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This research paper focuses on the application of the tanh function method to find the soliton solutions of the (2+1)-dimensional
nonlinear electrical transmission line model. Materials used to form a transmitting line are very important to transmit electric
charge. In this sense, we find some new voltage behaviors such as dark, trigonometric, and complex function solutions.
Choosing some suitable values of parameters, we present some various surfaces of results obtained in this paper. These results

play an important role in telecommunications lines used to stand for wave propagations.

1. Introduction

Nonlinear partial differential equations (NPDEs) are recently
used to investigate the meanings of physical problems such as
fluid dynamics, mathematics, physics and quantum field the-
ory, and nonlinear fiber optics. Systems of NPDEs are also
considered as a main tool to investigate in chemical and bio-
logical experiments. Some methods such as index the
extended tanh method [1, 2], the sine cosine method [3],
the inverse scattering transform method [4], finite difference
method [5], tanh and extended tanh methods [6-8], Jacobi
elliptic function expansion method [9], modified expansion
method [10], generalized tanh method [11, 12], sine-
Gordon expansion method [13], extended mean value theo-
rem [14], and interval-valued fuzzy topsis method [15] to
obtain various solutions of such NPDEs have been presented

in the literatures. Cordero et al. have observed the stability
analysis of the fourth-order iterative method in [16]. The (3
+1) Dimensional Boiti-Leon-Manna-Pempinelli equation
has been deeply studied in [17]. Using time scale calculus,
discrete normal vector field approximation has been pre-
sented in [18]. A Handy Technique has been handled in
[19]. Classical Boussinesq equations have been immensely
studied in [20]. Traveling wave solutions of nonlinear Klein
Gordon equation were observed in [21] and so on [15, 17,
18, 22-43].

The contents of this paper are as follows. Section 2 pre-
sents the general properties of the tanh function method
(TFM) [44]. This TFM has been proposed as a strong and
creditable method for finding the solutions of the nonlinear
models. Section 3 introduces some new complex dark, trigo-
nometric, and hyperbolic soliton solutions to the nonlinear
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electrical transmission line. To express physical properties in
terms of mathematical dynamics, such as wave propagation
of electrical transmission lines, has been presented by equa-
tion defined as [9]

4 2
> 3 202 20 22 20y _
Vi —a(v )tt +B(v )” Wy vy, — Wy g Vs wy85v,, — @5 T3V = 0,

(1)

where v=v(x,y,t) is used to explain the tightness
throughout the electrical line and x and y are interpreted like
the promulgation distance. ¢ is the period, and « and f3 are
constants with nonzero. 8, is the space between two proxi-
mate sections in during longitudinally flank, while &, is the
space between two proximate sections in the transversal flank
[9]. With the help of some computational programs, we are
able to plot in terms of 2D, 3D, and contour surfaces of the
results theoretically found. Finally, the main conclusions
are given in the last section of the paper.

2. The Tanh Function Method

In this part of the paper, we present the general properties of
the tanh function method in a detailed manner [45-48].

P(thy thyy Uy, Uy, Uy, tthyyyyeo) =0, (2)

where P is a polynomial in the dependent variable u. Consid-
ering the traveling wave transformation as u = u(x, y,t) = U
(&), & =k(x + y — ct), we obtain the following nonlinear ordi-
nary differential equation

N(U, v,u',u’, U'”,---) =0, (3)

with N is a polynomial of U = U(). Now, finding the travel-
ing wave solutions to Eq. (2) is equivalent to obtain the solu-
tion to reduced ordinary differential Eq. (3), and it can be
introduced a new independent variable defined as

Y (&) =Tanh(¢). (4)
We can find the following for some derivations as
d d
70 ==Y 50,
d* d d*
dTEZ(') =(1-Y?) 2Y () + (1= %) 0| -

As the last step, we present the tanh series as being

UE)=5(1)= Yar, ©
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where m is a positive integers. The values of m, generally,
with the help of the balance principle can be determined.

3. Mathematical Analysis

In this part of the paper, we find some new complex dark,
trigonometric, and hyperbolic function solutions of Eq. (1)
by using TEM. First of all, we consider the traveling wave
transformation defined as

v=V(E),E=k(x+y—at) 7)

where k, ¢ are nonzero constants or complex-valued param-
eters. When considering Eq. (7) into Eq. (1), we find

2 2 2 2 3 2 Q2

Vg —ac’(V )55+ﬁc (V )&—wOSIV&

k2 26411V 282V k2 28§V =0 (8)
TR Wy, Vs T W02 Ve TR Wos Ve = V-

Integrating Eq. (8) twice with regard to &, setting the con-
stants of integrations to zero yields

12[¢ - wid] — wyd3] V + 12V = 12ac” V2 — I [wid] + wpdy | V' = 0.

)

According to the general properties of TFM, it can be
considered as

M
V=S8= ) a,¥" (10)

Substituting Egs. (5), (10) into Eq. (9) gives
[12(¢ - wgd] — w3d3)S + 12B°S — 12ac°S?
- K (wid] + wpdy) (1-Y?) <—2Yj—15/ +(1-Y?) %)] =0.
(11)
Using the balance rule, M can be found as
M=1, (12)
which result in

S=ay+a,Y. (13)

Substituting Eq. (13) into Eq. (11) by getting necessary
derivations presents
[12(S - wyd] — w383 (ag + @, Y) + 12 (ag + a, Y )’
—12ac*(ay + a, Y)? = K (wgd] + wgd3) (1 - Y?)(~2a,Y)] = 0.
(14)

After some calculations, it can be obtained as follows:
Y% 12(a, - widia, — widra,) + 12c%al — 12ac’a =0,
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FIGURE 1: 2D and 3D surfaces of imaginary part of Eq. (16).

Y' 12(Pa, - widia, - wisia,) + 36fc*aa, — 24actaya,
+ 2K wid5a, + 2K wista, =0,

Y 36ptayal — 12 aa? =0,

Y 128c%a3 - 2K widsa, — 2K wdia, = 0.

Solving this system yields the following cases:

Case 1. When

o o iv/6,/02 (w367 + 833 )
= — ;al = @ ;k:
/(202 - 9B) (8w2, - 83})
3iy/ B(w}d] + 85w3)
202-98

>

(15)

we get the following complex trigonometric function solu-
tion

« io
vy (%, t) = % + % tan

iV/6, /o2 (W3S} + 83w]) <x +y- (31’, | B(w3d} + 8503 //202 = 9[3) t)

V(202 - 9B) (w35} + Sk

>

(16)

in which «, 3, §;, §,, and w, are constant and nonzero.
Choosing suitable values of coefficients in Eq. (16), we can
observe some (Figures 1 and 2).

Case 2. Choosing as

. 3ik8 001 /(6% - 62)
541 = 555C=

b C >
3B \/ 602 + k(202 — 9p) 8}

ay = Wy
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(17)
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F1Gure 2: Contour surface of imaginary part of Eq. (16).
we get another new complex dark function solution
3ik? 8w,/ B(8% - 82
vz(x,y,t)=%+%tanh kx4 ky - (Gi%)

/602 + K (202 - 9B)8°
(18)

with strain conditions are 2a? — 98>0, B(87 - 83) >0, and
also «, B,k,8,,w,,8, are real constants and nonzero or
complex-valued parameters. Considering some values of
parameters under the strain conditions, different wave pat-
terns can be observed from (Figures 3 and 4) for Eq. (18).

Case 3. Selecting

~3ik8,w/ B(67 - 62)

[24 [24

AR T:

ay= ;6= w,

\/ 602 + k(202 — 9p)83 ’
(19)

i1 /602 + K63(202 - 9B)

>

/60287 + (202 - 9p)5
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F1GURE 5: 3D graph of imaginary and real parts of Eq. (20).
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FIGURE 10: 3D figures of imaginary and real parts of Eq. (24).

we get conjugate new complex dark function solution as Case 4. Choosing as

3ik? 8wy / B(8% - 82
vi(x s t) = 2+ 2 tanh kx + ky + 200y B %) t 3K’ (1"35‘11 +8§“’%)

3 /602 +I2(202 - 9p) 8} O (Wi 3+ K0 + 23+ K2
(20)

- % Vit (3+ K82) + 8 (3+ K62),

with strain conditions are 2a% =98> 0, (87 - 83) > 0, and

also o, B,k,8,,w,, 8, are real constants and nonzero or 202
complex-valued parameters. 3D, 2D, and contour surfaces B= m(
of Eq. (20) can be also seen (Figures 5-7) with the strain R
conditions. (21)

wpdi (3 +K°87) + 8wy (3 +K°63)),
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F1GURE 14: Contour surfaces of imaginary and real parts of Eq. (26).
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FIGURE 15: 2D figures of imaginary and real parts of Eq. (26).

produces the following dark soliton solution

3K (i} + 83w3)

V(9 t) =
! 20(wid] (3 + K1) + 8 (3+K°83)) )
: (1 +tanh[kx+ky+ k ot
V3
in which @ = \/w%Sf(3 +k%87) + 83wk (3 + K*83) and strain

conditions are &, k, 8, w,, §, are real constants and nonzero.
3D, 2D, and contour surfaces of Eq. (22) can be also observed
(Figures 8 and 9).

Case 5. Taking as

-iV/6y /02 (w36} + 85})
\/(2042 - 9B) (8 w2y + 85w})
=3i\/B(wdo] + 83w3)
202 -9

[24 «

ag = ﬁ’alzﬁ,k

5 C

(23)

>

produces another complex dark traveling wave solution to
the governing model

_a ia

3B 3p
V6, /02 (w3} + 833 (x +y+ <3i, [ B(w}} + 833/ /202 = 9ﬁ> t)

/(262 - 9) (w}o? + 53wh)

vs(xp, ) tan

(24)
with strain conditions 3> 0, 2a? > 9 and «a, 3, w,, 8,9,

are real constants and nonzero. 3D, 2D, and contour surfaces
of Eq. (24) can be also observed in (Figures 10-12).

Case 6. Once we select other coefficients given as
-iV/6y /o2 (w8} + 85w})
\/(2¢x2 - 9B) (81w?y + 85w})

3iy / B(w§d] + 83w3)
202 -9

, €

(25)

>
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results in another complex dark traveling wave solution to
the Eq. (1)

« ior
Ve(X, 5 t) = % — — tan

3p
2 (w3s] + 53}) (x +y- <3i B(wid} + 85w}/ /202 = 9[3) t)

/(202 - 9) (w}o? + 83wh)

>

(26)

with strain conditions 8> 0,2a? > 9f and a, 8, w,, 8,, 5, are
real constants and nonzero. Various surfaces of Eq. (26) with
the considering suitable values of parameters can be also pre-
sented as (Figures 13-15).

4. Conclusions

In this manuscript, TFM being one of the powerful tech-
niques has been successfully used to Eq. (1). Many new trig-
onometric, complex, and hyperbolic function solutions have
been extracted, afterwards. The conditions which guarantee
the existence of the valid solutions to this model are also
given in a detailed manner. Considering the strain conditions
of coefficients of results, various simulations have been also
plotted by using some computational programs. These solu-
tions are of various physical properties of the electrical trans-
mission line. For example, the tanh function arises in
gravitational potential as a dark structure [49]. Hence, it is
estimated that the solution of v, is of such physical property.
From (Figures 1-15), it can be also seen that the results sim-
ulate estimated wave behaviors. TFM used in this paper can
be considered to solve other nonlinear problems arising in
the theory of solitons and other areas of nonlinear science
[50-56].
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