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with random forest regression
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Yaohui Cui2 and Miaohan Liu1

1College of Geography and Environmental Science, Henan University, Kaifeng, China, 2Department of
Geomatics Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China, 3National
Demonstration Center for Environment and Planning, Henan University, Kaifeng, China
Urban cold island effects have become increasingly relevant with accelerating

climate change. However, the relationship between such effects and their causal

variables remains unclear. In the present study, we analyzed the relationship

between blue-green space variables and land surface temperature (LST) and park

cooling intensity (PCI) in central Zhengzhou City using a random forest

regression model. Cool urban areas corresponded to the location of blue-

green spaces. The average temperatures of these spaces were 2 °C and 1 °C

lower than those of the built-up areas and the full study region, respectively.

Blue-green spaces also had a maximum temperature that was 8 °C lower than

those of the built-up areas and the study region. The three primary variables

determining LST were blue space proportion and area and vegetation cover,

whereas the three variables determining PCI were blue-green space width,

vegetation cover, and patch density. At a width of 140 m, blue-green spaces

caused a PCI peak, which further improved at 310 m. The proportion of blue

space had a stepwise effect on PCI. A vegetation coverage of 56% represented

the lower threshold of LST and the higher threshold of PCI. These results reflect a

nonlinear relationship between blue-green variables and urban cold islands. In

conclusion, the study provides data that could inform the efficient use of blue-

green spaces in urban construction and renewal.

KEYWORDS

climate change, land surface temperature, nonlinear relationships, random forest
regression, urban cold island effect, Zhengzhou City
1 Introduction

The urban heat island effect has become one of the most pressing ecological and

environmental challenges globally, due to the rapid acceleration of global urbanization (Yu

et al., 2019b; Liang et al., 2020; Ren et al., 2021). Urban parks formed by landscapes

including bodies of water and green vegetation are effective ways to alleviate the urban heat
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island effect and improve local thermal environments (Santamouris

et al., 2011; Sun et al., 2012; Gunawardena et al., 2017). These parks

are known as “urban cold islands (UCIs)” and have attracted

widespread attention for their potential in enhancing the UCI

effect and mitigate increasingly strong urban heat island effects.

Promoting the UCI effect is key in developing sustainable,

resilient, and adaptive urban ecosystems (Kong et al., 2014a; Yu

et al., 2021; Çevik Değerli and Çetin, 2022). Blue-green spaces in

cities serve as efficient heat regulation mechanisms, improving the

urban thermal environment and thereby mitigating the urban heat

island effect. Specifically, urban green spaces provide cooler

outdoor environments via direct shading during the day and

evapotranspiration at night (Fan et al., 2019; Yu et al., 2023),

while urban blue spaces decrease air temperatures through their

high evaporation rates and specific thermal capacitance

(Huanchun et al., 2020; Xi et al., 2023). By enhancing vegetation

coverage and integrating water bodies, these spaces can lower the

surface temperatures of buildings and roads, reduce heat

radiation, and generate cooler climatic conditions, which can

contribute to more enjoyable outdoor environments for urban

residents (Cetin, 2020; Adiguzel et al., 2022). Additionally, blue-

green spaces fulfill vital ecological functions such as improving

urban air quality, absorbing carbon dioxide, purifying water

bodies, enhancing biodiversity, and providing habitat and

ecosystem services (Bozdogan Sert et al., 2021; Zeren Cetin

et al., 2023a; Zeren Cetin et al., 2023b). They also help address

water resource issues, mitigate flood risks, and enhance urban

resilience (Yumino et al., 2015; Zhao et al., 2021; Adigüzel and

Çeti̇ n, 2022). Considering these benefits, a more in-depth

understanding of the variables that influence the cooling effects

of blue-green spaces and their function could offer crucial insights

into further mitigating the urban heat island phenomenon.

A strong correlation exists between blue-green spatial patterns

and land surface temperature (LST) (Sun and Chen, 2017; Xue et al.,

2019; Lan et al., 2022), with the degree of cooling being dependent

on the size, shape, connectivity, and complexity of blue-green

spaces (Gunawardena et al., 2017). For example, the size and

distribution of urban green spaces considerably influence their

ability to alleviate the heat island effect (Huanchun et al., 2020).

Moreover, many landscape indicators, such as landscape shape

index and patch density, have been widely used to reveal the

relationship between the geometric properties of blue-green space

and the UCI effect. The patch density and average patch size of

vegetation play a key role in its cooling capacity (Lu et al., 2012;

Kong et al., 2014b). Additionally, surface UCI intensity is negatively

correlated with patch density and the average patch shape of the

green space (Gao et al., 2022). Although these studies explain the

relationship between variables and surface temperature, there is less

discussion of the case of urban parks with both water and green

space. To date, there is no academic consensus on how to improve

the urban thermal environment through UCIs.

Cities are complex nonlinear open systems with high levels of

uncertainty (Gallopıń, 2020; Padovan et al., 2022). To simplify the

research process, most studies on the UCI effect currently rely on

linear models for analysis (Li et al., 2019; Xue et al., 2019; Liu et al.,

2021). However, these models are inappropriate when variables are
Frontiers in Ecology and Evolution 02
cross-correlated, and their use can lead to misleading results (Belgiu

and Drăgut,̧ 2016; He et al., 2022). For example, Guha and Govil

(2021) and Ullah et al. (2023) found that LST decreases with an

increasing normalized difference vegetation index in green areas.

Jaganmohan et al. (2016) discovered that small, intricately shaped

green spaces have a negative impact on cooling, whereas green

space areas larger than 5.6 hectares have a positive effect. However,

larger blue-green spaces do not necessarily lead to better UCI

effects. According to Cheng et al. (2015), large parks are not more

advantageous than small parks in terms of lowering surrounding

temperatures. Other studies support this finding, indicating that

park size has a threshold in terms of cooling efficiency (Yu et al.,

2020; Kraemer and Kabisch, 2022; Li et al., 2022). Once the

threshold is exceeded, the cooling efficiency of urban parks will

significantly decrease, which has implications for urban park

planning and management. In addition, these models are highly

sensitive to outliers and may not accurately represent the complex

relationships between various factors (Sharma et al., 2011;

Mohammad and Pradhan, 2021; Xiao et al., 2022a). Due to these

limitations, traditional linear models often struggle to accurately

describe UCI phenomena. Therefore, identifying an efficient and

accurate nonlinear model is crucial for studying the UCI effect.

The random forest regression (RFR) model, an ensemble

learning method based on decision trees, has been widely

recognized as a powerful tool for studying the UCI effect (Wang

et al., 2022a; Xiang et al., 2023). This model is specifically designed

to analyze complex interactions among nonlinear and multi-

dimensional independent variables. For instance, exploring the

elements that influence the UCI effect during day/night using

RFR models tend to lead to more in-depth results (Oukawa et al.,

2022), and RFR exhibits good performance at different cooling

distance scales (Wang et al., 2022b). Compared to traditional linear

regression models, the RFR model offers several advantages. First, it

does not require feature scaling or transformation, and can handle

independent variables with different scales and units, allowing for

more convenient and efficient processing of multi-dimensional data

(Mishra et al., 2020). Additionally, the RFR model can capture

nonlinear relationships between independent variables and the

target variable (Fan et al., 2023), including nonlinear relationships

and higher-order interactions, making it suitable for modeling

complex relationships (Hatami Bahman Beiglou et al., 2021).

Specifically, the RFR model has significant advantages in

quantifying the threshold sizes of different landscape types (while

accounting for the effects of landscape composition and

configuration) to optimize the cooling efficiency of blue-green

spaces. This is crucial for decision-makers and actionable urban

park planning.

Improving knowledge on how to optimize the spatial

configuration of cities to enhance UCI effect remains a

prerequisite for creating sustainable cities. The present study

aimed to investigate the impact of urban blue-green spaces on the

UCI effect in Zhengzhou using remote sensing satellite images.

After deriving surface temperature with atmospheric correction, we

employed an RFR model to analyze the mechanisms influencing the

UCI effect. Our study had the following aims: (1) to examine the

spatial distribution of urban blue-green spaces and its influence on
frontiersin.org
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the UCI effect, and (2) to investigate the nonlinear relationship

between LST and the variables related to urban blue-green spaces.

The results of our study can expand our scientific understanding of

the nonlinear influences of blue-green space characteristics on LST

and PCI and provide a scientific basis for formulating sustainable

and resilient urban parks and rational planning of the spatial layout

of urban spaces.
2 Materials and methods

2.1 Study area

This study was conducted in Zhengzhou City (112°42’E–114°

14’E, 34°16’–34°58’N), in Henan Province, central China. The

region has a temperate and semi-humid continental climate with

an average summer temperature of 19–30 °C. Zhengzhou is an

important emerging city in Asia with a diversity of blue-green

spaces. However, rapid urbanization and climate change have

generated thermal environment problems in Zhengzhou. In June

2022, the city reached a historic maximum temperature of 42.3°C,

highlighting the urgent need for research on how to improve living

conditions and mitigate the impacts of increasingly frequent

extreme urban heat events.
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2.2 Data sources

Remote sensing data were obtained from Landsat-8 OLI/TIRS

satellite images on July 16, 2020, with good imaging quality, clear

ground features, and no clouds and/or band stripe. The spatial

resolution was 30 m. To mitigate the impact of atmospheric

conditions on the quality of remote sensing images, the

multi-spectral bands underwent radiometric calibration and

atmospheric correction.

Urban surface types were categorized into blue, green, and

built-up areas using a supervised classification approach. The

analysis was ultimately performed on 114 well-developed urban

blue and green spaces in the central part of the city, with reference

to the high-definition images of HSPA-2 (Figure 1). Data processing

was performed using ENVI 5.3 and ArcGIS 10.8.
2.3 Data processing and analysis

2.3.1 Retrieval of LST data
This study adopted an atmospheric correction method to

retrieve the LST of built-up areas in Zhengzhou. First, the

atmospheric influence on surface thermal radiation was

estimated. This atmospheric influence was then subtracted from
FIGURE 1

Distribution of blue and green spaces in central Zhengzhou during 2020.
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the total thermal radiation observed by satellite sensors, yielding

surface thermal radiation intensity, which was subsequently

converted into a corresponding surface temperature using the

following equations (Chibuike et al., 2018):

Ts = K2=ln(
K1

B(Ts)
+ 1) (1)

B(Ts) = ½Ll − L↑ − t (1 − ϵ)L↓� (2)

Ll = ½ϵB(Ts) + (1 − ϵ)L↓�t + L↑ (3)

where ϵ is surface specific emissivity, TS is surface true

temperature, B(Ts) is blackbody thermal radiation brightness, is

atmospheric transmittance, L↑ is atmospheric upward radiation

brightness, L↓ is atmospheric downward radiation energy, Ll is

thermal infrared radiation brightness. K1 and K2 are coefficients,

with K1 = 774:885 W ·m−2 · sr−1 · mm−1   and  K2 = 1321:079  W ·

m−2 · sr−1 · mm−1.
2.3.2 Variable selection and measurement
To comprehensively evaluate the influence of urban blue-green

spaces on UCI, variable selection was conducted based on

three aspects.

First, variables were selected based on existing research on the

relationship between urban green-blue spaces and UHI. Previous

studies have shown that the cooling effect of UCI is related to the

vegetation coverage of the urban blue-green space (Alavipanah

et al., 2015) as well as its geometric attributes, such as width

(Peng et al., 2021), water body area (Xue et al., 2019; Liu et al.,

2022), and proportion (Sun and Chen, 2017). This ensures that the

chosen variables are correlated and can accurately analyze

this relationship.

Second, the variables were divided into three categories to

provide a more detailed understanding of the different aspects of

urban green-blue spaces and avoid oversimplification, in order to

reflect the complexity of urban green-blue spaces.

Third, the selected variables cover different aspects of urban

green-blue space, such as area, width, density, and coverage, all of
Frontiers in Ecology and Evolution 04
which affect UCI. This selection of variables is supported by existing

research and rational reasoning, providing a comprehensive and

detailed approach to studying the relationship between urban

green-blue space and UCI.

As a result, this study selected blue-green space area and width,

patch and edge density, percentage of blue and green space, blue

and green space area, and fractional vegetation cover as variables

with strong influence on UCI (see Table 1 for abbreviations and

categories). Variable values were calculated using the satellite

images and the following equations (Figure 2).

Patch density (PD) is the degree of landscape fragmentation and

reflects an area’s spatial complexity. It is calculated using the

following formula:

PD =
Ni

Ai
(4)

where Ni is the number of patches in blue-green space i and Ai

is the total area of blue-green space i.

Edge density (ED) reflects the degree of blue-green spatial

fragmentation, meaning that the larger the value, the higher the

fragmentation. It is calculated using the following formula:

ED =
Ei

Ai
(5)

where Ei is the total boundary of blue-green space i and Ai is the

total area of blue-green space i.

Park cooling intensity (PCI) was also used to evaluate the

cooling effect of urban blue-green spaces. This variable is

determined based on the difference between a given temperature

range inside and outside the blue-green space. It is calculated using

the following equation (Cao et al., 2010; Chibuike et al., 2018):

PCI = DT = Tu − TP (6)

where Tu denotes average surface temperature within a certain

range outside the boundary of the blue-green space and TP denotes

LST within the blue-green space. The 500 m surrounding the blue-

green spaces of central Zhengzhou were selected as the cooling areas

for PCI, as per previous studies (Cao et al., 2010; Chibuike et al.,

2018; Huanchun et al., 2020).
TABLE 1 Selection of variables with a strong relationship to UCI.

Variable Type Variable Name Abbreviations Unit

Blue-green space

Blue-green space area BGSA ha

Blue-green space width BGSW m

Patch density PD —

Edge density ED km/ha

Blue space
Percentage of blue space BSP %

Blue space area BSA ha

Green space

Percentage of green space GSP %

Green space area GSA ha

Fractional vegetation cover FVC —
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2.3.3 RFR
The RF model is a machine-learning algorithm that can process

large amounts of data quickly and accurately (Sharma et al., 2011).

The RFR algorithm is formed by integrating multiple decision tree

models fh(X, qk), k = 1, 2,…g (Breiman, 2001), as follows:

P(x) = (
1
K
)oK

i h(X; qk) (7)

where P(x) is the result of the RF combination model and pi is

the single-tree regression model.

Using the “Random Forest” package in R, the relationship

between UCI variables and surface temperature was evaluated.

Variable importance was assessed with two measures: percentage

increase in mean squared error (%IncMSE) and increased node

purity (IncNodePurity) (Gao et al., 2022; Oukawa et al., 2022; Wang

et al., 2022b). The %IncMSE reflects a given variable’s contribution

to the prediction accuracy of the target variable, whereas

IncNodePurity measures the difference in the root sum of

squared errors before and after the variable’s split, as determined
Frontiers in Ecology and Evolution 05
by the Gini index. Partial dependence plots were used to reveal

complex dependence patterns among independent variables.
3 Results

3.1 Spatial patterns of urban
thermal environment

Urban parks with blue-green space area (BGSA) > 100 ha were

predominantly situated on the outskirts of Zhengzhou City, such as

Longhu Park in the northeast and Riverside Park on the periphery

(Figure 2A). Urban parks with BGSA< 30 ha were mainly located in

the older Zhengzhou City center. Urban parks with BGSA > 134 ha

had an average of 21% of blue space (BSP), indicating that larger

BGSA also tended to contain more blue space (Figure 2E). The

distributions of PD and ED were similar; both were higher in long

or sprawling riverfront parks along the urban periphery

(Figures 2C, D).
D

A B

E F

G IH

C

FIGURE 2

Variable measurements in central Zhengzhou. (A) BGSA (ha); (B) BGSW (m); (C) PD; (D) ED (km/ha); (E) BSP (%); (F) BSA (ha); (G) GSP (%); (H) GSA
(ha); and (I) FVC (%). See Table 1 for definitions of variable abbreviations.
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Our analysis demonstrated that the urban thermal environment

and the spatial patterns of urban blue-green spaces were highly

correlated (Figure 3). Built-up areas had higher temperatures than

the urban blue-green spaces (Table 2). Furthermore, average

temperatures were higher in the southeastern and western parts

of Zhengzhou, with dense residential areas, but lower in the

northeastern part, which contains large parks. The highest

temperature (51°C) was recorded in a built-up area, whereas the

lowest temperature (27°C) was recorded in a blue-green space.

Overall, average temperatures in the blue-green spaces were 2°C

lower than the average in built-up areas and 1°C lower than the

average in the entire study area. The maximum temperature in

blue-green spaces was 8°C lower than in the built-up areas and the

entire study area.
3.2 Importance of Variables
Influencing UCI

Our regression models were constructed using LST and PCI as

dependent variables and blue-green spatial metrics as independent

variables. We used root mean square error (RMSE), mean absolute

error (MAE), and R-squared (R2) to quantify the accuracy of each

regression model. The RMSE, MAE, and R2 were 0.767, 0.643, and

0.752, respectively, for LST. The RMSE, MAE, and R2 were 0.742,

0.641, and 0.673, respectively, for PCI. R2 is the squared correlation

between observed and predicted values. The MAE is the mean

absolute difference between observed and predicted values, whereas

RMSE is the deviation between observed and predicted values; the

former metric is less sensitive to outliers than the latter. A higher R2,

in combination with lower RMSE and MAE, indicates greater

model accuracy.

In terms of %IncMSE, the top five variables affecting LST were

BSP, fractional vegetation cover (FVC), blue space area (BSA),

BGSA, and PD (Figure 4). In terms of IncNodePurity, the top five

variables affecting LST were BSP, FVC, BSA, BGSA, and ED. Thus,

BSP, FVC, and BSA were the three key factors influencing LST.
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In terms of %IncMSE, the top five variables affecting PCI were

blue-green space width (BGSW), FVC, PD, BGSA, and green space

area (GSA). In terms of IncNodePurity, the top five variables were

BGSW, FVC, PD, ED, and BGSA. Therefore, the three most

important variables for determining PCI were BGSW, PD,

and FVC.
3.3 Biased dependence of UCI variables

Partial dependence plots indicate that LST was negatively

correlated with BGSA, BGSW, PD, BSP, BSA, GSA, percentage of

green space (GSP), and FVC, but positively correlated with

ED (Figure 5).

Among these variables, LST peaked at 36.37 °C when BGSA was

close to 0 ha, decreased when BGSA reached 24 ha, but did not

considerably change beyond that size. Therefore, increasing BGSA

has diminishing returns for urban LST past a certain threshold

value. Similarly, the thresholds for BSA and GSA were 19 ha and 24

ha, respectively, beyond which they had no significant effect on LST.

This result suggests that urban blue-green spaces can be effective

even when maintained at a scale that balances the needs of other

urban sites. Next, BSP exhibited a step-like pattern, first causing a

considerable cooling effect at 0–3%, then cooling further at 20–27%

before stabilizing. Thus, the presence of blue space lowered the

surface temperature. Green space also lowered temperatures, but

exhibited a different trend; at 70%, GSP exhibited a small cooling

effect, whereas, at 95%, LST decreased rapidly. This may be

attributed to an interaction between green space density and

microclimate regulation.

Our results also suggest that fragmenting and simplifying blue-

green spaces can improve LST. We observed that LST decreased as

PD increased, but only after PD was less than 0.6. This result

indicates that some degree of landscape fragmentation is conducive

to lowering LST; however, after a given threshold, fragmentation

will not substantially alter LST. In contrast, when ED was between
A B

FIGURE 3

Inversion results of surface temperature in central Zhengzhou during 2020 (A) and spatial distribution of blue and green spaces (B).
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0.2–0.3, LST rose rapidly, indicating that simplifying the shape of

blue-green spaces is conducive to maintaining a lower LST.

Subsequently, LST showed a slight decrease when ED was 0.40

and 0.67. Finally, FVC exhibited a stepwise effect, causing a decrease

in LST at 56%, 66%, and 78%, although the final change in LST was

less apparent.

Partial dependence plots revealed that PCI was positively

dependent on BGSA, BGSW, PD, BSP, BSA, GSA, and FVC, but

negatively dependent on ED (Figure 6). The threshold values for

BGSA, BSA, and GSA were 24 ha, 19 ha, and 25 ha, respectively;

BGSW caused a small peak in PCI at 140 m and a higher peak at 310

m. Additionally, PCI remained high, with small fluctuations, at BSP

= 4%. When the GSP was below 61%, PCI was consistently low,

whereas, at other percentages, PCI oscillated considerably, resulting

in higher PCI when GSP was between 61% and 88%.
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Similar to the LST results, the threshold for PD was 0.6, with

PCI being the lowest at this value. For ED, PCI was highest at 0.10

and the second-highest at 0.45. As ED increased, PCI exhibited low

to moderate levels of fluctuation. Lastly, FVC again caused a

stepwise effect; PCI rose slightly at 56% and then rapidly at 73%,

then stabilized when FVC reached a high value of 79%.
4 Discussion

4.1 Effects of urban blue-green space
distribution patterns

Our findings suggest that the distribution of urban blue-green

spaces and UCI is highly correlated with urban development paths
A

B

FIGURE 4

Importance ranking of blue-green space variables in influencing LST (A) and PCI (B) based on percentage increase in mean squared error (%IncMSE)
and increased node purity (IncNodePurity).
TABLE 2 Urban thermal environment during 2020 in Zhengzhou.

Study area Average temperature (°C) Minimum temperature (°C) Maximum temperature (°C)

Blue-green space 37 27 48

Built-up area 39 28 56

Full site 38 27 56
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in Zhengzhou City. This study conducted a comprehensive

examination of hotspot and coldspot distributions of urban LST

using the ArcGIS spatial hotspot analysis tool. The results were

categorized into three distinct categories: spatial aggregation greater

than zero (hotspot), spatial aggregation equal to zero (random), and

spatial aggregation less than zero (cold spot).

The central downtown area of Zhengzhou City exhibited a

considerably higher temperature than the rest of the city (Figure 7).

This concentration of heat is linked with the high concentration of

urban development aimed at addressing housing shortages in the

older downtown region. The prioritization of buildings over public

blue-green spaces has resulted in a pronounced heat island effect

(Yu et al., 2019a; Saha et al., 2021; Xue et al., 2022). Conversely, the

low-temperature center was in the northeast, corresponding to

Zhengdong New Area, which has comprehensive environmental

construction and features numerous large urban parks that regulate

the local climate (Kwak et al., 2020).

Urban planning is the main driving force behind the blue and

green spatial patterns of cities. Effective urban planning that

produces a reasonable blue-green spatial layout can considerably

influence the thermal environment of cities (Lemoine-Rodrıǵuez

et al., 2022; Wu et al., 2022; Chang et al., 2023). To create a balanced

urban thermal environment, it is necessary reconsider current
Frontiers in Ecology and Evolution 08
urban planning strategies and prioritize a more comprehensive

approach to blue and green infrastructure development. These

improvements should include increasing the proportion of blue-

green spaces to alleviate high temperatures in the old city center

(Liu et al., 2023; Qi et al., 2023; Zhu and Yuan, 2023). In general,

plans for urban renewal should take blue-green spaces in the

downtown area into consideration, prioritizing a decentralized

arrangement that increases the proportion of such spaces in high-

temperature regions.
4.2 Comparison of regression models for
predicting the UCI effect

Table 3 displays the error and fitting performance of the RFR

model vs. other models in studying the UCI effect. Representative

regression models were selected, including nonlinear (i.e., RFR,

Back Propagation Neural Network Regression (BP Neural Network

Regression), XGBoost Regression, and Decision Tree Regression)

and linear (i.e., Multiple Linear Regression (MLR), Ridge

Regression, Lasso Regression, and Partial Least Squares

Regression (PLS Regression)) models (Lach et al., 2021; Lin et al.,

2022; Xiao et al., 2022b; Wang et al., 2023).
FIGURE 5

Bias dependence analysis for LST.
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FIGURE 6

Bias dependence analysis for PCI.
FIGURE 7

Coldspot/hotspot analysis of LST in Zhengzhou.
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The nonlinear regression models performed better overall.

Among the nonlinear regression models, RFR had the best

performance with the lowest RMSE and MAE values, and the

highest R² value, indicating more accurate prediction and the

strongest correlation with the dependent variable. RFR has

advantages such as its capacity to handle high-dimensional data

and identify the most important features, model complex nonlinear

relationships, and its strong resistance to overfitting (Al-Aghbary

et al., 2022; Qi et al., 2022). BP Neural Network Regression and

XGBoost Regression also performed well, possibly because these

models can automatically learn high-order relationships between

features, making them for suitable for complex nonlinear problems.

In contrast, linear regression models such as MLR, Ridge

Regression, Lasso Regression, and PLS Regression performed

relatively poorly, possibly because they did not consider the

interactions between features or effectively screen or reduce

these features.
4.3 Impact of variables on urban
LST and PCI

4.3.1 Key factors affecting LST
The three most important variables that influenced urban LST

were BSP, FVC, and BSA. Blue space had a greater impact on LST

than green space. Our findings are in line with previous research

using correlations (Xue et al., 2019), RF models (Wang et al.,

2022b), and logit fitting models (Feng and Shi, 2012), all

confirming that the proportion and area of water bodies affect

park LST markedly more than green spaces. Water has a greater

heat capacity than impermeable surfaces, lowering temperatures in

summer and elevating the intensity of UCIs (Wang et al., 2019b;

Yang et al., 2020; Zhou et al., 2022).

In urban parks, green spaces are often larger in area than blue

spaces. Thus, FVC in green spaces also plays an important role in

influencing the UCI effect (Wiens et al., 1993; Algretawee, 2022).
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Transpiration is the main mechanism underlying the surface

cooling effect of urban vegetation (Wang et al., 2019a; Al-Saadi

et al., 2020). Several prior studies have demonstrated the impact of

vegetation cover specifically. Wang et al. (2020) used ordinary least

squares linear regression and determined that the percentage of

trees accounted for 40.3% of the mean LST variation. Additionally,

vegetation cooling efficiency was found to be highly correlated with

FVC (Yang et al., 2022b).

Notably, the spatial resolution of remote sensing images may

affect green area estimation. Green area pixels may contain a small

number of other land types, resulting in a mixed signal when

analyzing remote sensing images. As a result, when considering

green areas, the influence of FVC on the UCI effect is greater than

the influence of other variables, such as GSA.
4.3.2 Key factors affecting PCI
The three most important variables that determine PCI were

BGSW, FVC, and PD. Parks with narrower BGSW tended to have a

longer border with the adjacent urban environment, allowing for

more exchange of cold air. This effect then decreases the

temperature difference between cold islands and the surrounding

region, reflecting a lower PCI.

Similarly, the role of PD in determining PCI can be attributed to

landscape fragmentation. As PD increases, landscape fragmentation

increases, resulting in a more complex patch shape that limits local

ecological circulation and airflow exchange (Luck and Wu, 2002).

However, energy flow is accelerated between the park and its

surrounding thermal environment, thus decreasing the temperature

difference and PCI.

The effect of FVC on PCI is based on a different mechanism.

Green space generates a local microclimate of heat-energy exchange

with air through photosynthesis and transpiration (Lu et al., 2012).

Moreover, the tree canopy emits long-wave cold radiation to the

surrounding environment, lowering the temperature of adjacent

areas, which increases the temperature difference and PCI (Berry

et al., 2013). A dense tree canopy would also impair airflow
TABLE 3 Comparison of various regression models.

Model type Dependent variable LST PCI

Regression Model RMSE MAE R² RMSE MAE R²

Nonlinear Random Forest Regression (RFR) 0.767 0.643 0.752 0.742 0.641 0.673

Back Propagation Neural Network Regression (BP Neural Network Regression) 0.993 0.767 0.609 0.821 0.689 0.444

XGBoost Regression 1.142 0.913 0.616 1.251 1.041 0.37

Decision Tree Regression (DTR) 1.247 1.042 0.468 1.501 1.157 0.305

Linear Multiple Linear Regression (MLR) 1.021 0.845 0.545 1.212 0.937 0.28

Ridge Regression 1.032 0.851 0.535 1.216 0.942 0.275

Lasso Regression 1.038 0.86 0.529 1.216 0.945 0.274

Partial Least Squares Regression (PLS Regression) 1.143 0.964 0.429 1.292 0.98 0.181
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exchange between the park microclimate and the surrounding

environment, further intensifying PCI.
4.4 Nonlinear mechanisms of variables
influencing UCIs

Existing linear regression models are limited in their capacity to

accurately depict the complexity of the UCI effect and account for

correlations between influencing variables. Multiple studies using

linear regression models have identified multicollinearity when

investigating UCI. For example, a previous study reported

correlation coefficients ranging from 0.105 to 0.214 (Cai et al.,

2018). Partial correlation analyses (Peng et al., 2021) and Pearson’s

coefficients (Peng et al., 2016) yielded a maximum correlation of 0.6.

In the present study, our RF algorithm obtained an R2 value of 0.85,

indicating that multiple variables jointly regulate the cooling effect

of blue-green spaces. Multicollinearity constraints thus hamper the

accuracy of linear models (Logan et al., 2020; Lu et al., 2021).

Fortunately, the RFR model eliminates variable autocorrelation.

Our RF-based analysis revealed that the effects of individual

variables on LST and PCI were not linearly correlated. Instead,

the effects changed or ceased to be important after a critical

threshold. Before this threshold, variables had a direct

relationship with the UCI effect. Similarly, previous research on

park parcels and the UCI effect showed that beyond a given size

threshold, land plots can form a relatively independent internal

space, creating a microclimate and maintaining a stable regional

ecology and airflow exchange (Geng et al., 2022; Yang et al., 2022a).

As a result, their effect becomes nonlinear.

The findings of the present study indicate that urban green-blue

spaces effectively regulate surface air temperatures. With an

increase in the surface area of these spaces, the marginal cooling

effect becomes more pronounced. Therefore, an increasing global

population will further exacerbate the strain on urban land

resources that are needed to provide housing and ecosystem

services. In future blue-green space management in cities, the

threshold values we identified could be used to determine the

shape and size of green-blue spaces that would optimize their

UCI effect; specific factors to consider are maintaining a certain

scale and ratio of blue space, increasing FVC, and forming regularly

shaped plots.
5 Conclusions

In the context of escalating urbanization and climate change,

our study of the spatial characteristics of urban thermal

environments offers crucial insights. By investigating the

nonlinear relationships between the UCI effect and its causal

variables, we identified key factors that influence the cooling

effects of blue-green spaces in urban areas.
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Our study suggests that the distribution of UCIs follows urban

developmental paths influenced by urban planning, and is closely

related to the distribution of urban blue-green spaces. Central

downtown areas have a pronounced heat island effect due to

the prioritization of buildings over public blue-green spaces.

To create a balanced urban thermal environment, cities must

prioritize a more comprehensive approach to blue and green

infrastructure development.

Our study identified several key factors that determine the

cooling effects of blue-green spaces in urban areas, including

BGSA, BSA, GSA, BSP, and GSP, which determine how

effectively these spaces can mitigate the urban heat island effect.

The nonlinear relationships between these variables highlight the

importance of maintaining an optimal spatial area and appropriate

proportions of blue-green spaces to maximize their cooling effects

and improve the urban thermal environment. We should also avoid

excessive fragmentation and simplification of blue-green spaces to

maintain their integrity and connectivity. Urban planning should

consider these nonlinear relationships when designing urban blue-

green spaces on limited urban land. We can apply these strategies

when constructing and renewing urban blue-green spaces to create

cooler urban areas and mitigate the impacts of climate change. Our

study provides data that may inform more optimized use of blue-

green spaces in urban development.

In conclusion, our study provides valuable insights into the

efficient use of blue-green spaces in urban construction and renewal

to mitigate the urban heat island effect and improve urban thermal

environments. By optimizing blue-green space variables such as

area, proportion, and vegetation cover, urban planners can

effectively create cool urban areas and reduce the negative

impacts of climate change. By incorporating our insights into

urban planning and promoting the development of sustainable

green infrastructure, cities worldwide can mitigate the urban heat

island effect to improve quality of life for their urban inhabitants.
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max prediction based on age, body composition, fitness level, testing modality and sex
in physically active population. Front. Physiol. 12. doi: 10.3389/fphys.2021.695950

Lan, X., Li, W., Tang, J., Shakoor, A., Zhao, F., and Fan, J. (2022). Spatiotemporal
variation of climate of different flanks and elevations of the Qinling–Daba mountains in
China during 1969–2018. Sci. Rep. 12. doi: 10.1038/s41598-022-10819-3
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