results are shown in terms of the proximity of the parameters estimated using techniques to that from the 

original dataset (Table 2 and Table 3) and then consideration was given to the error rates the parameters 

generated (Table 4 and Table 5). 

 

3.1.1 Comparison of parameter estimates 

 

The summary of statistics of the originally generated data before missing conditions were implemented showed 

that fair correlation between the variables V1 and V2 with, r (V1,V2) = 0.4, Our variable of concern was V2 where 

the minimum and maximum values were -0.98 and 8.67 resulting in a range of 9.65. V2 also had a mean and 

standard deviation of -0.0001 and 1.001 respectively. 

 

Results of Table 2, at 10% missing-ness for MCAR mechanism, CKR (Our proposed method) produced 

estimates with the best proximity to the full data with correlation coefficient of 0.39, mean of -0.003, minimum 

of -0.71, maximum of 8.3 and a range of 9.01. Results of simple linear regression were closely related to those 

of k-NN and Mean. The simple linear regression technique produced results with a correlation coefficient of 

0.37, a mean of 0.001, minimum of -0.5, as well as a maximum and range of 8.2 and 8.7 respectively. The mean 

imputation technique produced data points with a correlation of 0.36, mean and range of 0.01 and 7.74 

respectively while having a minimum of -0.44 and a maximum of 7.30. For       K-NN imputation, the generated 

data points had a correlation coefficient of 0.36 with mean and a range of 0.03 and 8.03. The least value was -

0.63 and the highest was 7.4. 

 

Table 2. The four parameters before and after estimation from MCAR with techniques at 10% rate 

 

Parameter MCAR @ 10% 

Full data Single imputation technique Proposed method 

Simple Reg  Mean K-NN CKR 

r 0.40 0.37 0.36 0.36 0.39 

Mean -0.0001 0.001 0.01 0.003 -0.003 

Min -0.98 -0.5 -0.44 -0.63 -0.71 

Max 8.67 8.2 7.30 7.4 8.3 

Range  9.65 8.7 7.74 8.03 9.01 

Std. Dev.  1.001 1.3 0.74 1.51 1.4 
 

After the missing rate was increased to 60%, results as seen in Table 3 showed that CKR estimated data sets 

produced results with the best correlation estimate of 0.34. The coefficients of correlation produced by using 

Simple regression, mean and K-NN were 0.31, 0.3 and 0.29 respectively. CKR had the best mean estimate from 

the single imputation methods with a value of -0.12, values from KNN, Simple Regression and mean were the 

next in line with 0.14, 0.15 and 0.11 respectively. The proposed CKR produced a data set with a range of 8.51. 

K-NN, mean and simple linear regression produced data sets with ranges of 8.22, 8.7 and 7.81 respectively. Our 

proposed method alsp produced data points with a minimum of -0.12. Other single imputation techniques like 

K-NN, Mean and simple regression had there least figures as -0.23,-0.1 and -0.4 respectively. Simple linear 

regression, CKR and KNN methods produced maximum estimates of 7.99, 7.9 and 7.71. 
 

Table 3. The four parameters before and after estimation from MCAR with techniques at 60% rate 

 

Parameter MCAR @ 60% 

Full data Single imputation technique Proposed method 

Simple Reg  Mean K-NN CKR 

r 0.40 0.31 0.30 0.29 0.34 

Mean -0.0001 0.11 0.15 0.14 -0.12 

Min -0.98 -0.4 -0.1 -0.23 -0.61 

Max 8.67 7.99 8.1 7.71 7.9 

Range  9.65 8.5 7.81 8.22 8.51 

Std. Dev. 1.001 1.28 0.66 1.39 1.3 
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3.1.2 Comparison of parameter estimates 
 

The MAE and RMSE values are shown in Tables 4 and 5. Small values are in general preferable as they imply 

better accuracy of missing data techniques. We earmarked (in boldface) small MAE values, with those less than 

or equal to (≤) 0.01 being indicative of methods with good precision.  
 

Results of Table 4 show error rates from estimations of MCAR simulated datasets at 10 %, In general low MAE 

values were from CKR and K-NN techniques which were each 0.01. Simple regression and mean imputation 

techniques had MAE values of 0.02 and 0.04 respectively. Using the CKR method gave us an RMSE of 0.047. 

K-NN, Simple regression and the mean imputation gave us RMSE values of 0.048, 0.064 and 0.074 

respectively. 
 

Table 4. Errors between original and predicted data from MCAR at 10% rate 

 

Error MCAR @ 10% 

 Mean Single imputation Proposed method 

Simple Reg. K-NN CKR 

MAE 0.04  0.02 0.01  0.01 

RMSE 0.074 0.064 0.048  0.047 
MAE values in boldface are less than or equal to (≤) the 0.01 threshold 

 

After Intensifying the missing-ness to 60% as seen in Table 5, The proposed CKR method gave us an MAE of 

0.02 and an RMSE of 0.073. For the K-NN method MAE value was 0.07 while simple regression and mean 

imputation had values of 0.05 and 0.09 respectively. The RMSE value from using the K-NN method was 0.101. 

The mean imputation technique had the highest RMSE with a value of 0.117 and that for simple regression was 

a value of 0.078 which was higher than that of our proposed CKR method. 

 

Table 5. Errors between original and predicted data from MCAR at 60% rate 

 

Error MCAR @ 60% 

 Mean Single imputation Proposed method 

Simple Reg. K-NN CKR 

MAE 0.09  0.05 0.07 0.02  

RMSE 0.117  0.078 0.101  0.073 

 

4 Discussion 
 

The missing mechanism considered in this study was MCAR at two (2) missing rates (low or 10% - high or 

60%) which was simulated on a bivariate dataset with a univariate missing pattern on the outcome variable V2 

after which the techniques were applied and data analysis on estimated data took place. The performance of the 

methods were compared regarding parameter estimates such as correlation coefficients, means, standard 

deviation/error, minimum, maximum and range alongside MAE and RMSE error metrics. 

 

Results show that all single imputation techniques tended to produce consistent parameter estimates in MCAR 

simulated data sets at all missing rates considered which was expected since the methods didn’t have to deal 

with problems of non-normality [15]. While this is so, it is important to consider that the precision of all 

techniques reduced slightly as missing-ness increased from 10% to 60%. The mean imputation also produced 

reasonable estimates, which is largely due to the complete randomness of our missing values making the 

reduced sample a random subset of our original data as suggested by Nakai et al. [16]. Our proposed CKR 

regression performed as the best among all methods considered as it gave closer estimates to the original and 

didn’t grossly underestimate our standard error as presumed. MAE rates for the CKR and MICE technique fell 

on and below the postulated threshold of 0.01 respectively. The simple regression and K-NN techniques in 

general faired better than mean imputation which had the highest MAE and RMSE rates from 10% to 60% 

missing-ness. The findings are consistent with those in reviewed literature and confirm their recommendations 

[1,22,26,27]. 



 

 
 

 

Abdulkadir et al.; Asian J. Prob. Stat., vol. 24, no. 3, pp. 48-59, 2023; Article no.AJPAS.53035 
 

 

 
58 

 

5 Conclusion and Recommendations 
 

In accordance to our aim of developing and investigating the efficacy of CKR, it was found to be well suited for 

MCAR mechanism as it outperformed other single imputation techniques, this was evident in the nearness of its 

parameter estimates to that of the original data and its relatively low MAE and RMSE rates, the performance of 

K-NN and Simple regression were very nearly at par. The slight superiority of the CKR over the two previously 

mentioned techniques was attributed to the idea that the concept of CKR is mainly the amalgamation of them 

both with only nuances in execution the proposed CKR also proved to be the most robust among all single 

imputation techniques as changes in its error rates while increasing missing proportions where low. The CKR 

technique was concluded to be an effective single imputation technique in comparison to its counterparts 

considered in this study, it was seen to perform its very best in MCAR conditions having low missing rates of 

about 10%. 
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