
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: amirusule@yahoo.com; 
 
 
 

Annual Research & Review in Biology 
 
22(2): 1-11, 2018; Article no.ARRB.32290 
ISSN: 2347-565X, NLM ID: 101632869 

 
 

 

 

Mathematical Modeling and Optimal Control of 
Ebola Virus Disease (EVD) 

 
Amiru Sule 1* and Jibril Lawal 2 

 
1Department of Mathematics, Zamfara State College of Education Maru, Nigeria. 

2Department of Mathematical Sciences, Federal University Gusau, Nigeria. 
 

Authors’ contributions  
 

This work was carried out in collaboration between both authors. Author AS performed the optimal 
control analysis, wrote the protocol and wrote the first draft of the manuscript. Author JL designed the 
mathematical model, managed the analyses of the study and managed the literature searches. Both 

authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/ARRB/2018/32290 
Editor(s): 

(1) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. 
Reviewers: 

(1) Grienggrai Rajchakit, Maejo University, Thailand.  
(2) Teodoro Lara, University of los Andes, Venezuela. 

(3) Manuel De la Sen, Polytechnic University of Valencia, University of the Basque Country, Spain. 
(4) Ojo, Mayowa Micheal, Ladoke Akintola University of Technology, Nigeria. 

Complete Peer review History: http://www.sciencedomain.org/review-history/22683 
 
 
 

Received 18 th  February 2017  
Accepted 5 th December 2017 
Published 10 th January 2018  

 
 

ABSTRACT 
 

In this paper, a nonlinear mathematical model is developed and analyzed to study the dynamics of 
Ebola virus (EVD) and the effects of some control strategies. The model validity is investigated and 
was found to be locally asymptotically stable when the basic reproduction number ( )0 1ℜ <  and 

unstable otherwise. Pontryagin's maximum principle is applied to obtain the optimality conditions. 
Numerical simulation was carried out and the results obtained indicate that a combination of all 
three control parameters is highly effective in containing the spread of the virus. 
 

 
Keywords: Ebola virus; contact tracing; personal protective equipment; optimal control. 
 
1. INTRODUCTION 
 
Ebola virus disease (EVD), named after the 
Ebola River in Democratic Republic of the Congo 

(formerly Zaire) is acknowledged to be greatly 
infectious disease with a high mortality rate [1]. 
The virus has a number of different strains, 
formerly known as Ebola hemorrhagic Fever [2]. 
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But some Ebola patients did not present 
hemorrhage, thus, it is now referred to as Ebola 
virus disease [3]. There have been a number of 
cases over the years, the virus originated from 
Zaire in 1976 [4]. Since then up to 2008, the 
fatality rate of EVD victims was about 79% [5]. 
The continuing epidemic of EVD is affecting 
countries in Central and Western Africa. The first 
case of Ebola virus was in 1976 in northern 
Zaire, currently the Democratic Republic of 
Congo (DRC) [6].  
 
The epidemic resulted to many cases of about 
350 out of which more than two third losses their 
lives due to infection [5]. Regrettably, hospital 
personnel that attended to the patients were 
eventually exposed to the virus that leads to the 
loss of life. The outbreak was examined to 
determine the cause of the infection, though the 
patient bought, cooked, and ate bush meat 
(antelopes) hence, it could be the source of the 
infection [7]. Subsequently, outbreaks of Ebola 
virus do occur from time to time in Africa over the 
past 40 years. The highest fatality rate of the 19 
out of 20 outbreak excluding the one in 2014 was 
(66.3%) though it may varies depending on the 
outbreak [8]. The human-to-human transmission 
of the virus occurs mostly through contact with 
body fluids [9]. Health workers and family of the 
diseased person are mostly vulnerable to the 
infection due to insufficient or lack of personal 
protective equipment (PPE) [10]. African 
traditional funeral practices that involve washing, 
touching and kissing the body is what 
compounded the problem. There are currently no 
strong pointers regarding the source of the virus 
but fruit bats of the Pteropodidae family are 
considered the natural host of the Ebola virus. It 
is also thought to transmit through                   
monkeys, gorillas, and chimpanzees. However, 
the initial human-to-human transmission                 
must occur through contact with the body fluids 
of an infected patient. Thus, Ebola is not 
airborne, as is the case with influenza, nor is it 
food or waterborne, as is the case with other 
diarrheal diseases (cholera, dysentery, or 
typhoid).  
 
Further, the Ebola virus does not infect other 
individuals during the incubation period (the 
period between the initial infection and the onset 
of symptoms), which for the Ebola virus can be 
2-21 days. As a result, if a person who has been 
in contact with an Ebola patient, or a patient 
suspected of Ebola presented fever, immediate 
quarantine, treatment, and management by the 
hospital can halt the spread of the outbreak. 

However, even after recovery, the virus may still 
be found in the body fluids of the patient for an 
extended period. In a report, the Ebola virus was 
detected in the semen of the patient three 
months after recovery [7]. Thus, it is important 
that the patient only can be released from 
isolation after confirming that the Ebola virus is 
no longer present. Although there are currently 
no established treatments or vaccines of Ebola 
available worldwide, symptomatic therapy and 
strict quarantine are adequate to prevent 
transmission of an Ebola.  
 
Some research findings reveal that incubation 
period of EVD is between 2 and 21 days [11]. 
During these period,  the virus infects body cells, 
duplicates and spurts out of the infected cells, 
creating EBOV glycoproteins that attach to the 
inside of blood vessels, rendering the blood 
vessels to be more penetrable. The increased 
penetrability causes the blood vessels to leak out 
blood [11]. The virus also attack the host’s 
natural defense system, by infecting immune 
cells, a channel through which it is transported to 
other body parts and organs, such as the liver, 
kidney and brain. The disease causes these 
organs to fail, eventually, leading to death of the 
infected human [11]. 
 
Mathematical modeling of diseases has help 
immensely in combating the spread of infectious 
disease including EVD. [4] Propose a 
mathematical model on the spread of Ebola virus 
to estimate the basic reproduction number in the 
absence of control interventions. Further, they 
introduce some control parameters of education, 
contact tracing and quarantine. [5] formulated a 
mathematical model of Ebola virus transmission 
in order to predict the epidemic trends and to 
evaluate intervention measures efficacy. [6] 
presented a mathematical model of Ebola virus 
that divides the population of interest into 
individuals in the community and those in the 
health care setting. The model incorporates 
notable crucial features associated with disease 
transmission, such as the interaction between 
members of the community and their health-care 
settings, the role of Ebola-deceased individuals, 
and traditional belief systems and customs. The 
results of their study shows that, in the absence 
of public health interventions, the 2014 EBOV 
outbreaks would have had a much higher public 
health burden in all the countries involved. Other 
models on the dynamics of the disease include 
the works of [7,8]. Therefore, the purpose of this 
paper, is to apply some control parameters by 
extending the work of [9] using Pontryagin's 
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Maximum Principle in order to contain the spread 
of the virus. 
 
The remaining part of the paper is organized as 
follows. In section 2, we describe the formulation 
of the model using system of ordinary differential 
equations. In section 3, some basic properties of 
the model are presented. In section 4, optimal 
control analysis in order to contain the spread of 
the virus was discussed in section 5 numerical 
simulation and conclusion of the paper was 
presented in section 6.  
 

2. MODEL FORMULATION 
 
The proposed Ebola model subdivides the total 
human population represented by  ( )N t   into 

five mutually exclusive compartments. The 
susceptible population is divided into two sub-
classes of low-risk susceptible individuals 
represented by ( )1S t  and high-risk susceptible 

individuals represented by ( )2S t . Exposed 

individuals ( )E t , infected individuals ( )I t , and 

recovered individuals ( )R t  thus, 
 

( ) ( ) ( ) ( ) ( ) ( )1 2 (1)N t S t S t E t I t R t= + + + +  

 
The first susceptible population includes those 
individuals that are at high risk of contracting the 
virus ( )2S t   from the infected individuals [10, 
12]. These categories include the people 
involved in burial processes, healthcare workers 
and relatives of the infected individuals. The rest 
of the susceptible population ( )1S t  is 

considered to be at a low risk of acquiring the 
virus. The susceptible humans are recruited 
through birth and immigration at a constant rate
π . All newly recruited individuals are assumed 
to be susceptible as the virus is not transmitted 
through vertical transmission. The parameter τ  
is assumed to be the fraction of recruited 
individuals who are at a high risk of acquiring the 
infection. While the remaining ( )1 τ−   are those 
with low risk of acquiring the disease. The low-
risk vulnerable population acquires infection at a 
rate λ  while the high-risk population acquires 

infection at a rate ελ  as ε  is the modification 

parameter for the class. All the five classes are 
reduced through natural death µ  and infected 
class has additional mortality rate due to infection
δ .        
 

The population of exposed class increases after 
the two susceptible populations of ( )1 2,S S  

acquires infection from the infected individuals at 
a rate ,λ ελ  respectively. The class is reduced 

due to the manifestation of the symptoms of the 
disease at a rateα . Infected class is increase 
when the exposed individuals manifest the 
symptoms of the disease at a rateα . The class 
is reduced through natural death and disease 
induced death ( ),µ δ  respectively. The class is 

also reduced when the infected individuals either 
died or recovered from the infection at a rateϕ . 
From the model formulations and assumptions 
above with the schematic diagram below the 
system of ordinary differential equations are 
presented in equation (2). Fig. 1 below shows a 
schematic diagram of the model utilized in this 
work.  
 

 

 

Fig. 1. The Schematic diagram of the model 
 

( )

( ) ( )

( )

1
1 1

2
2 2

1 2

1

(2)

dS
S I S

dt
dS

S I S
dt

dE
S S I E

dt
dI

E I
dt
dR

I R
dt

π τ β µ

πτ βε µ

β ε µ α

α ϕ µ δ

ϕ µ

= − − − 

= − −


= + − + 

= − + + 

= −


 

 
3. BASIC PROPERTIES OF THE MODEL 
 

3.1 Invariant Region 
 
The equation 2 above monitors’ human 
populations hence, it is necessary to consider 
that the associated population sizes can never 
be negative. The equation 2 should be 
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considered in a feasible region where such 
property (non-negative) is conserved. Thus, in 
this section we discuss the invariant region. 
Recall that invariant region indicates the non-
negativity of the total size of a given population. 
 
Definition:  A set M is invariant if and only if for 
all ( ), ,x M x t Mφ∈ ∈  for all t. A set is 

positively (negatively) invariant if for all 

( ), ,x M x t Mφ∈ ∈  for all ( )0 0t t> <  [13,14, 

15]. 
 
From equation (2) we have that, 
 

1 2 (3)N S S E I R= + + + +  

 
This formulation considered human population, in 
the absence of the (EVD), it implies that 0δ =   

and thus, 
 
dN

N I N
dt

π µ δ π µ≤ − − ≤ −
 

 
Equation (2) has solutions which is contained in 
the feasible region, 
 

hΩ = Ω  

 
To show this, the approach of [16] will be 
followed to establish the invariant region as 
follows: 
 
Let ( ) 5

1 2, , , ,S S E I R +∈ �  be any solutions of 

the system with nonnegative initial conditions as, 
 

(4)
dN

N
dt

π µ≤ −
 

 
Separating the variables we have, 
 

dN
dt

Nπ µ
≤

−
 

 
Taking the integral of both sides, thus, 
 

dN
dt

Nπ µ
≤

−∫ ∫
 

( )1
ln N t cπ µ

µ
− − ≤ +

 

( ) ( )ln N t cπ µ µ− ≥ − +  

 

Taking the exponential of both sides it gives, 

( ) (5)tN Ae µπ µ −− ≥  

 
Where A is a constant, by applying the initial 
condition ( ) ( )0N t N=  

 
Thus, 
 

( )0A Nπ µ= −  

 
Substituting the above expression into equation 
(5) will give: 
 

( ) ( )(t) (0) (6)tN N e µπ µ π µ −− ≥ −   

 
By making N (t) the subject in (6) we obtain: 
 

(0)
(t) (7)tN

N e µπ π µ
µ µ

− −≤ −  
 

 

 
From equation (7), as

, 0 (t)t N
π
µ

→ ∞ ≤ ≤
 ,  

 
therefore, the feasible solution set of the 
equation (2) is part of the region: 

( ) 5
1 2 1 2, , , , : (8)S S E I R S S E I R

π
µ+

 Ω= ∈ + + + + ≤ 
 

�

 
 

In this case, whenever
N

π
µ

≤  , every solution 

with the initial condition in 5
+�

 remains in that 

region for 0t > . Thus, the region Ω  is positively 

invariant with respect to equation (2) and the 
model is epidemiologically meaningful in the 
domain Ω . Hence, it is sufficient to study the 
dynamics of the model in Ω  [17].       

 
3.2  Computation of the Basic 

Reproduction Number  
 
The basic reproduction number 

0ℜ  is defined as 

the expected number of secondary cases 
produced by a single (typical) infection in a 
completely susceptible population. The linear 
stability of the disease can be established using 
the next generation operator method [18,19] on 
the equation (2). The matrix F and V for the new 
infection terms and the remaining transfer terms 
are individually given by, 
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( )1 2 00
,

0 0

S S
F V

µ αβ ε
α ϕ µ δ
+ +   = =   − + +  

 

 
At disease free-equilibrium point, 
 

( )1
0

0 0

F

βπ τ βεπτ
µ µ

− 
+ =  

 
 

 

 
And inverse of V is given by, 
 

( ) ( ) ( )

1

1
0

1
V

µ α
α

µ α ϕ µ δ ϕ µ δ

−

 
 +
 =
 
 + + + + + 

 

 

It follows that the basic reproduction number 
0ℜ  

of the equation (2) is given by, 
 

( )
( )( )0

1
(9)

βπα ετ τ
µ µ α ϕ µ δ

+ −
ℜ =

+ + +

 

 

Moreover, with theorem 2 by [18], the following 
result is obtained. The DFE of the equation (2) is 
locally asymptotically stable (LAS) if 

0 1ℜ <  and 

unstable if 
0 1ℜ >  [18].   

 
4. OPTIMAL CONTROL ANALYSIS 
 
Optimal control is a procedure of establishing 
control and state trajectories for a dynamic 
scheme over a period of time in order to 
minimize a performance index [20,21]. The 
problem needs a performance index or cost 
functional ( ) ( ), ,J x t u t  

 a set of state variables 

( ) ,x t X∈  a set of control variables ( )u t U∈  in a 

time t with 
0 ft t t≤ ≤ . The main aim is to find a 

piecewise continuous control ( )u t  and the 

related state variables ( )x t  to minimize a given 

objective functional [21]. 
 
Three controls measures of (protective materials) 

1u  used for people involved in burial processes, 

healthcare workers and relative of the infected 
individuals. Contact tracing 

2u  for individuals 

that has contact with infected individuals. Lastly, 

3u  for treating infected individuals with (EVD) 

are considered in order to contain the spread of 
the virus in a community. The three time 
dependent control parameters are used to 
extend the model (2) in order to achieve the 
eradication of the virus in finite time in a 
community. 
 
The higher risk vulnerable individuals that include 
the medical personnel and those involve in the 
burial processes of the victims of infection. These 
categories of individuals are protected from 
infection by using personal protective equipment 
at a rate ( )11 uπτ −  where ( )1 10 1u u≤ ≤     is the 

control efforts for using personal protective 
equipment (PPE). Individuals infected with the 
virus moved to the exposed class at a rate 

( )( )2 1 21 u S Sβ β ε− +  where 

( )2 20 1u u≤ ≤  represent control effort for contact 

tracing. While individuals that developed 
symptoms of infection will immediately be 
isolated and start receiving treatment at a rate 

( )31 u α−  where ( )3 30 1u u≤ ≤   represent the 

control effort for treatment. Thus, putting the 
above formulations and assumptions together 
gives the following (EVD) model in the form of 
ordinary differential equations below, 
 

( )

( )

( ) ( ) ( )

( ) ( )

1
1 1

2
1 2 2

2 1 2 3

3 3

3

1

1

1 1 (10)

1

dS
S I S

dt
dS

u S I S
dT
dE

u S S I E u E
dt
dI

u E u I
dt
dR

u I R
dt

π τ β µ

πτ βε µ

β βε µ α

α ϕ µ δ

ϕ µ

= − − − 

= − − −


= − + − − − 

= − − + + 

= −


  

 
When the control is time dependent the disease 
free equilibrium no longer exists. Hence, we 
apply the Pontryagin’s Maximum Principle to 
determine the conditions under which eradication 
of the disease can be achieved in finite time. We 
seek to minimize the number of higher risk 
susceptible individuals, exposed and infective 
individuals and the cost of applying protective 
equipment, contact tracing and treatment 
controls. The objective functional that we 
consider is given by, 
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1 2 3

1 2 2 3

2 2 2
, , 1 1 2 2 3 3

(11)min
u u u

A S A E A I
J dt

B u B u B u

+ + 
=  

+ + + 
∫

  
 
Subject to the model equation (10), 
 
Where 

1 2A S  represents the weight of high-risk 

susceptible individuals and 
2 3,A E A I  are the 

cost related with a number E of exposed 
individuals and I of infected individuals. The time 
T, is the period of the intervention. The term 

2
1 1B u  is the cost associated with personal 

protective equipment, 2
2 2B u  is the cost of 

contact tracing and 2
3 3B u  the cost of 

treatment. The coefficients 
1 2 3 1 2 3, , , , ,A A A B B B  

are positive weights to balance the factors. 
Linear functions was chosen for the cost on 
higher-risk individuals 1 2A S  and cost of infection 

2 3,A E A I  and quadratic forms for the cost on 

the controls 2 2 2
1 1 2 2 3 3, ,B u B u B u  similar to what is 

found in the literature [22,23]. With the given 
objective function ( )1 2 3, ,J u u u  the aim is to 

minimize the populations of higher-risk, exposed 
and infected individuals at the same time 
minimizing the costs of controls

( ) ( ) ( )( )1 2 3, ,u t u t u t .  Hence, an optimal 

control ( )1 2 3, ,u u u∗ ∗ ∗  is obtained such that, 

 

( ) ( )
1 2 3

1 2 3

1 2 3
, , 1 2 3

, ,
, , (12)

, ,min
u u u

J u u u
J u u u

u u u U
∗ ∗ ∗

  =  
∈  

 

Where the control set, 
 

( ){ }1 2 3, , :[0,1]measurablei 1,2,3iU u u u u∗ ∗ ∗= =
 

 
4.1 Pontryagin's Maximum Principle 
 
The necessary conditions that an optimal control 
must satisfy come from the Pontryagin’s 
Maximum Principle (Pontryagin [24]). This 
principle converts (10)–(11) into a problem of 
minimizing pointwise a Hamiltonian H, with 
respect to ( )1 2 3, ,u u u . By optimal control theory, 

let ( )i tλ  be adjoint variables with 1,...,5i = . 

 

( )
( ){ }

( ){ }
( )( ) ( ){ }
( ) ( ){ }

{ }

2 2 2
1 2 2 3 1 1 2 2 3 3

1 1 1

2 1 2 2

3 2 1 2 3

4 3 3

5 3

, ,

1

1
(13)

1 1

1

H AS AE AI Bu Bu Bu

SI S

u S I S

u S S I E u E

u E u I

u I R

λ π τ β µ

λ πτ βε µ

λ β βε µ α

λ α ϕ µ δ

λ ϕ µ

= + + +

+ − − −

+ − − − 


+ − + − − − 


+ − − + + 
+ − 

 

 
For the optimal control triple ( )1 2 3, ,u u u∗ ∗ ∗  that 

minimizes ( )1 2 3, ,J u u u  over U there exist 

adjoint variables 
iλ  for 1,2,...,5i =  satisfying 

adjoint system, transversality conditions and 
stationary values [24] as follows, 

( )

( ) ( )

( )( )

( ) ( ) ( ) ( )

1
1 3 3 2

2
1 1 2 2 3 3 2

3
2 3 4 3 3

4
3 4 5 3 2 3 2 1 3 1 3 2 1 2

5
5

1 (1 4 )

d
I Iu

d t
d

A I u I
d t

d
A u

d t
d

A u S S u S S
d t

d

d t

λ λ λ β λ β

λ λ λ µ λ λ β ε λ β ε

λ λ λ λ µ

λ λ λ ϕ λ λ ε β λ λ β λ ε β

λ λ µ

− = − + 

− = − + − + − + 

− = − + − − + 



− = − + − + − + − + + 

− = 

 

 
Hence, the transversality conditions is given by, 
 

0 1,...,5i for iλ = =                                                                    (15) 

 
Using the transversality conditions 0 1,...,5 where 0 u 1 1, 2,3i ifor i for iλ = = < < = , gives, 
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( )

( )

1 1 2

2 2 3 2 1

3 3 3 4 5

0 2

0 2 (16)

0 2

dH
B u

dt
dH

B u S S I
dt

dH
B u E E I I

dt

λ πτ

λ ε β

λ α α ϕ λ ϕ λ

= = − 

= = − + 

= = + − + + 


 

 
At this stage, the control 

1 2 3, ,u u u∗ ∗ ∗  satisfy the 

optimality conditions, 
 

( )

( ) ( )

2
1

1

3 2 1
2

2

3 4 4 5
3

3

max 0,min 1,
2

max 0,min 1, (17)
2

max 0,min 1,
2

u
B

S S I
u

B

E I
u

B

λ πτ

λ ε β

λ λ α λ λ ϕ

∗

∗

∗

   =   
    


 +   =    
    


 − + −  =       

 

 
Putting the bounds [0, 1] on the controls, it can 
be established that, 
 

1

1 1 1 2

1

2

2 2 3

2

3

3 3

3

0 0

0 1 ,

1 1

0 0

0 1 ,

1 1

0 0

0 1

1 1

u if u

if u

if

ς
ς ς

ς

ς
ς ς

ς

ς
ς ς

ς

∗

∗ ∗ ∗ ∗

∗

∗

∗ ∗ ∗

∗

∗

∗ ∗

∗

 ≤


= < <
 ≥

 ≤


= < <
 ≥

 ≤


= < <
 ≥

 

 
Where, 
 

( )

( ) ( )

2
1

2

3 2 1
2

2

3 4 4 5
3

3

2

(1 8 )
2

2

B

S S I

B

E I

B

λ π τς

λ ε β
ς

λ λ α λ λ ϕ
ς

∗

∗

∗


= 


+ = 

− + −
=


 

 
Taking the second derivative of equation (16) 
gives, 
 

2 2 2

1 2 3
1 2 3

2 , 2 , 2 0
H H H

B B B
u u u

∂ ∂ ∂= = = >
∂ ∂ ∂

 

Thus, the problem is associated with 
minimization i.e. reducing the populations of 
higher-risk, exposed and infected individuals and 
cost of control since the second derivative of (16) 
is greater than zero [11].     
  
5. NUMERICAL SIMULATION 
 
In this section, the effect of the optimal control 
strategies on the spread of EVD is studied 
numerically. Using an iterative approach, the 
optimality system containing five ordinary 
differential equations from the state and adjoint 
equations attached with the three control 
characterizations are solved. The state 
differential equations with initial estimates for 
controls and the state are solved using fourth 
order Runge-Kutta scheme. Using the result of 
state and the given final time values, the ad joint 
system are solved using the fourth order Runge-
Kutta scheme. The state and the adjoints system 
are used to update the three control strategies 
using the characterizations given by (17). The 
process is repeated in order to arrive at a desired 
result when the current state, adjoint, and control 
values converge sufficiently [25]. The influence of 
the following optimal control strategies on the 
spread of the disease in a population is 
examined numerically. Using two controls at a 
time while setting the other one to zero and 
finally considering the three controls at the same 
time. Range of parameters used in this section is 
on the interval of [0, 1]. 
 
{Strategy} 1: Combination of use of personal 

protective equipment 
1u   and 

contact tracing
2u . 

{Strategy} 2: Combination of use of contact 
tracing 

2u   and treatment
3u . 

{Strategy} 3: Combination of use of personal 
protective equipment

1u , contact 

tracing 
2u  and     treatment

3u . 

 
The following hypothetical weight factors are 
chosen as ( )1 2 3 1 2 310, 5, 6A A A B B B= = = = = = , 

with the parameter values in Table 1. The initial 
state variables are chosen as

( )1 22,000,000, 15,000, 0, 0, 0S S E I R= = = = = .  

In order to illustrate the effect of different optimal 
strategies the study considered a disease free 
population i.e. a point where all infective classes 
are assumed to be zero. 
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Table 1. Describing the parameters used in the mode l 
 

Parameter  Description  Value Reference  
π   Recruitment rate 400 [11] 
µ   Natural death rate 0.00004 [11] 
τ   Fraction of susceptible at high risk of infection 0.30450 [11] 
λ   Rate of acquiring infection by the low-risk susceptible 0.20000 Assumed 
ε   Modification parameter  0.21000 [25] 
δ   Death due to infection 0.51100 [6] 
α   Rate of movement from exposed class to infected class 0.52390 [11] 
ϕ   Rate of recovery 0.53660 [25] 

 

5.1 Optimal Use of Personal Protective 
Equipment 

1u  and Contact Tracing 

2u    
 

The personal protective equipment like (masks, 
gloves, goggles, and gowns etc.) 

1u  and contact 

tracing 
2u  are considered to enhance the 

objective function J as the control treatment 
3u  

is set to zero. The results obtained indicate a 
substantial variance in the high-risk population 
( )2S  with optimal control strategy contrary to 

( )2S  without control as found in [1] in their study 

on the impacts of interventions on an epidemic of 
Ebola in Sierra Leone and Liberia. Increase use 
of PPE will help in eliminating the possibility of 
post-mortem infection from hospitalized patients 
due to inappropriate funereal practices. Fig. 2, 
indicates that the population of high-risk and 
exposed individuals are reduced due to the 

control interventions. The population of exposed 
are reduce as a results of contact tracing as we 
can see in Fig. 2b. 
 
5.2  Optimal Use of Contact Tracing 2u   

and Treatment 
3u  

 
The contact tracing 

2u  and treatment 
3u  are 

considered to enhance the objective function J 
as the control personal protective equipment 

1u  

is set to zero. The results obtained indicate a 
substantial variance in the exposed individuals E 
with optimal control strategy contrary to E without 
control as found in [2] in their study on the 
strategies for containing Ebola in West Africa. 
Fig. 3, indicates that the population of exposed 
and infected individuals are reduced due to the 
control interventions.  

 

  

(a) High -risk individuals  (b) Expose d individuals  

Fig. 2. Plots the effect of optimal use of personal  protective equipment and contact tracing.  
(a) Shows the effect on high-risk individuals, (b).  Shows the effect on exposed individuals 
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5.3 Optimal Use of Personal Protective 
Equipment

1u , Contact Tracing 
2u  

and Treatment
3u  

 
All the three control strategies ( )1 2 3, ,u u u  are 

used to optimize the objective function J. It was 
observed in Fig. 4 that there exist significant 

difference in the ( )2 , ,S E I  with optimal control 

strategy as compared to ( )2 , ,S E I  without 

control. In Fig. 4, it was observed that all the 
three classes are reduced due to the use of time 
dependent controls this is similar to what is found 
in  [3] in their study on assessing the 
effectiveness of containment strategies using 
stochastic model of Ebola.  

 

  

(a) Exposed individuals  (b) Infected individuals  

Fig. 3. Plots the effect of optimal use of contact tracing and treatment,  
(a) Shows the effect on the exposed individuals, (b ) Shows the effect  

on infected individuals 
 

  

(a) High -risk individuals  (b) Exposed individuals  
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(c) Infected individuals 

Fig. 4. Plots the effect of optimal use of persona l protective equipment, contact tracing and 
finally treatment on the spread of the virus. (a) S hows the effect on high-risk individuals,  

(b) Shows the effect on exposed individuals, (c) Sh ows the effect on the infected individuals 
 

6. CONCLUSION 
 
In this paper, a nonlinear mathematical model is 
developed and analyzed to study the dynamics 
of Ebola virus (EVD) and the effects of some 
control strategies. The model was found to be 
epidemiologically well posed after investigating 
its validity. Basic reproduction number was 
obtained and the model was found to be locally 
asymptotically stable when 1oℜ <  and unstable 

otherwise. Conditions for optimal control were 
obtain, the problem is associated with 
minimization i.e. reducing the infected classes 
and class of high-risk susceptible individuals and 
cost of control as the second derivative of (16) is 
greater than zero. Numerical simulation results 
revealed that combination containing all the three 
control parameters of protective materials ( )1u , 

contact tracing ( )2u  and treatment ( )3u  is the 

best in controlling the spread of Ebola virus 
disease.     
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