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In this paper, with the aid of symbolic computation system Python and based on the deep neural network (DNN), automatic
differentiation (AD), and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithms, we discussed
the modified Korteweg-de Vries (mkdv) equation to obtain numerical solutions. From the predicted solution and the expected
solution, the resulting prediction error reaches 107°. The method that we used in this paper had demonstrated the powerful
mathematical and physical ability of deep learning to flexibly simulate the physical dynamic state represented by differential

equations and also opens the way for us to understand more physical phenomena later.

1. Introduction

In recent years, nonlinear phenomena have been widely used
in fields such as mathematics, physics, chemistry, biology,
finance, and engineering technology. Because a large number
of mathematical models of scientific and engineering prob-
lems are reduced to the problem for determining solutions
of ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs) and the problems are complex and
the amount of calculation is huge, except for a few special
types of differential equations that can be solved by analytical
methods, the analytical expressions to be obtained are
extremely difficult in most cases. Therefore, the research on
the numerical methods for PDE has become a popular main-
stream direction. Numerical solutions have attracted the
attention of scientific researchers, and it is also a large-scale
scientific and engineering calculation.

The numerical method of PDE is based on whether
the regular grid method and the gridless method are used
when discretizing. Due to the difficulties in the structure
of the numerical format and meshing, it is subject to
many restrictions in practice. In obtaining high-precision
and high-resolution solutions, not experienced computational

mathematicians will have difficulty for the reason that the
structure of the numerical format is very complicated.
Artificial neural networks (ANN) which are simplified
models of the biological nervous system represent a technol-
ogy that has various applications in the area of mathematical
modeling, text recognition, voice recognition, learning and
memory, pattern recognition, signal processing, automatic
control, signal processing, decision-making assistance and
time-series analysis, etc. [1]. ANN has been applied to solve
ordinary differential equations and partial differential equa-
tions as early as more than 20 years ago. As we all know, solv-
ing differential equations by neural networks can be regarded
as a mesh-free numerical method. Due to the importance of
differential equations, many methods have been developed
in the literature for solving them [2]. Rosenblatt introduced
the first model of supervised learning based on a single-
layer neural network with a single neuron [3]. Mcfall studied
boundary value problems with arbitrary irregular boundaries
by an artificial neural network method in 2006 [4]. Mall and
Chakraverty solved ordinary differential equations with the
application of the Legendre neural network in 2016 [5].
However, due to the limitation of computing methods
and computing resources at that time, this technology has
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FIGURE 1: The three-dimensional diagram of the exact solutions (a) and predicted solutions (b) of the mkdv equation with initial state

u(x,0) =2 exp (—x)/(exp (-2x) +1).

not received enough attention. With the development of deep
learning in recent years, Professor Karniadakis from the
Department of Applied Mathematics at Brown University
and his collaborators reexamined the technology and devel-
oped a set of deep learning algorithm frameworks based on
the original. It was named “physics-informed neural net-
works (PINN)” and was first used to solve forward and
inverse problems of partial differential equations. This has
also triggered a lot of follow-up research work and has grad-
ually become a research hotspot in the emerging interdisci-
plinary field of Scientific Machine Learning (SCIML). From
the point of view of function approximation theory in math-
ematics, the neural network can be regarded as a general non-
linear function approximator, and the modeling process of
partial differential equations is also looking for nonlinear
functions satistying constraint conditions, which have some-
thing in common. Thanks to the AD technology widely used
in the deep learning neural network, the differential form
constraint conditions in the differential equation are inte-
grated into the loss function design of the neural network,

so as to obtain the neural network constrained by the physi-
cal model—this is the most basic design idea of PINN.

Both PINN’s network structure and loss function need to
be tailored to the form of differential equations, which is dif-
ferent from current work in computational physics that
directly utilizes machine learning algorithms. Different from
the classical supervised learning task, PINN has the regulari-
zation factor of differential equation and initial boundary
value condition in addition to the supervised data part in
the design of loss function. These regularization factors are
different and need to be tailored to achieve the optimal design
according to the problem. The traditional computational dif-
ferential equation numerical solution is obtained by finite
difference, finite element, and other numerical methods, but
the disadvantage is that it needs to give clear initial value con-
ditions, and the numerical solution algorithm is sensitive to
the boundary region; the condition slightly changed must
be recalculated, which is difficult to be used in real-time cal-
culation and prediction. PINN overcomes the problem that
the traditional numerical simulation method is sensitive to
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F1GURE 2: The projection of the exact solution (a) in the x — t, x — u, t — u direction and the projection of the predicted solution (b) in the x — £,
x — u, t — u direction of the mkdv equation with initial state u(x, 0) =2 exp (-x)/(exp (-2x) + 1).

the region and the initial and boundary conditions. Raissi
et al. introduced physics-informed neural network data-
driven solution, and they presented their developments in
the context of solving two main classes of problems: data-
driven solution and data-driven discovery of partial differen-
tial equations in 2017 [6]. Raissi et al. used multistep neural
networks to study the dynamical systems of nonlinear
dynamical systems in 2018 [7]. Raissi and Karniadakis study
the Navier-Stokes, Schrodinger, Kuramoto-Sivashinsky, and
time-dependent linear fractional equations by machine learn-
ing [8]. Liu et al. solved differential equations with neural net-
works in 2019 [9]. Han et al. solved high-dimensional partial
differential equations by using deep learning in 2018 [10].

In the present study, we take advantage of the fast devel-
oping machine learning and use the method of PINN that
was proposed by Raissi et al. [11] to study the mkdv equation.
AD and L-BFGS [12] optimization algorithms had been used
to train loss function. First, we introduced the main ideas of
the algorithm. Second, we use the method to study two kinds
of initial solutions of the mkdv equation, and the predicted
solitary wave is first shown in this paper. We also show the

relative Z,-norm error between the predicted and the exact
solution u(t, x) for the different number of initial and bound-
ary training data N, and different number of collocation
points N;. The three-dimensional diagram and projected
image of the exact solutions and predicted solutions of the
mkdv equation with different initial solutions are shown in
Figures 1-4. Finally, we conclude the paper. From the results
obtained in the experiment, some novel and important devel-
opments for searching for analytical solitary wave solutions
for PDE were investigated. The results of this manuscript
may well complement the existing literature as the following:
extended and modified direct algebraic method, extended
mapping method, and Seadawy techniques to find solutions
for some nonlinear partial differential equations such as dis-
persive solitary wave solutions of Kadomtsev-Petviashvili-
Burgers dynamical equations [13]; the elliptic function,
bright and dark solitons, and solitary wave solutions of
higher-order NLSE [14]; abundant lump solution and inter-
action phenomenon of (3+ 1)-dimensional generalized
Kadomtsev-Petviashvili equation [15]; describing the bidi-
rectional propagation of small amplitude long capillary
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FIGURE 3: The three-dimensional diagram of the exact solutions (a) and predicted solutions (b) of the mkdv equation with initial state

u(x,0) =2 sech (2x).

gravity waves on the surface of shallow water [16]; dispersive
traveling wave solutions of the equal-width and modified
equal-width equations [17]; periodic solitary wave solutions
of the (2+ 1)-dimensional variable-coefficient Caudrey-
Dodd-Gibbon-Kotera-Sawada equation [18]; rational solu-
tions and lump solutions to the generalized (3 + 1)-dimen-
sional shallow water-like equation [19]; new solitary wave
solutions to coupled Maccari’s system [20]; and lump solu-
tions to a (2 + 1)-dimensional fourth-order nonlinear PDE
possessing a Hirota bilinear form [21]. Therefore, this study
is of significance for the later study of soliton solutions.

2. Main Ideas of the Algorithm

2.1. llustration of the Algorithm. Deep learning is a new field
in machine learning research. Its motivation lies in establish-
ing and simulating a neural network for analysis and learning

of the human brain. It mimics the mechanism of the human
brain to interpret data. The concept of deep learning comes
from the research of artificial neural networks. The multi-
layer perceptron with multiple hidden layers is a kind of deep
learning structure. We give the structure of a simple neural
network and deep neural network in Figure 5. In this paper,
the network was used as a supervised network that means
multilayer perceptron needs a teacher to tell the neural net-
work what the desired output should be. Deep learning forms
a more abstract high-level representation attribute category
or feature by combining low-level features to discover dis-
tributed feature representations of data. Deep learning uses
a hierarchical structure similar to neural networks. The sys-
tem consists of a multilayer network consisting of an input
layer, a hidden layer (multilayer), and an output layer. Only
nodes in adjacent layers are connected. There is no connec-
tion between each other, and each layer can be regarded as
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F1GURE 4: The projection of the exact solution (a) in the x — ¢, x — u, t — u direction and the projection of the predicted solution (b) in the x — ¢,
X — u, t — u direction of the mkdv equation with initial state u(x, 0) = 2 sech (2x).

@ Input layer
© Hidden layer
@ Output layer

FI1GURE 5: Basic structure of the simple neural network and deep neural network (perceptron).

a logistic regression model. Deep learning allows computers ~ tions compared with traditional approximations based on
to construct complex concepts through simpler concepts  Lagrangian interpolation or spectral methods [22].

with powerful capabilities and flexibility. DNN have shown Typical examples of deep learning models are feedfor-
great potential in approximating high-dimensional func-  ward deep networks or multilayer perceptrons. Multilayer
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FIGURE 6: Schematic of physics-informed neural network for the mkdv equation.
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FiGURE 7: mkdv equation. (a) Predicted solution u(t, x). (b) Predicted solution and exact solution at ¢ = 0.35, 0.60, 0.85 were depicted by the
white vertical lines in (a). The red dashed line is predicted solution, and the blue line is exact solution of u(x, t).

perceptron is a mathematical function that maps input to z; =N(zy39)

output value. This function is composed of many simpler ) 2 1) ) 2 w
functions. Each layer of a fully connected DNN can be =f (W f (f (W f (W Z+b ) +b )) +b )’
expressed as follows: (2)

a=f(Whz, +60), 1=1-1-1, () 9= { WO, WO b0, w0, )
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FiGure 8: Exact dynamics and learned dynamics of u(x, t).

where z, means input vector and f is activation function (we
choose hyperbolic tangent function as the activation function
where tanh = (&* — e{™))/(e* + &(™)):

k k
wy o o 1n,
wh=1f
k k
wnkl ey
by
4
i @
2
bk = N
k
bnk

k=1,2,---, L, W is the weights from layer k — 1 to layer
k,and w;; means the weight between the j-input and i-neuron

of the hidden layer. b'%) is bias vector. N(z, ; 9) can be consid-
ered an approximate solution for u(x, t) of a PDE. The final
approximate solution is solved by adjusting the parameters
9 to minimize the error of the approximate solution and
the exact solution.

A fully connected neural network was previously
proven [23, 24] by Jones and Carroll and Dickinson that
any continuous function defined in a finite domain can be
approximated. In this paper, we introduced the form and
construction of the solution of PDE using the physics-
informed neural network method. The schematic of the
physics-informed neural network for the mkdv equation is
shown in Figure 6. Consider the general form of the PDE
as follows:

U+ N u U,y ) =0, x€Q,tel0,T], (5)
where ./ is a nonlinear function of time ¢, space x, solution
u, and its derivatives and the subscripts denote partial dif-

TaBLE 1: mkdv equation: &,-norm error between the predicted and
exact solutions of u(t, x) for different numbers of hidden layers and
different numbers of neurons per layer. The number of training
points is N, = 100, and collocation points is N =20000.

Neurons

Z,-norm error 10 15 25 30
Layers

2 2.14e—05 1.29¢—05 1.22¢e—-05 1.75e—05
5 1.85e—05 2.01e—05 2.00e—05 1.28¢—05
7 2.0le—05 2.32¢—05 1.20e—05 1.08¢—05
9 1.40e—-05 1.45¢e—-05 1.28¢—-05 1.17e-05

TaBLE 2: mkdv equation: #,-norm error between the predicted and
exact solutions of u(t, x) for DNN architecture which is constructed
by 9 hidden layers with 20 neurons per hidden layer with different
training points N, and collocation points N/.

i;fz-norm error 1000 5000 9000 10000
Nu

30 8.56e—05 1.15e—05 7.22¢—06 1.56e—06
50 7.97e—-06 1.54e—-05 1.76e—05 1.67¢-06
80 1.23e-05 1.42¢-05 1.10e-05 1.58¢-06
90 1.17e-05 1.35e—05 1.95e—05 1.62¢-06
100 1.05e—-05 1.34e—05 2.14¢-06 1.67e-06

ferentiation in either time ¢ or space x. For example, u
is the second derivative of u with respect to x.

XX

2.2. Details of the Algorithm. According to Equation (1), let us
define f (¢, x) as follows:

f(t’ X) Ut ./V(X, Us Uy Uyys® ) (6)
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FIGURE 9: mkdv equation. (a) Predicted solution u(t, x). (b) Predicted solution and exact solution at t = 0.35, 0.60, 0.85 were depicted by the
white vertical lines in (a). The red dashed line is predicted solution, and the blue line is exact solution of u(x, t).

Objective function of the trial function can be defined
as [25]

MSE = MSE, + MSE,, (7)

where mean square errors are defined, respectively, as MSE,,
and MSE:

>

NM
MSE, = NLZ (|u(ty %)) —u' ?
ui=1

1 Ny N
MSEf:I\TfZ )|

i=1

The objective function of DNN training is performed by
the mean squared error on the network outputs.

The weight and bias between the neural networks u(t, x)
and f(t,x) can be learned by minimizing the mean squared
error loss, tj’}, x} were domain data, N, is the number of sam-
pling points on the boundary, N is the number of sampling
points on the region, t!,x!, u’ were initial and boundary
training data on u(t, x), and u(t!, x!) is predicted solution.

3. Example for Modified Korteweg-de
Vries Equation

The modified Korteweg-de Vries (mkdv) equation may be
written as [26]

u, +6utu, +u,, =0,
2 exp (—x) 9)

u(x,0) = W.

If -4 <x <4,0 <t <2. We got the training and test data by
using conventional spectral methods and using the Chebfun
package [27] with a spectral Fourier discretization with 256
modes and a fourth-order explicit Runge-Kutta temporal inte-
grator with time-step size 107*.

There are two parts of data points to form the collocation
points of training f(x, ¢): one part used the Latin hypercube
sampling strategy to generate 10000 data points and the other
part uses random sampling to generate 456 data points.
Randomly extract N,, = 100 data from the initial and bound-
ary data as training points, and we learn the latent solution
u(t,x) by using the L-BFGS algorithm to optimize the
parameters to minimize the error function Equation (7).
We had shown the predicted solution u(x, t) in Figure 7 by
an 11-layer deep neural network in which each hidden layer
contained 30 neurons. The relative &,-norm error for this
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FIGURE 10: Exact dynamics and learned dynamics of u(x, t).

case is 9.402109 - 107°. The code runs on a personal laptop
with Intel® Core™ i5, 2.50 GHz, and the running time is
930.9392 seconds. Judging from the physical propagation
diagram of the exact solution which is a soliton solution
obtained by the Chebfun package and the predicted solution
at the bottom of Figure 7, the waveform of the single soliton
has not changed over time. The exact dynamics and learned
dynamics of u(x, t) are shown in Figure 8. We choose the
number of training points as N,, = 100 and collocation points
as Ny =20000; under this condition, we study the influence
of different layers and different neurons on the relative &,-
norm error. The relative &,-norm error tends to decrease
with the increase of layers and neurons, and it is shown in
Table 1. We also studied the effect of the DNN architecture
which is constructed by 9 layers with 20 neurons per hidden
layer with different training points N, and collocation points
N/ on relative &Z,-norm error which is shown in Table 2. The
three-dimensional diagram and projected image of the exact
solutions and predicted solutions of the mkdv equation with
initial state u(x,0) =2 exp (—x)/(exp (-2x) + 1) are shown
in Figures 1 and 2.

In order to further study the effectiveness of the per-
formance of the algorithm to approximate the exact solu-
tions of mkdv equations, we change the initial condition
as follows [28]:

u, +6utu, +u,, =0, (10)

u(x,0) =2 sech (2x).

We got the training and test data by using conven-
tional spectral methods and using the Chebfun package
with a spectral Fourier discretization with 256 modes
and a fourth-order explicit Runge-Kutta temporal integra-
tor with time-step size 107*. The data points used to
obtain f(x,t) are divided into two parts, one part used
the Latin hypercube sampling strategy to generate 10000
data points and the other part uses random sampling to
generate 456 data points. Randomly extract N, =100 data
from the initial and boundary data as training points, and

TaBLE 3: mkdv equation: Z,-norm error between the predicted and
exact solutions of u(t, x) for different numbers of hidden layers and
different numbers of neurons per layer. The number of training
points is N, = 100 and collocation points is N, = 10000.

Neurons

Z,-norm error 15 20 25 30
Layers

2 1.13e—05 1.08e—-05 7.95e—06 8.78¢—06
5 1.25e—05 8.55¢e—06 8.10e—06 8.64e—06
7 9.18¢-06 9.07e—06 8.46e—06 8.62¢—06
9 1.02e—05 1.21e—=05 1.59¢—-05 9.40e- 06

TaBLE 4: mkdv equation: &,-norm error between the predicted and
exact solutions of u(¢, x) for DNN architecture which is constructed
by 9 hidden layers with 15 neurons per hidden layer with different
training points N, and collocation points N.

?]fj;-norm error 3000 5000 8000 10000
Nu

50 1.25e-05 2.75e—05 1.37¢e-05 1.29¢-05
80 1.64e—-05 1.71e-05 1.76e—05 1.39e-05
90 1.19¢-05 1.08¢-05 1.57e—-05 9.07¢-06
100 1.77e-05 1.21e—-05 1.01e-05 1.02¢-06

we learn the latent solution u(#,x) by using the L-BFGS
algorithm to optimize the parameters to minimize the
error function Equation (7). We had shown the predicted
solution u(x, t) in Figure 9 by an 11-layer deep neural net-
work in which each hidden layer contained 15 neurons.
Running time of the code is 439.9942 seconds. The relative
&,-norm error for this case is 1.0333972-107°. Judging
from the physical propagation diagram of the exact solu-
tion which is a soliton solution obtained by the Chebfun
package and the predicted solution in Figure 9, the wave-
form of the single soliton has not changed over time. The
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exact dynamics and learned dynamics of u(x, t) are shown
in Figure 10. We choose the number of training points as
N, =100 and collocation points as N, =10000; under this
condition, we study the influence of different layers and
different neurons on the relative &,-norm error. The rel-
ative &,-norm error tends to decrease with the increase of
layers and neurons, and it is shown in Table 3. We also
studied the effect of the DNN architecture constructed
by 9 layers with 15 neurons per hidden layer with different
training points N, and collocation points N, on relative
&,-norm error which is shown in Table 4. The three-
dimensional diagram and projected image of the exact solu-
tions and predicted solutions of the mkdv equation with initial
state u(x, 0) = 2 sech (2x) are shown in Figures 3 and 4.

4. Conclusions

With the increase of data volume, the improvement of com-
puting power, and the emergence of new machine learning
algorithms (deep learning), artificial intelligence has become
a field with many practical applications and active research
topics. Deep learning is one of the ways to artificial intelli-
gence. It is a type of machine learning, a technology that
enables computer systems to be improved from experience
and data.

In this paper, we briefly describe details of the algorithm
of DNN. Figures 5-10 show the basic structure of the simple
neural network and deep neural network, schematic of the
physics-informed neural network, and comparison diagram
of the precise dynamical system and the predicted dynamical
system of the mkdv equation. Tables 1 and 3 show Z,-norm
error between the predicted and exact solutions of u(t, x) for
different numbers of hidden layers and different numbers of
neurons per layer. Tables 2 and 4 show the relative £, error
between the predicted and exact solutions u(t, x) for different
numbers of training points N, and collocation points N/.
Tables 1-4 illustrate the relative &, error that tends to
decrease with the increase in layers and neurons. This
method demonstrates the strong mathematical and physical
ability of deep learning to simulate the physical dynamic state
represented by differential equations and also opens the way
for us to understand more physical phenomena later.
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