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ABSTRACT 
 

The global challenge of feeding the world demands attention due to the projected population 
increase to 10.9 billion by 2050. Abiotic and biotic stressors, such as heat, drought, diseases, and 
pests, further compound the difficulties faced in achieving sufficient agricultural output. Early 
detection of crop stress is vital to mitigate yield loss and find appropriate agrotechnical solutions. 
However, the complex interactions between abiotic and biotic stressors and their impact on plant 
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growth and yield present challenges in plant phenotyping and breeding. This review discusses 
recent advances in remote sensing technologies which offer promising solutions to overcome these 
challenges. Low-cost, reliable sensors and technologies facilitate data collection and interpretation, 
paving the way for proximal sensing and high-throughput phenotyping platforms. These automated 
platforms, equipped with imaging devices, enable non-destructive data collection and monitoring of 
plant properties over time. Optical methods like hyperspectral sensors, RGB imaging, remote 
sensing, and chlorophyll fluorescence contribute to the early identification of plant stress causes, 
facilitating the development of control strategies. By providing accurate and timely information on 
crop stress, these technologies offer essential support in enhancing agricultural productivity and 
ensuring food security for a growing global population.  
 

 
Keywords: Remote sensing technologies; proximal sensing; high-throughput phenotyping; imaging 

devices; hyperspectral sensors; agricultural productivity; food security. 

 

1. INTRODUCTION 
 
Addressing the challenge presented in the 2nd 
Sustainable Development Goal (SDG) by Food 
and Agriculture Organisation [1], which pertains 
to nourishing the global population, stands out as 
one of the most formidable tasks confronting 
society in the present era. By 2050, it is 
anticipated that there will be 10.9 billion people 
on the planet. As a result, depending on the 
region, the food supply needs to be increased by 
50% to 75% [2]. Due to short-term supply 
variations, climate change may endanger the 
stability of entire food systems [3,4]. On a 
regional scale, the potential consequences might 
not be immediately evident, but areas already 
vulnerable to hunger and malnutrition will 
probably experience a deterioration in food 
security due to the impact of climate change [4]. 
As a result, abiotic (such as heat and drought) 
and/or biotic (such as diseases and pests) 
conditions and their combinations will also 
increase in frequency [5], which will result in 
decreased agricultural output if management 
does not act quickly and effectively [6]. Early 
detection of crop stress is therefore crucial to be 
able to respond with appropriate agrotechnical 
solutions and thereby minimize yield loss before 
permanent damage occurs.   
 
Crops often experience an increased number of 
abiotic and biotic stress combinations as a result 
of global warming and probable accompanying 
climate irregularities, which negatively impact 
their growth and yield [7,8]. Plant stress is 
characterized as a major departure from the ideal 
conditions for plant growth that may have 
detrimental consequences on the plant and 
restrict its ability to grow and develop normally. 
Almost every component of a plant can be 
affected by plant stress, though often only one or 
a few plant structures are affected, depending on 

the age of the plant and the source of the stress 
[9]. Crop plants experience abiotic stress and 
biotic stress, which are two different forms of 
environmental stress. Abiotic stress is 
responsible for significant crop losses globally 
and encompasses factors like radiation, salinity, 
floods, droughts, extreme temperatures, and 
heavy metal exposure. On the other hand, biotic 
stresses involve the invasion of various 
pathogens such as fungi, bacteria, oomycetes, 
nematodes, and herbivores that negatively 
impact crop health. [10]. Abiotic stresses, such 
as heat and drought, have been demonstrated to 
be more harmful to crop yield when they occur 
simultaneously than when they do so individually 
at various stages of crop growth [11,12]. In 
response to stress, plants experience several 
morphological, physiological, biochemical, and 
molecular changes that harm growth and 
productivity. Plant phenotyping is currently the 
main barrier to plant breeding and crop 
management. Obtaining large-scale plant 
phenotyping data quickly with high 
dimensionality, density, and accuracy from a 
single molecule to a whole organism is now the 
biggest problem. Although some bottlenecks 
have been greatly reduced by modern 
phenomics technology, several problems remain 
regarding how to accurately and quickly enhance 
throughput and accuracy while simultaneously 
defining and extracting complex features [13].  
 
Many of these issues can be resolved because 
of recent advances in machine learning and 
remote sensing. As more and more low-cost, 
reliable sensors and technologies are used for 
data collection, storage, and interpretation, 
proximal sensing is in the early stages of 
potentially revolutionary development. [14]. Crop 
genetic improvement has been hampered by the 
lack of field-based high-throughput phenotyping 
methods [15,16], but recent reviews [17,18,19] 



 
 
 
 

Patel et al.; Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 2602-2621, 2023; Article no.IJECC.104366 
 
 

 
2604 

 

have highlighted the opportunities now provided 
by sensor technology and the digital age. High-
throughput phenotyping platforms have been 
created to automate data collection on numerous 
plants to facilitate the gathering of phenotypic 
measurements [20,21,22]. These platforms 
frequently have imaging devices installed, which 
collect data without causing any damage to the 
plant and track changes in plant properties over 
time [23].  
 

Earlier, crop monitoring used to be done visually, 
either from the ground or occasionally from the 
air, by inspecting the crops. These days, there 
are optical methods available, including 
hyperspectral sensors, RGB imaging, remote 
sensing, and chlorophyll fluorescence, that can 
be used to identify plant stress causes early on, 
enabling the development of control methods 
and the minimization of damage brought on by 
stress [24]. Plants respond to severe biotic and 
abiotic circumstances by altering their physiology 
and metabolism through pulses of gene 
expression. To enhance agricultural development 
and increase yields, it became essential to 
identify and adopt novel technologies and 
approaches [25]. Mezera et al. [26] examined 
and compared the optical measurements and 
assessments of vegetation using both proximal 
and remote sensing techniques. The goal was to 
diagnose plant nutritional status on farms and 
implement site-specific crop management 
practices. In the last two decades, Proximal 
Remote Sensing has made unprecedented 
progress in Plant Phenomics (PP). It now 
enables observations across various scales, 
covering cellular to population-level studies, 
above-ground to underground assessments, and 
controlled indoor environments to field conditions 
[27].   Efficiently acquiring plant phenotyping 
parameters is crucial for modern agriculture. 
However, traditional manual methods have 
limitations in accuracy and efficiency. To 
overcome these challenges, researchers are 
turning to robotic platforms for eco-phenotyping. 
These platforms offer flexible movement and 
high automation, allowing for more targeted and 
ecologically relevant studies of plant phenotypes 
[28]. 
 

2. STRESS- DEFINITION AND 
PHYSIOLOGY 

 
According to Jones and Jones [29], plants are 
sessile organisms subject to biotic and abiotic 
forces, or the physical, chemical, and biological 
environment defining their habitat. The success 

or survival of a plant species can be affected by 
both biotic and abiotic interactions. Plant 
physiologists have therefore focused on 
understanding the effects of various stress 
factors on plants [30], which is crucial for crop 
sciences (31). According to Lichtenthaler [32], 
plant stress is generally understood to be "any 
unfavorable condition or substance that affects or 
blocks a plant's metabolism, growth, or 
development." External factors that negatively 
impact plant growth, development, productivity 
rates, crop yields, etc. are referred to as stress in 
plants. Stress in plants typically results from 
certain abrupt alterations in the environment. 
However, exposure to a specific stress results in 
adaptation to that stress in stress-tolerant plant 
species in a time-dependent manner.  
[33]. However, some plants, such as desert 
plants (Ephemerals), may completely avoid 
stress [34]. 
 
The reaction is triggered by biochemical factors, 
such as phytohormones or enzymes, and it 
results in a cycle of damage and repair, 
activating the metabolism of the plant and, often, 
producing minor or imperceptible phenotypic 
adaptations (reversible and adaptive strain 
tolerance). "Phenotypic plasticity" is the term 
used to characterize a plant's capacity to alter 
the expression of its phenotype in response to 
environmental factors. According to Kranner et 
al. [35], the effects of a single stress factor, 
several stress factors, as well as the combination 
of biotic and abiotic stresses, can frequently 
cause very comparable physiological responses 
in plants. Additionally, the timing of stress effects 
must be taken into account. For instance, 
alterations in the flux rates of photosynthesis, 
respiration, and transpiration may be a sign of 
brief environmental changes [36]. Long-term 
stress that occurs during distinct developmental 
stages can have a variety of effects on growth. 
To avoid severe crop loss, detecting 
physiological changes in plants before they 
become apparent is essential [37]. 
 
When plants are exposed to biotic and abiotic 
stress, their metabolism is disrupted, implying 
physiological costs [38, 39, 40, and 41] and 
eventually lowering fitness and production. One 
of the most crucial aspects is abiotic stress, 
which has a significant impact on development 
and, as a result, causes significant losses in the 
field. In most plant species, the ensuing growth 
decreases can reach >50% [42]. Additionally, 
biotic stress is a problem that adds to the harm 
caused by pathogen or herbivore attacks and 



 
 
 
 

Patel et al.; Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 2602-2621, 2023; Article no.IJECC.104366 
 
 

 
2605 

 

puts a lot of pressure on plants. Plants undergo 
long-term adaptations to change their phenotypic 
manifestations as the severity and length of the 
stress exposure grow. According to high or low 
light conditions, this may influence things like leaf 
size and thickness, stomatal density, or 
chloroplast function [43].  It should be 
emphasized that the effects of any stress factor 
typically lead to a complex interaction between 
the genes and environment of the plant, 
frequently resulting in various strains.  
 

3. DIFFERENT FORMS OF PLANT 
STRESS AND THEIR COMMON 
SYMPTOMS  

 
Multiple published reports have documented crop 
losses resulting from abiotic stresses [44]. In an 
ever-changing environment, various detrimental 
factors, including heat, cold, drought, and 
salinity, among others, can adversely impact 
agricultural land and crop productivity. Heat 
stress refers to prolonged exposure to 
temperatures beyond a critical threshold, causing 
irreparable harm to plant well-being [45]. It 
disrupts plant cell balance, hindering growth and 
potentially leading to plant mortality [46]. This 
poses a significant global threat to crop 
production [47]. Similarly, cold temperatures also 
impose limitations on the growing seasons of 
numerous plant species. Chilling stress, apart 
from causing noticeable phenotypic changes, 
also leads to significant biochemical and 
physiological alterations [48, 49]. Drought, a 
major environmental stress, has a severe 
negative impact on crop yield [50]. 
 
 Key effects of drought include poor germination 
[51, 52], reduced nutrient availability and 
photosynthesis [53], decreased leaf number and 
size [54], and reduced fresh and dry weight of 
plants [55]. The plant's response to drought is 
influenced by factors such as growth stages, 
plant species, age, and the severity and duration 
of the drought stress [56]. Salinity is recognized 
as a highly detrimental environmental stress that 
significantly diminishes crop productivity and 
quality worldwide [57]. It affects plant growth and 
development, increases intracellular osmotic 
pressure, and can lead to toxic levels of sodium 
accumulation. Salinity stress induces various 
symptoms that resemble those caused by 
drought stress. The presence of excessive salt in 
the soil impairs the plant's water absorption 
capability, leading to a reduction in its growth 
rate [58]. Heavy metal stress inactivates 
enzymes and disrupts essential metallic ion 

substitution reactions, affecting membrane 
integrity, photosynthesis, and respiration [59]. 
Heavy metals induce oxidative stress by 
stimulating the production of hydrogen peroxide 
(H2O2), superoxide radicals (O− 2), and hydroxyl 
radicals (OH) [60]. Excessive ultraviolet (UV) 
sunlight exposure disrupts plant growth, leading 
to ROS overproduction and potential cellular 
imbalance [61]. Waterlogging alters soil 
properties, causing hypoxia or anoxia, 
significantly reducing plant growth and survival 
[62]. 
 
Plants face the risk of infection by various 
pathogens, such as bacteria, fungi, viruses, and 
nematodes, along with attacks by herbivorous 
pests [63]. Biotic agents directly induce plant 
responses; for instance, herbivory results in 
immediate consequences like water loss, 
reduction in leaf area, and necrosis [64]. Biotic 
pathogens initiate local effects and trigger 
systemic plant responses, including signal 
pathways reducing stomatal conductance [65] 
and increased production of volatile organic 
compounds (VOCs) as defense mechanisms 
[66]. Fungal pathogens exhibit diverse effects. 
Some pathogens initially stimulate 
photosynthesis, benefiting from increased sugar 
production during early infection stages [67]. 
However, in later stages, they can decrease 
photosynthetic capacity, leading to visible foliar 
lesions [68]. This fungal diversity gives rise to 
various plant diseases such as anthracnose, leaf 
spot, rust, or wilt [69]. These diseases can 
manifest as changes in the plant canopy's optical 
reflectance properties, detectable through 
radiometric changes or computer vision 
approaches for disease classification at the leaf 
level [70]. 
 

4. PROXIMAL REMOTE SENSING 
TECHNIQUES FOR STRESS 
PHENOTYPING 

 
Understanding stress-related phenotypic traits 
and their interrelationships requires precise 
knowledge of phenotyping in both controlled and 
field conditions. Advanced techniques, such as 
visible light imaging, hyperspectral imaging, 
infrared imaging, fluorescence imaging, and X-
ray computed tomography, enable the non-
destructive acquisition of plant phenotype data 
using visible to near-infrared light sources [72]. 
These imaging-based, high-throughput platforms 
integrated with advanced software systems are 
valuable tools in plant biology [73]. By focusing 
on the interaction between light and plants, these 
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Fig. 1. An overview of major abiotic and biotic stresses.Taken from Umar et al. [71] 
 
imaging techniques provide accurate 
measurements of quantitative phenotypic traits. 
Recent imaging technology advancements have 
enabled the non-destructive collection of 
physiological data over time, facilitating the 
analysis of complex plant responses in 
measurable traits. Image-based technologies 
have proven valuable in quantifying crop 
responses to stress, both in controlled 
environments and field trials [74]. Implementing 
high-dimensional phenotyping requires uniform 
experimental protocols, calibrated imaging 
sensors, and precise data analysis. The following 
section outlines the imaging devices currently 
used for high-throughput phenotyping of crop 
plants. 
 

4.1 RGB Imaging  
 
To measure the morphological characteristics of 
plants, the RGB camera approach is the most 
extensively used system [75]. This is because it 
is both affordable and simple to deploy. In 
contrast to consumer cameras, RGB cameras 
have an infrared blocking filter (VIS camera), 
which only picks up light with a wavelength 
between 400 and 700 nm. To determine the color 
of each pixel, the VIS camera uses red, green, 
and blue color sensors. It is possible to collect 
morphological or color data by using the pixel 
values of plants that the image processing 
system has detected [76]. To minimize variables 
and enable an in-depth examination of each 
plant's response to stress, fixed equipment is 
employed in laboratory research. These studies 
also allow for the capture of picture data 
throughout the experiment and the detailed 
examination of how each plant reacts to stress.  
Recently, visible light-based imaging systems 

have gained attention due to their affordability, 
simplicity of operation, and ease of maintenance. 
Two-dimensional (2D) digital pictures captured 
using visible light are utilized for quantifying 
various attributes such as shoot-related features, 
leaf architecture, shoot elongation, as well as 
seed and root morphological characteristics [77]. 
 
Ge et al. [78] extracted plant pixels from RGB 
images to correlate with shoot fresh weight, dry 
weight, and leaf area. Neilson et al. [79] 
estimated plant biomass and compared it with 
actual plant size. Positive correlations were 
found between leaf area and shoot biomass in a 
water-limiting experiment. Leaf greenness was 
estimated using the RGB to HIS color system. 
Field studies use sensors attached to vehicles or 
aircraft for large-scale analysis. UAV-based RGB 
sensors provide high-resolution color information 
for vegetation indices. Bhandari et al. [80] and 
Francesconi et al. [81] computed canopy 
features using UAVs for monitoring drought 
effects on wheat. RGB cameras on fixed facilities 
reduce data errors from vehicle movement. 
Becker and Schmidhaler [82] used an RGB 
sensor in a drought treatment facility to estimate 
yield and growth rate correlation. RGB images 
enable pixel-level analysis of biomass changes 
under drought stress. Biomass inference using 
pixel counts correlates well with various crops 
[83]. RGB images can predict plant growth 
changes and analyze specific parts. Color 
analysis detects leaf wilting and chlorophyll 
deficiency due to drought stress [84]. RGB 
sensors on UAVs provide limited upper images 
for vegetation index analysis. Phenotypic 
information helps identify candidate genes for 
specific traits Campbell et al. [83] used the HTP 
platform to quantify daily shoot biomass and soil 
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water content and simulate shoot growth. Han et 
al. [85] examined the relationship between RGB-
based vegetative indexes (VIs) and biomass 
traits in 20 varieties of kenaf using UAV-captured 
RGB images. Positive correlations were found 
between VIs and stem diameter, node number, 
individual surface area, and estimated plant 
height. VIs proved valuable in predicting kenaf 
biomass. Notably, correlations differed between 
early and late growth stages. Following that, a 
genome-enabled growth model was combined to 
identify several candidate genes. Using digital 
image processing, a multi-plant multi-disease 
detection system was developed in [86], where 
disease identification was carried out using color 
transformations, color histograms, and a 
pairwise-based classification system.  A 
smartphone-based image processing software 
[87] for diagnosing plant diseases, where the 
created system was tested for diseases in 
vineyards using images of grape leaves. Through 
thresholding of the RGB pixel values, the 
analysis begins by separating region lesions from 
the background and healthy tissue. Spot count, 
grey level, and area were among the traits that 
were extracted, along with color histograms. 90% 
of probable diseases were successfully identified 
by the application.  
 

4.2 Near-infrared Imaging  
 

The green parts of plants consistently had the 
maximum reflectivity at near-infrared 
wavelengths between 700 and 1400 nm in many 
studies, While unhealthy plants reflect more red 
light than healthy plants, soil reflects very little 
near-infrared light. Additionally, freshly absorbed 
water by leaves scatters near-infrared 
wavelengths [88]. To confirm how plants respond 
to drought stress, near-infrared imaging (NIR) is 
used [89]. These infrared imaging systems offer 
large-field images with excellent spatial 
resolution and accurate measurements while 
simultaneously operating in a variety of 
environmental situations [90]. 
 

The plant water content estimated by NIR is also 
used to identify candidate gene regions. El-
Hendawy [91] et al. used a combination of the 
absorption rate is maximum in the spectral region 
between 1400 and 1450 nm, and it is strongly 
associated with the moisture content of plants. 
With the aid of a partial least squares regression 
(PLSR) model and a NIR picture [92] were able 
to locate water absorption bands. NIR can offer a 
reliable method for non-intrusive, real-time 
monitoring of the water content of leaves on crop 
plants. Using NIR imaging, Chen et al. [93] 

looked into the dynamics of water content and 
the drought responses of 18 distinct barley 
cultivars. After experiencing drought stress, 
plants had a quick decline in NIR signal, which 
recovered after re-watering.  
 
This technology may immediately identify 
drought stress in plants since it uses NIR to 
measure reflectance in a particular wavelength 
band, which permits a speedy study of plant 
water content. Additionally, by combining NIR 
imaging with visible imaging, or visible to short-
wave infrared (VSWIR; 0.4-2.5 m), this method 
offers deeper insight into plant health under 
various stress conditions because it provides 
well-defined spectral features for pigments, leaf 
water content, and biochemicals like lignin and 
cellulose. Further, infrared thermography has 
also been used to study stomatal responses 
under salinity and drought by visualizing 
differences in canopy temperature [94].  
 

4.3 Hyperspectral Imaging 
 
Hyperspectral sensors capture numerous bands 
per pixel across the visible, NIR, and SWIR 
regions [95]. While the data complexity requires 
advanced computational resources and storage 
capacity, high-resolution images with narrow 
spatial coverage can differentiate responses to 
different stresses. Hyperspectral imaging 
enables the detection of early drought stress 
symptoms, imperceptible to the naked eye. By 
employing suitable spectral analysis techniques, 
plant responses to drought stress can be easily 
evaluated. In laboratory settings, stationary 
facilities can generate normalized difference 
vegetation index (NDVI) values by utilizing 
different hyperspectral wavelength ranges that 
are segmented based on plant structure. In 
recent times, hyperspectral sensing has become 
a highly promising technology for evaluating 
plant physiology and their responses to stress. 
This is achieved by combining both spatial and 
spectral information. The two primary categories 
of hyperspectral sensors are imaging sensors 
and non-imaging sensors [96]. 
 
While imaging hyperspectral sensors combine 
spectral and spatial resolutions, non-imaging 
hyperspectral sensors just detect the average 
spectral information over the area under study 
[97]. The visible (400–700 nm), near-infrared 
(700–1000 nm), and short-wave infrared (1000–
2500 nm) wavelength ranges were the subject of 
earlier experiments using hyperspectral sensors 
[98]. Since plants usually reduce the 
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concentration of leaf chlorophyll, reflectance in 
the visible range can be correlated to leaf 
pigment content [99], whereas the near-infrared 
range is primarily influenced by leaf structure 
(such as leaf trichome density or leaf thickness) 
and leaf water content [100]. Apart from canopy 
cover information, vegetation indices, including 
the red-edge position, also offer insights                   
into leaf nitrogen or chlorophyll content.                                   
Due to this capability, these indices are 
extensively utilized for assessing canopy 
nitrogen content in crop management. 
Commercial sensors designed for mounting on 
tractor booms are commonly employed for this 
purpose. 
 
The chemical compositions of the leaf, such as 
lignin or cellulose [101], have an impact on the 
short-wave infrared range in addition to the leaf's 
water content. Plant phenotyping has not yet 
utilized the ultraviolet spectrum (200-380 nm). 
Many plant compounds, including flavonoids, 
amino acids, anthocyanins, and nucleosides, 
have UV-range absorption maxima [102, 103].  
This method performs well for determining the 
water content and canopy reflectance of each 
plant section. Ge et al. [104] divided the plant 
into stems and leaves using different 
wavelengths and employed hyperspectroscopy 
to calculate the NDVI of maize. [105,106] have 
used hyperspectral data to compute various 
spectral indices and look for relationships with 
grain yield and drought stress. Specific 
vegetation indexes can be identified by extracting 
appropriate wavelengths from hyperspectral data 
[107,108]. Additionally, for genomic estimated 
breeding, hyperspectral data have been utilized 
in conjunction with molecular markers to improve 
projections of grain yield [109]. Utilizing the 
vegetation index, which is defined as a linear 
combination or ratio of reflectance at many single 
wavelengths, is a standard method for the 
hyperspectral-based estimate of plant 
characteristics under drought stress. There are 
differences in the photosynthetic apparatus, 
water content, plant organs, and yield among the 
physiological and biochemical responses of 
vegetation to drought stress. In a nutshell, 
hyperspectral imaging can use different 
vegetable indices to analyze changes in plants 
under drought stress. Optical images can provide 
normalized differential vegetation index (NDVI) 
and soil-adjusted vegetation index (SAVI) data, 
enabling the diagnosis of water stress and soil 
moisture conditions in various crops [110]. 
Vegetation indices, including the red-edge 
position, also offer insights into leaf nitrogen or 

chlorophyll content. Due to this capability, these 
indices are extensively utilized for assessing 
canopy nitrogen content in crop management. 
Commercial sensors designed for mounting on 
tractor booms are commonly employed for this 
purpose [111]. 
 

HS imaging is a promising field for pre-
symptomatic crop health monitoring. In [112], an 
early detection system for tobacco mosaic virus 
(TMV) used HS imaging in the Visible /NIR 
spectral range (380 nm to 1023 nm). Spectral 
and textural features at selected wavelengths 
enabled a four-class classification (healthy, 2 
DAI, 4 DAI, and 6 DAI) using machine-learning-
based classifiers and the successive projections 
algorithm (SPA). Similarly, in [113], an HS 
imaging system detected tomato spotted wilt 
virus (TSWV) disease in capsicum plants with 
over 90% accuracy using support vector machine 
(SVM), classifiers on three types of features: full 
spectrum, spectral vegetative indices (VIs), and 
data-driven probabilistic topic model-generated 
features from both Visible -NIR and Short Wave -
NIR hypercubes. 
 

4.4 Fluorescence Imaging 
 

Fluorescence imaging is employed to estimate 
the rate of photosynthesis and monitor the 
impact of plant pathogens [123,124] as well as to 
detect early stress responses to both abiotic and 
biotic factors before any decline in growth 
becomes measurable [125, 126, 127, 128]. In 
this imaging technique, blue wavelength light 
with a wavelength of less than 500 nm is directed 
at the plants, causing them to emit fluorescence 
light in the red region of the spectrum, 
specifically at 600-750 nm. These differences in 
fluorescence are captured through photography 
and converted into false-color signals using 
computer software for further analysis [129]. The 
primary impact of abiotic stresses is on the 
chlorophyll content, making chlorophyll 
fluorescence a commonly used tool in phenomics 
to observe the effects of various environmental 
factors on genes and the plant's capacity to 
sustain photosynthesis under such conditions 
[129]. By measuring chlorophyll fluorescence, 
which refers to the emission of excessive energy 
by the plant in the form of fluorescence, 
fluorescence sensors can evaluate the 
photosynthetic efficiency of the crop being 
examined [130]. Visible or ultraviolet                              
(UV) light is used to stimulate the plant,                         
and the resulting fluorescence is captured                
using charge-coupled device (CCD) cameras 
[131]. 
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When plants are exposed to UV light in the 340-
360 nm range, two types of fluorescence are 
produced: red + far-red fluorescence and blue-
green fluorescence. A multicolor fluorescence 
imaging principle is utilized to collect 
fluorescence emitted in four spectral bands, each 
represented by a specific wavelength—blue 
(F440), green (F520), red (F690), and near-
infrared (F740) [132]. Fluorescence and 
chlorophyll content serve as crucial indicators of 
the metabolic states of plants. Additionally, 
fluorescence imaging can be utilized to study 
various aspects such as stomatal movement 
(133), phloem loading and unloading [134], the 
correlation between spatiotemporal variation of 
photosynthesis and growth limitation [135], and 
plant metabolite content [136] under stressful 
conditions [137,138,139]. Fluorescence imaging 
has been employed for different purposes, 
including stress detection at the primary level 
[140,141,142] and the characterization of 
heterogeneity in leaf photosynthetic performance 
[143]. McAusland et al. [144] proposed an 
experimental method for observing 
photosynthesis and photoprotection in crops 
across diverse light environments through 
fluorescence analysis. Similarly, in field 
conditions, the photosynthetic efficiency of a 
target plant can be assessed by measuring its 
chlorophyll fluorescence using a portable 
fluorescence meter in environments with drought 
stress or adequate watering [145, 146]. 
Chlorophyll fluorescence is useful for monitoring 
linear electron transport, which is closely linked 
to CO2 uptake during photosynthesis [147]. 
Ahlam et al. [148] successfully applied a method 
to investigate both abiotic stress (drought and 
salt) and biotic stress (Powdery mildew). The 
method proved effective for abiotic stress but 
revealed the need for a spatial resolution to 
tackle the point-wise spread of Powdery mildew 
infection. Cannière et al. [149] studied the impact 
of drought stress on vegetation using sun-
induced chlorophyll fluorescence (SIF) 
observations. The findings suggest that SIF and 
reflectance-based indices provide 
complementary information for monitoring 
vegetation stress. The study highlights the 
potential of SIF data from the upcoming 
FLuorescence EXplorer (FLEX) satellite to 
assess plant water status.  
 
Several studies have focused on ChlF-based 
imaging, which includes the detection of sweet 
potato feathery mottle virus (SPFMV) and sweet 
potato chlorotic stunt virus (SPCSV) in sweet 
potatoes using thermal imaging and ChlF [150]. 

This study highlighted the operating efficiency of 
PS-II and photochemical quenching as the most 
sensitive parameters for quantifying virus effects, 
surpassing measures like maximum quantum 
efficiency, non-photochemical quenching, and 
leaf temperature. Additionally, an early detection 
system was developed by combining HS- and 
ChlF-imaging [151]. By integrating both 
techniques into one device, the classification 
errors were reduced to less than 5%, leading to 
more accurate results. 
 
 

4.5 Thermal Imaging 
 
Thermal imaging is used to measure leaf surface 
temperatures to study plant water relations, 
specifically for stomatal conductance because a 
major determinant of the leaf temperature is the 
rate of evaporation or transpiration from a leaf. 
Abiotic or biotic stresses often result in 
decreased rates of photosynthesis and 
transpiration [152,153]; and, the remote sensing 
of the leaf temperature by thermal imaging can 
be a reliable way to detect changes in the 
physiological status of plants in response to 
different biotic and/or abiotic stresses. This 
method uses radiation emitted by an object to 
generate an image, which increases as the 
temperature of the object increases above 
absolute zero. Thermal sensors can use 
visualized image data to detect changes in plant 
temperature caused by transpiration due to 
stomatal closure. Therefore, thermal imaging can 
measure temperature-related features such as 
water content, transpiration rate, and stomatal 
conductance through model-based estimation 
[154].  The canopy temperature has been used 
successfully in breeding programs for drought-
prone environments. In plant phenotyping, 
thermal imaging offers canopy temperatures to 
detect differences in stomatal conductance as a 
measure of the plant response to the water 
status and transpiration rate [155, 156], both in 
the field and in the greenhouse.  Canopy 
temperature differences were compared with the 
surrounding air (for example, the canopy 
temperature depression, or CTD) as measured 
by thermal infrared imaging, and these results 
have been used as a selection criterion in 
breeding programs for drought resistance 
[157]. In addition, thermal imaging has been 
used for many crops, from small cereal grains to 
maize [158] and fruit trees [159]. It has also been 
used in combination with spectral imaging for the 
enhanced estimation of leaf water content [160.].  
Romano et al. [161] used thermal imaging in 
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maize under reproductive stage drought stress 
and identified its potential for accelerating 
phenotyping and screening in maize water stress 
breeding programs. Estimating stomatal 
conductance and water status through leaf-level 
thermal imagery methods could provide valuable 
information on the effects of non-uniform 
stomatal responses on photosynthetic rates 
[162]. 
 
A field experiment using a thermal sensor 
analyzed temperature differences between plants 
and plots under drought stress. Significant 
correlations were found between seed yield and 
canopy temperature, confirming the impact of 
drought stress on biomass and yield. Relevant 
genomic regions and extreme genotypes for 
canopy temperature were identified [163,164]. 
Aerial thermal infrared image analysis assessed 
canopy temperature and association mapping 
identified 52 SNPs significantly associated with 
canopy temperature. Canopy temperature was 
used to estimate the crop water stress index 
(CWSI), an indicator for selecting drought-
resistant varieties [165]. Thermal imaging 
provides valuable information on stomatal 
conductance, allowing quick evaluation of 
temperature increases and assessment of 
changes in plant transpiration rates and drought 
stress levels. Its use, along with thermal 
cameras, improves crop phenotyping for drought 
adaptation [164,166]. 
 
Thermal imaging rapidly diagnosed crop 
diseases [167]. For tomato mosaic disease and 
wheat leaf rust, the maximum temperature 
difference (MTD) ranged from 0.2°C to 1.7°C and 
0.4°C to 2°C, respectively. MTD increased as the 
disease progressed, detectable 5 to 7 days 
before visible symptoms. In apples, IR 
thermography sensed scab disease caused by 
Venturia inequality [168]. MTD linearly correlated 
with infection size (R2 = 0.85), later decreasing 
due to leaf senescence. 
 

4.6 Non-Imaging Spectroscopic Methods  
 

Non-imaging spectroscopic methods comprise 
VIS/IR reflectance and transmittance 
spectroscopy, along with Raman spectroscopy. 
VIS/IR spectroscopy is a type of hyperspectral 
imaging that records only spectral information 
(not spatial/pixel data) within the VIS/IR 
wavelength range. Plant health is assessed by 
measuring either the reflectance of the leaf/tissue 
surface or the transmitted light through the leaf 
tissue and correlating it with relevant indicators. 

A VIS-NIR reflectance spectroscopy system 
[169] for detecting HLB or citrus greening 
disease in citrus trees used two portable halogen 
lamps and a field-portable SVC HR 1024 
spectroradiometer. The system collected 
reflectance data from 350 nm to 2500 nm (989 
data points) and included a laser pointer for 
target area designation. The mobile platform 
allowed in-field operations, and the best-
performing classification algorithm was quadratic 
discriminant analysis (QDA), with a 95% average 
accuracy. Multiple recent studies have used 
spectroscopic methods for plant disease 
detection. For instance, research has been 
conducted into the early detection of potato late 
blight using leaf reflectance measurements with 
a spectroradiometer [170]. Another study applied 
NIR spectroscopy for the detection of bitter pit 
disorder in honey crisp apples, recording spectra 
for 40 apples at three different times post-harvest 
[171]. Non-imaging VIS/IR spectroscopy (VIS/IR-
spec) has unique advantages, such as a simpler 
and cheaper setup involving a light source and a 
spectroradiometer, compared to hyperspectral 
(HS) imaging. Data analysis is less complex 
since image pre-processing is unnecessary. 
However, VIS/IR-spec's lack of spatial 
information complicates its field application due 
to potential environmental interference. Raman 
spectroscopy (RS) is another analytical 
spectroscopic technique that reveals molecular 
structure information by analyzing molecular 
vibrations from inelastic photon collisions. A 
recent study explored the use of a handheld 
Raman spectrometer to detect and identify fungal 
pathogens in maize kernels [172]. 
 

4.7 Other Imaging Techniques  
 
Functional imaging and optical 3D structural 
tomography are two recent technological 
developments that have shifted more and more 
towards in vivo live imaging of plants. Functional 
imaging focuses on physiological changes to 
assess photosynthetic performance under stress, 
such as ChlF imaging and positron emission 
tomography (PET). Positron emission 
tomography (PET) is an imaging technique that 
quantitatively and non-destructively assesses the 
3D spatial distribution and kinetics of radio-
tagged biomolecules in a living subject. The 
elements required for plant growth are 11C, 13N, 
and 15O, which are often utilized positron-
emitting radionuclides [173].  The transport of 
11C-labeled photo-assimilates can be repeatedly 
observed in 3D by PET when CO2 is consumed 
during photosynthesis [174]. 
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Table 1. The most commonly utilized spectral indices for crop stress monitoring include ρRED, ρGREEN, and ρBLUE, which represent the spectral 
reflectance of the red, green, and blue bands, respectively. Additionally, ρNIR stands for the reflectance of the near-infrared band and ρSWIR 

refers to the reflectance of the shortwave-infrared band.  These indices play a crucial role in assessing and tracking crop stress levels 
 

Name  Abbreviation  Formula Description with related traits and 
challenges 

References 

normalized difference 
vegetation index 

NDVI (ρNIR – ρRED)/(ρNIR + ρRED)  Assess green vegetation using a normalized 
ratio within the range of −1 to 1. 

 [114] 

normalized difference water 
index  

NDWI ρNIR − ρSWIR)/(ρNIR + ρSWIR) Quantifies variations in leaf water content by 
utilizing Near-Infrared (NIR) and Shortwave 
Infrared (SWIR) spectral bands. 

[115] 

difference vegetation Index 
Jordan  

DVI NIR – Red Highly responsive to vegetation quantity; 
characterized by its simplicity as a ratio; 
however, it does not account for discrepancies 
between reflectance and radiance due to 
atmospheric conditions or shadows. 

[116] 

green normalized difference 
vegetation index 

GNDVI  (ρNIR − ρGREEN)/(ρNIR + ρGREEN) An adaptation of NDVI (Normalized Difference 
Vegetation Index) with increased sensitivity to 
chlorophyll content. 

 [117] 

photochemical reflectance 
index  

PRINT (ρ531 − ρ570)/(ρ531 + ρ570) Serves as an indicator of leaf and plant canopy 
photosynthetic efficiency. 

 [118] 

structure insensitive pigment 
index  

SIPI (ρ800 − ρ445)/(ρ800 + ρ680) Acts as an indicator of increased canopy stress, 
particularly related to carotenoid pigment levels. 

[119] 

moisture stress index  MSI (ρ1599)/(ρ819) Highly responsive to rising leaf water content 
and widely utilized for canopy stress analysis 
and productivity prediction. 

[120] 

Leaf water content index 
Ceccato et al. [144] 

LWCI log(1 − (ρNIR − ρMIDIR))/ −log(1 − (ρNIR − 
ρMIDIR)) 

Assesses the moisture content of the leaf 
canopy. 

[121] 

modified red edge NDVI Sims 
& Gamon [35] 

mRENDVI (ρ750 − ρ705)/(ρ750 + ρ705 −2 * ρ445) Leverages the sensitivity of the vegetation red-
edge to detect subtle changes in canopy foliage 
content, gap fraction, and senescence. 

[122] 
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Table 2. Applications and limitations of common sensors used for proximal remote sensing 
 

Sensor Type  Applications Limitations 

RGB Cameras Used for imaging canopy cover and canopy color. They 
provide insights into chlorophyll concentration using greenness 
indices and enable canopy architecture estimation with 3D 
stereo reconstruction. 

Lack of spectral calibration, leading to relative 
measurements. Susceptible to shadows and changes 
in light conditions, hindering automated image 
processing. 

Spectral sensors Assess the biochemical composition of leaves and canopies, 
including pigment concentration and water content. Contribute 
to canopy architecture assessment with indices like NDVI. 

Require frequent calibration and susceptible to 
changes in light conditions, necessitating white 
reference calibration. Canopy structure and 
camera/sun geometries affect measurements, posing 
data management challenges. 

Fluorescence Suitable for assessing the photosynthetic status of plants and 
indirectly measuring biotic and abiotic stress factors. 

Field-level canopy fluorescence measurements can be 
challenging due to the low signal-to-noise ratio, but 
techniques like laser-induced fluorescence transients 
(LIFT) and solar-induced fluorescence extend the 
range for remote sensing.  

Thermal sensors Employed to measure stomatal conductance and detect water 
stress induced by biotic or abiotic factors. 

Changes in ambient conditions cause canopy 
temperature fluctuations, making comparisons over 
time difficult without references. Distinguishing soil 
temperature from plant temperature in sparse canopies 
is problematic, hindering automated image processing. 
Calibration and atmospheric correction are often 
required for accurate results. 

X-ray Computed Tomography (CT ) It provides  high-resolution, three-dimensional architecture low automation and low throughput, high cost 

Magnetic Resonance Imaging (MRI ) Gives information about water status, transportation, and root 
architecture, Provides three-dimensional architecture 

low throughput and high cost 

 Positron Emission Tomography (PET ) Gives information about the translocation and transport of 
elements, shows the movement and path of positron through 
the plant 

low throughput, high cost 
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Nuclear magnetic resonance is used in nuclear 
magnetic resonance imaging (MRI), which 
produces images and recognizes nuclear 
resonance signals coming from 1H, 13C, 14N, 
and 15N. In seeds [175], whole root systems 
growing in or near natural soil [176], and entire 
plants, 3D datasets of plant structures can be 
acquired using an MRI. It may then assess water 
spread and movement through the xylem and 
phloem in crops such as castor beans, tomatoes, 
tobacco, and poplars [177]. It is possible to 
monitor dynamic changes in plant structure and 
function by combining MRI and PET technology. 
 

X-ray CT is a computer-processed X-ray 
technique that can create 3D representations of 
an object's internal structures from a collection of 
2D radiographic images taken around a single 
axis of rotation. It has been effectively applied for 
a variety of purposes, including the analysis of 
soil structural heterogeneity [178] and the 
visualization of plant structures [179]. The costs 
and duration of the scans are the limitations of 
CT, though. 
 

With the help of fluorescent sensors that are 
genetically programmed, Forster resonance 
energy transfer (FRET) is a cutting-edge non-
invasive technique for high-resolution imaging of 
tiny molecules in live tissue. It has been 
successfully utilized to detect calcium and zinc 
dynamics in roots during sugar transport [180]. It 
permits the discovery of numerous paths and 
dynamic processes of the target molecule. FRET 
is a superb tool for advanced phenotyping that 
can solve several fundamental queries about 
plant growth and development. Wheat plants 
were phenotyped under both control and salt 
stress conditions using the 3D laser scanner 
Plant Eye. From the overhead data cloud, the 
system calculated characteristics including 3D 
leaf area, plant height, and leaf number. In wheat 
under salt stress, correlations between the 
manually measured characteristics (leaf area, 
fresh and dry biomass) and the Plant Eye-
scanned trait (3D leaf area) were observed [181]. 
Other sensors may be able to offer 3D structural 
data. Liar is conceivably the most commonly 
utilized type of sensor for 3D canopy 
reconstruction [182,183]. Such laser devices 
have been utilized to determine the plant area 
density profiles of a wheat canopy and for quick 
LAI mapping [184,185]. 
 

5. CONCLUSION 
 

In conclusion, proximal remote sensing offers a 
powerful and effective approach to plant stress 

phenotyping. The ability to collect real-time, 
accurate, and non-destructive data can 
significantly contribute to our understanding of 
plant health, leading to improved agricultural 
practices, increased crop resilience, and better 
food security. To fully leverage the potential of 
proximal remote sensing, ongoing research, 
technological advancements, and collaborative 
efforts between scientists, farmers, and 
technology providers are crucial. While proximal 
remote sensing has shown great promise, there 
are still challenges and limitations to address. 
These may include the need for specialized 
equipment, data processing complexity, and 
potential interference from environmental factors. 
Additionally, access to data and affordability can 
be barriers in some regions. 
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