1.1

1.2

}

S,

| JAggg Superiority Bias and Communication
G OO AR5 Noise Can Enhance Collective Problem

Solving

~\\

4

)

AL SIM

Amin Boroomand'® and Paul E. Smaldino'*3

LQuantitative and Systems Biology Graduate Group, University of California Merced, 5200
Lake Rd, Merced, 95343, CA United States

2Department of Cognitive and Information Sciences, University of California Merced, 5200
Lake Rd, Merced, 95343, CA United States

3Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
Correspondence should be addressed to aboroomand@ucmerced.edu

Journal of Artificial Societies and Social Simulation 26(3) 14,2023
Doi: 10.18564/jasss.5154 Url: http://jasss.soc.surrey.ac.uk/26/3/14.html

Received: 29-11-2022 Accepted: 22-05-2023 Published: 30-06-2023

Abstract: Error affects most human judgments and communications. Here we consider two types of error:
unbiased noise and directional biases and consider their effects in the context of collective problem-solving. We
studied an agent-based model of networked agents collectively searching for solutions to simple and complex
problems on an NK landscape. We implemented superiority bias as a reluctance to adopt solutions used by
others unless they were substantially better than one’s own solution. We implemented communication errors
by injecting noise into solutions learned from others. These factors both reduce the short-term efficiency of
social learning, as individuals are less likely to faithfully copy superior solutions. We find that when a team
faces complex problems, both communication noise and superiority bias have a positive effect on the overall
quality of the team’s collective solution, at the cost of increased time and resource usage. We find that when
a team faces simple problems, a moderate level of communication noise leads to a decrease in the required
time and resources for a team. We discuss these results in terms of tradeoffs between the quality of a collective
solution and the time and resources needed to reach that solution.

Keywords: Collective Intelligence, NK Landscape, Agent-Based Model, Error, Diversity

Introduction

Cooperative teams can often search for solutions more effectively and efficiently than individuals searching in
isolation. A large body of research has identified a number of factors that affect the performance of problem-
solving teams, including problem complexity (Levinthal/1997;|Rivkin[2000;|Lazer & Friedman|2007), restrictions
on available resources (Kanfer & Ackerman|1989; |Porter et al.|2010), the characteristics and strategies of indi-
vidual team members (Barkoczi & Galesic|2016;|Yahosseini & Moussaid|2020; Baumann et al.|2019;/Boroomand
& Smaldinoj2021), as well as the characteristics of the overall team such as its size, diversity, and network struc-
ture (Lazer & Friedman|2007;|Derex & Boyd|2016;|Gomez & Lazer|2019; Boroomand & Smaldino|2021).

We follow much of this work by modeling collective problem-solving as a population of networked agents
searching for solutions in high-dimensionality solution space represented by an NK landscape (Lazer & Fried-
man|2007). While many variants of this model have been explored, most studies have made two strong assump-
tions about how agents communicate and process social information. First, they assume that communication
is error-free, such that individuals always receive perfect information about others’ solutions. And second, they
assume thatindividuals are purely greedy and unbiased problem solvers, such that they will always adopt a so-
lution that is even the slightest bit better than their current solution. In this paper, we investigate the effects
of relaxing these assumptions. In particular, we study the effects of communication noise, in which transmit-
ted solutions contain errors, and superiority bias, in which individuals refrain from adopting a superior solution
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they have learned from others unless it is a substantial improvement over their current solution. Both of these
factors introduce error at the individual level.

Noise and bias are two interrelated factors that influence collective problem-solving, both being judgmental er-
rors (Kahneman et al.2021). Noise refers to random or inaccurate information that interferes with the problem-
solving process, while bias involves directional errors in judgment or decision-making, often originating from
cognitive, social, or emotional factors. Both noise and bias contribute to the total error during professional
judgment. Consequently, reducing noise and bias has a similar effect on minimizing this total error in collec-
tive problem-solving efforts (Kahneman et al.|2021).

We will show that, when teams are solving complex problems, these errors can actually improve the quality of
team solutions, though at the cost of prolonging the time to consensus. We build directly on previous research
(Boroomand & Smaldino|2021) in which we explored variation in individual search strategies on collective prob-
lem solving, focusing on agents that were either hard-working (and could explore more solutions per unit time)
or risk-taking (and could entertain large deviations from their current solution, rather than relying on single-
move hill climbing). That study found that both these strategies could improve solutions to complex problems,
with risk-taking proving the larger benefit at the cost of increased time to consensus. We show here that al-
though a team expressing superiority bias needs more time and resources to achieve consensus, adopting a
risk-taking strategy can help to reduce the time and resources needed to reach consensus. Finally, we consider
how errors affect collective solutions on different network architectures. Previous work has shown that, in
the absence of error, sparser networks improve collective problem-solving (Lazer & Friedman|2007; Fang et al.
2010). Here we likewise find that densely connected networks reduce the quality of solutions, but also that they
can reduce the time and resources for the teams to reach a consensus.

In the remainder of the paper, we review the literatures on communication noise and superiority bias, which
form the basis for our model extension, and then briefly review the use of the NK landscape as a model of
problem space. We then describe our model, present the results of our agent-based simulations, and discuss
the implications of our results for understanding factors affecting collective problem-solving.

Communication Noise

A main advantage of solving problems in teams is that individuals can take advantage of information obtained
by others. High-quality solutions can therefore spread rapidly as individuals avoid the costs of trial-and-error
learning (Kendal et al.|2018). Despite the benefits of teamwork, challenges can arise when communication noise
disrupts the transfer of knowledge within teams. This can result in misunderstandings, confusion, duplicated
efforts, wasted resources, and processing delays (London & Sessa|2006).

When problems are complex, however, and problem components interact non-additively, overreliance on so-
cial learning can lead a population to converge too quickly on a suboptimal solution (Smaldino et al.[2023). In
particular, although increasing the communication efficiency in a team improves the diffusion of solutions, it
can also limit the team’s capacity to generate innovative solutions (Diehl & Stroebe 1987;|Fang et al.[2010; Lazer,
& Friedman|2007;|Shore et al.[2015). Approaches that maintain the diversity of solutions allow individuals to
explore possible solutions for longer time periods and give them more opportunities to find better solutions
(Smaldino et al.|2023). Mediating information flow by using an inefficient communication network is one of the
common approaches to maintaining the solution’s diversity (Derex & Boyd|2016;|Lazer & Friedman|2007).

Previous studies have focused on “communication efficiency” primarily in terms of network density. This factor
operates at the level of team organization. Here, our focus is on mechanisms that operate at the level of indi-
viduals or dyads—errors in the transmission or learning of solutions Empirical studies indicate that allowing
individuals to learn only partial solutions from one another can maintain higher solution diversity (Derex et al.
2015; |Caldwell et al.2016). In our modeling approach, we introduced errors into the solutions learned from
other individuals during copying.

Superiority Bias

Superiority bias, or overrating one’s positive qualities and abilities, has been discussed under many names,
including: “superiority complex” (Adler|1927), “superior conformity of the self” (Codol|1975), “leniency error”
(Meyer|1980), “sense of relative superiority” (Headey & Wearing(1988), the “better-than-average-effect” (Dun-
ning et al.|1989;|Zell et al.[2020), the Dunning-Kruger effect (Dunning2011), and “illusory superiority” (Hoorens
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1993). Empirical studies show that self-evaluations are often distorted in a direction favorable to oneself (Dun-
ning2012;/Alicke & Sedikides|2011;/Judge et al.2009;|Sutin et al..2009). Individuals with superiority bias display
specific behaviors, such as the inclination to compare themselves favorably and a disregard for others’ opin-
ions. They often dismiss or undervalue the opinions, ideas, or feedback from others (Alicke & Sedikides|2011).

In most models of collective problem solving, individuals can readily identify the quality of a considered solu-
tion, and agents greedily adopt any solution that is at all better than their current solution. We operationalize
superiority bias by introducing a threshold, such that a solution adopted by someone else must be better than
the agent’s current solution by at least that threshold amount in order to be copied. At least two possible in-
terpretations of this bias are possible. First, agents may misperceive their own solution to be of higher relative
quality than it really is, as discussed in the previous paragraph. However, an alternative interpretation is that
agents are accurately perceiving the solution scores of themselves and others, but may be rationally reluctant
to incur the costs or risks associated with switching to a new solution unless the benefits of doing so justify
such a change. Thus, agents may exhibit a sort of “behavioral inertia,” requiring sufficient incentives to alter
their behavior. In terms of modeling, there is no difference between superiority bias and behavioral inertia so
framed, and we will generally restrict our discussion of the phenomenon to the first interpretation. The role of
behavioral inertia in collective problem solving is discussed in greater detail by|Smaldino et al.|(2023).

It might seem that superiority bias would be detrimental to collective problem-solving, as agents stubbornly
refuse to abandon their own solutions in favor of ones that are demonstrably better. Certainly, it will increase
the time required for team consensus. But superiority bias also allows for a greater diversity of solutions to per-
sisting for longer in the population, which is likely to improve overall solution quality (Smaldino et al.|2023). Ev-
idence for this hypothesis was recently provided by Gabriel & O’Connor|(2021), who studied networked agents
using both individual and social learning to solve a two-armed bandit problem using Bayesian updating. Their
agents exhibit “confirmation bias,” in which they are unlikely to incorporate evidence that is at odds with their
prior beliefs. This design differs from ours in terms of how we model learning and problem space, but it is func-
tionally similar to our modelin that agents are less likely to learn about, and therefore adopt, information about
superior solutions. We, therefore, investigate here whether superiority bias, which restricts individuals’ likeli-
hood of adopting better solutions in the short run, may nevertheless improve solutions at the team level in the
long run. |Baumann & Martignoni| (2011) also indicated that a slight pro-innovation bias can enhance perfor-
mance by prompting firms to explore broadly, identify better solutions, and potentially outperform those with
unbiased evaluation processes.

Representing Solutions to Collective Problems

We model the problems that our teams of agents tackle as NK landscapes (Kauffman & Weinberger|1989;|Lazer
& Friedman|2007). This widely used model allows for a multidimensional solution structure, in which problem
elements can exhibit interdependencies.

It is possible to represent the complexity of a problem by mapping the entire set of possible solutions to that
problem into an evaluation space (also called a fitness landscape) which indicates the quality of each solution
(Wright|1932;|Levinthal|1997). Indeed, the extent to which the contribution of each solution element depends
on the other elements is often described as the problem’s complexity, such that the simplest problems are
those in which each solution element can be optimized independently (Siggelkow & Levinthal|2003;|Levinthal
& March||1981). Simple problems correspond to “smooth” landscapes, as they can be solved via simple hill
climbing, while complex problems are akin to “rugged” landscapes, as multiple simultaneous changes may be
needed to improve one’s solution. In the NK model, the variable N represents the number of elements in each
solution, while K represents the number of interdependencies involved in those solutions. We describe the
model in more detail below (see also|Csaszar|2018).

The NK model has widely been used to study collective problem-solving (Yahosseini & Moussaid|2020; Shore
et al.|2015;|Lazer & Friedman|2007;/Barkoczi & Galesic|2016; Boroomand & Smaldino|2021). In our model, indi-
viduals explore the landscape independently but can also compare solutions with those in their social networks
and thereby adopt superior solutions. We compare the performance of teams of agents who exhibit various lev-
els of superiority bias and communication noise in solving complex and simple problems.

Model

We modeled the process of collective problem-solving as a team of networked agents searching over a smooth
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or rugged NK landscape for the highest quality solution. Each agent is initialized with a random solution at
the beginning of each simulation. Agents typically searched the solution-space by making small changes to
their current solution, a search strategy often referred to as hill climbing. As is typical in these models, we
assumed that agents’ solutions were observable to other agents with whom they shared network ties. The
ability to learn socially allows populations to achieve solutions unlikely to be found by individual hill climbing
alone. An agent always employs only one solution (a location on the NK landscape) at a time, represented as
an N-dimensional binary vector associated with a score. The same solution can be employed by several agents
simultaneously. Agents are not able to see the entire landscape, and indeed have no memory-they can only
compare other possible solutions with their current solution. The simulation proceeds in discrete time steps.
In each simulation, in a random order, agents consider whether to adopt a new solution based on social or
individual learning.

Our work builds directly on the analyses presented in|[Boroomand & Smaldino|(2021). This model included
agents employing hard-working and risk-taking search strategies (described below). We include these strate-
gies here to understand how individual search strategies might interact with communication noise and supe-
riority bias. Unless otherwise stated, we used a ring lattice network with degree four as the communication
network for our team of agents. Past research has indicated that densely connected networks may perform
best for simple problems while sparsely connected networks perform best for complex problems (Fang et al.
2010;|Lazer & Friedman|2007). We will compare the results from our moderately connected ring network with
a more sparsely connected linear network (equivalent to a ring lattice of degree 2 and one broken link) and a
more densely connected complete graph (in which all nodes are connected).

Below, we describe the model incrementally, describing first the behaviors of individual agents, followed by a
detailed description of the NK landscape, and concluding with a description of our implementation of commu-
nication noise and superiority bias. We then discuss our outcome metrics before presenting the results of our
agent-based simulations.

Agent behavior

Agents can engage in either social learning (i.e., by adopting a better solution from other agents) or individ-
ual learning (i.e., generating new solutions). Employing a conditional social learning strategy, agents imitate a
neighbor’s solution if it is better than their own current solution, otherwise, they try individual learning to find
a better solution. A complete flowchart describing agent behavior is shown in Figure[1}

At each time step, an agent initially attempts social learning, in which the score of the current solution is com-
pared to that of each of their network neighbors. If any neighbors have a better solution, the agent adopts the
solution with the highest score. If no neighbors have a better solution than the one the agent currently uses,
the agent employs individual learning and generates one or more new solutions to consider. If any of these
solutions are better than the current solution the agent adopts the solution with the highest score. If neither
social nor individual learning yields a better solution, the agent maintains its current solution. By involving so-
cial learning first, and if this fails, then involving individual learning, agents can be viewed as trying to avoid the
cost of individual learning, which is often described as a major contributor to the evolution of social learning
(Boyd & Richerson|1985; Kendal et al.[2018).
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Figure 2: Different types of agents employ different strategies for individual learning. In this example the so-
lution contains five dimensions N = 5. In each run of individual learning, normal agents generate only one
solution by altering one randomly chosen dimension of their current solution. Hardworking agents, generate
H new solutions by altering one dimension of their current solution (H > 1). Risk-taking agents first select
a random number from 1 to R and call it . Then they generate one solution by randomly picking a solution’s
dimension and alerting it and repeating the procedure for r times. The resource that an agent uses in the indi-
vidual learning in each time step is equal to the number of changes (flipped elements) occurring in the solution
in the time step. The resource usage of each round of individual learning for normal agents is 1; for hardworking
agents is H; and for risk-taking agents is r.

Hardworking agents generate multiple new solutions simultaneously and choose the solution with the highest
score. They generate solutions by altering only one dimension of their current solution at a time, resultingin a
set of new solutions that all have a Hamming distance of 1 from the agent’s current solution. The number of new
solutions a hardworking agent generates in each round of individual learning is determined by its hardworking
level H > 1.

Risk-taking agents alter multiple solution elements at once, which reduces the correlation in score between
their current and considered solutions. The extent of risk taking is given by the integer R > 1. At each time
step, the agent selects a random integer r € [1; R], and explores a new solution by flipping » randomly chosen
elements of its current solution. If » > 1, a given element may be flipped more than once. The Hamming
distance between the current solution and the considered solution can therefore vary between zero and r.

Normal agents explore the landscape in each run by randomly selecting one dimension of its current solution
and altering it. This is how individual learning is usually implemented in models of collective problem solving
employing NK landscapes. Normal agents are equivalent to hardworking or risk-taking agentswith H = R = 1.

All teams eventually reach consensus on a shared solution, at which point the simulation ends. The consensus
solution is not necessarily the global maximum solution (the best possible solution), as they may instead get
stuck on a suboptimal local maximum. Because risk-taking agents are capable of escaping from local maxima,
they will always eventually find the global maximum, though this can take an arbitrarily long time (Boroomand
& Smaldino|2021). In many cases, managers look for a “good enough” solution (Johnston et al.|2002) and allow
teams to stop exploring when they reach that level. Therefore, the simulations stop when either (A) the team
reaches the global maximum or (B) a total of 200 time steps have passed. We chose 200 because in our previous
analyses, teams generally reached a long-term consensus well before 200 time steps (Boroomand & Smaldino
2021).

NK landscape

The NK landscape is essentially a function or look-up table that evaluates a solution’s score. A solution Sis a
binary vector (a string of 0’s and 1’s) length N:

S:[51,52,...751\{},51'6{0,1} (1)
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lation. Each solution can be considered a location on the NK landscape. Two locations are adjacent neighbors
if the Hamming distance of their associated solutions is 1 (they differ in only one dimension). When there is no
interdependency between solution dimensions (K = 0), the contribution of each element to the solution score
does not depend on the state of other elements. Otherwise, the contribution of each element to the solution
score is determined by its own state (0 or 1) as well as the states of K other elements which are randomly cho-
sen at the beginning of a simulation and kept unchanged during the simulations. In this study, we fix N = 20
and define simple problems as K = 0 and complex problems as K = 10.

To compute the score of a solution, we create NV interdependency vectors (V;), one for each element of the solu-
tion (S;). Each interdependency vector contains the solution element and K other randomly chosen elements.
The contribution value of a solution element is determined by the score of each interdependency vector. To
calculate the score of an interdependency vector (V;), we consider the consecutive elements of the vector as
the digits in a binary number and then transform it to base 10. This latter number represents the position index
in the score list, a list of random integers drawn from a uniform distribution in the range of 0 to 1000 at the start
of each run. The score of each interdependency vector is the value chosen by the position index from the score
list. The average score of all interdependency vectors of a solution determines the score of that solution. An
example of calculating a solution score is demonstrated in the appendix. To expand the score distribution and
better identify high scores from low scores, we raised all scores to the power of 8 in accordance with previous
studies (Lazer & Friedman|2007;|Barkoczi & Galesic|2016;|Boroomand & Smaldino|2021). We standardized the
results in [0, 1], with one being the maximum possible score in a particular run, in order to allow comparisons
of scores across simulation runs.

Modeling communication noise

When an agent engages in social learning, it compares the score of its current solution to those of its network
neighbors. If a neighbors’ solution is better than his own current solution, it adopts the neighbor’s solution with
the highest score. Here we consider the possibility that the communication of this solution is not always 100%
transparent. We define the communication noise C as the probability that each element of an agent’s current
solution remains unchanged (and therefore is not influenced by the copied solution) during social learning.
Figure[3Jillustrates an example with N = 6 and C' = 0.5.

Neighbor’s Solution
Current Solution With a better score

0/0|0|0|0|O 1 1/1/1/1|1

Social Learning
with 50% noise

JOO oK

Figure 3: In the presence of 50% communication noise through the social learning, the probability of copying
each element of a better solution is 50%.

Modeling superiority bias

In the absence of superiority bias, agents engaging in social learning will copy another agent’s solution as long
as it has a higher score than the agent’s current solution. Agents with superiority bias copy their neighbors’
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solutions only when the neighbor’s score is sufficiently better than the agent’s current solution. Superiority bias
is characterized by the quantity Bj,... At initialization, each agent is assigned its own characteristic bias, B;,
which is a real random number drawn from the uniform distribution [0, Bjs4.]. Whenever an agent considers
copying another agent’s solution, it does so only if the difference between the scores of its current solution and
its neighbor’s solution is greater than B;. This dynamic is illustrated in Figure[4]

Sy~

Agent 1 Agent 2 Agent 1 Agent 2
solution: 0001 solution : 0011 solution : 0001 solution : 0011
Score: 0.3 Score: 0.4 Score: 0.3 + 0.2 (bias) Score: 0.4

@
A —
Agent 1 Agent 2 Agent 1 Agent 2
solution : 0011 solution : 0011 solution : 0001 solution : 0011
Score: 0.4 Score: 0.4 Score: 0.3 Score: 0.4

Figure 4: When superiority bias exists, the agents do not accurately perceive their scores and understand their
scores to be higher than they actually are. The bias (B;) is a random number in the range of 0 to “superiority
level” (Bjasq.) that adds to the actual score when it comes to the agent’s perception of his own score. The
superiority level is a number between 0 and 1 which should be set by the user. In Group A, agents take part
in social learning without superiority bias (and noise). Agent A-1 adopts the solution of agent A-2, because
his current solution was lower than the solution of Agent A-2. In Group B, participate in social learning with
the presence of superiority bias. Although the score of Agent B-2 is better than agent B-1, Agent B-1 does not
imitate Agent B-2, because he perceives his score is higher than the score of Agent B-2 due to superiority bias.

Model evaluation

We evaluate the performance of teams in three ways. First, by the highest score they reach (either at consensus
or 200 time steps); second, the time it takes for them to reach consensus (truncated at 200 times steps); and
finally, the resources they use to explore the problem space. The first two metrics are fairly self-explanatory. The
third metric is based on the idea that search can be costly in terms of both time and the resources needed to try
to solutions (e.g., building new technologies). Agents involved in individual learning generated new solutions
for the problem by flipping elements (bits) of their current solution. We define the resources that an agent
consumes during each time step as the number of elements flipped during individual learning (Figure[1). This
will vary depending on the search strategy used by an agent. For example, for normal agents, it is equal to one,
for hardworking agents itis equal to H, and for risk-taking agents it is equal to r in individual learning. The total
resource usage is the sum of resource usage for all agents across the length of the simulation.

Computational Experiments

For all our runs we used teams of n = 100agents. We modeled solution space as a landscape with N = 20,
where K = 0 or K = 10. We ran simulations with normal, hardworking, and risk-taking agents, using H = 5
for the hardworking agents and R = 5 for the risk-taking agents.

We varied both superiority bias (Bj4.) and communication noise (C) from 0 to 0.5. We ran 100 simulations for
each combination of parameters tested and report the average metrics from across these simulations. Table
[ summarizes the model parameters and displays the default values used in our computational experiments.
The NetLogo code is available at: https://www.comses.net/codebases/bc594be6-53dc-415b-859f-7d7
16edabafl/releases/1.0.0/
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Table 1: Model parameters and their default values.

Parameter Definition Default value
n Team size 100

N Number of problem elements 20

K Problem complexity {0,10}

H Hardworking level {0,5}

R Risk-taking level {0,5}

Brraz Superiority bias [0,0.5]

C Communication noise [0,0.5]

Results

Superiority bias

Higher levels of superiority bias led to teams reaching solutions with higher scores when solving complex prob-
lems (Figure[5] top row). Because agents only copied solutions from a neighbor when that neighbor’s solution
score was better than the agent’s own score by at least B;. Increasing the superiority bias level decreased the
probability of social learning in the team. This maintained the diversity of solutions for longer and gave agents
more opportunities to learn via individual learning and avoid reaching a consensus too soon. Accordingly,
increasing superiority bias also increased the time needed to reach a consensus and the number of element
changes explored during individual learning (resource usage). As in|Boroomand & Smaldino|(2021), we found
that risk-taking and hardworking agents could reach higher scores than normal agents, in that order, and we
found that these effects were approximately additive when combined with superiority bias. For simple prob-
lems that can be solved via hill climbing, superiority bias increased the time and resources needed to reach a
consensus without yielding any advantage in solution quality (Figure[5| bottom row).

Complex problems (K=10)

1.00 — 200 ] 100000
0.75 : i o
o g , e
5050 ﬁm _ 3 50000
n 3 H u
0.25 : : & :
00051702 03 04 05 05 0102030405 O 0 5 05 04 0E

Superiority Bias, Byay Superiority Bias, Byay Superiority Bias, Byay

Simple problems (K=0)

1.0 200
150 240000
o g =
100
03 S 220000
()
50 < o
0.0 0 2 = ==
"0 01 020304 05 0 0102030405 0 0.1 0.2 0.3 0.4 05
Superiority Bias, Byay Superiority Bias, Byax Superiority Bias, Byax
Risk-taking Hardworking J&  Normal

Figure 5: The top row illustrates the score (left), time (middle), and recourse usage (right) of teams when they
face complex problems, and the bottom row illustrates it when teams face simple problems. The points con-
nected to lines show the average result of 100 simulations. The pale points (not connected to lines) show the
results of single simulations.

Superiority bias and network structure

We compare the performance of the model on a linear network, a ring lattice, and a fully-connected network.
In accordance with many other studies of dynamics on networks (Lind & Herrmann|2007), we find that teams
converge faster when the communication network is more connected. A more connected communication net-
work leads a team to spend less time and resources reaching a consensus (Figures[6|and[7, middle and bottom
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rows). When teams face simple problems, all teams can reach the global maximum (Figure. When teams face
complex problems, a more connected communication network leads to a decrease in the quality of the solution
converged upon (Figure[6). In general, superiority bias has a negative effect on the required time and resources
to reach a consensus solution, and these effects seem to be more severe in sparse networks.
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Figure 6: The plots in the top row illustrate the final score of teams with different individual-learning strategies;
risk-taking (left), hardworking (in the middle), and normal (in the left) when teams utilize networks with different
connectivity densities. The middle and bottom row plots indicate the time and resource (respectively)required
for teams. All plots are results of simulations when teams solve complex problems (K = 10). The connected
points illustrate the average results of 100 simulations, and the unconnected pale point illustrates the result of
a single run simulation.
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Figure 7: All plots are for when a team faces simple problems. The left column of plots illustrates the score
(top), time (middle), and resource (bottom) of a team with a risk-taking individual-learning strategy. The middle
column and right column indicate score, time, and resources for teams with hardworking and normal strategies,
respectively. These plots are the result of simulations when teams face simple problems. The connected points
illustrate the average results of 100 simulations, and the unconnected pale pointillustrates the result of a single-
run simulation.

Communication noise

Increasing the communication noise level, C, increased teams; final scores for complex problems (Figure
top left). This is because communication noise impeded teams from quickly reaching a consensus and allowed
them to engage in the more exploratory (and less purely greedy) searches. On the other hand, Teams with
noisier communication required more time and resources to reach a consensus (Figure[8} top row). In a situation
with low communication noise, a hardworking team could consume fewer resources than risk-taking teams,
while this relationship was reversed for higher communication noise (Figure[8] top right). As usual, teams could
always reach the global maximum solution for simple problems. We find that increasing the communication
noise could have a U-shaped effect on the time and resources required for teams to reach a consensus (Figure
bottom row). This is due to a similarly-shaped relationship between communication noise and the diversity
of solutions. We explain this result below.
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7.5

Complex problems (K=10)
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Figure 8: The top row plots illustrate the score (left), time (middle), and resource (right) of teams with various
levels of communication noise when they face complex problems (K = 10). The bottom row shows off the
simple problems (K = 0). The connected points illustrate the average results of 100 simulations, and the
unconnected pale point illustrates the result of a single-run simulation.

Communication noise slows the process that leads to team consensus, which increases the probability that the
team will find a higher-quality solution. We illustrate this in Figure@, which shows that in all cases, communi-
cation noise helps teams to maintain a larger number of unique solutions and therefore explore a wider area of
the solution landscape. The effect holds regardless of problem complexity or individual search strategy.
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Figure 9: The plots illustrate the unique number of solutions in every time step of the first 20 time steps of
simulations. The plots compare the unique number of solutions for each time step when there is zero com-
munication noise, a medium level of noise (20%), and a high level of noise (50%). The top rows illustrate the
simulation results of teams that solve complex problems (K = 10), and the bottom rows show the simulation
results of teams that solve simple problems (K0). The left column of plots indicates the results of teams with a
risk-taking strategy, the middle column is for teams with a hardworking strategy, and the right column of plots
is for a team with a normal individual-learning strategy. The connected points illustrate the average results of
100 simulations, and the unconnected pale point illustrates the result of a single-run simulation.

Recall that for teams solving simple problems, a moderate level of communication noise reduced the required
time and resources to reach a consensus. Here we explain this result and also the U-shaped relationship be-
tween communication noise and time to consensus for simple problems. To characterize the diversity of the

JASSS, 26(3) 14,2023 http://jasss.soc.surrey.ac.uk/26/3/14.html Doi: 10.18564/jasss.5154



7.6

solutions considered by team members at any given time step, we calculated the average Hamming distance
between all pairs of solutions. The results of this analysis are shown in Figure[10] Notice that a noise level of
C = 0.2decreases this diversity faster than either zero noise or maximum noise (C' = 0.5). Thisis likely because
small levels of noise enabled agents to take larger leaps toward the global maximum.

Risk-taking Hardworking Normal
810 S10 810
% c c
7 g G
[a] [a] (]
o 5 o 5 o 5
c £ =
€ IS IS
€ IS €
2o Lo = 2o
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
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0% Noise A 20% Noise 50% Noise

Figure 10: The plots illustrate the average Hamming distance of all solutions in a team solving simple problems
(K = 0), at every time steps, for risk-taking (left), hardworking (middle), and normal (right) teams.

We once again find that more connected communication networks lead to faster and less resource-intensive
consensus to the global optimum, regardless of communication noise (see Figure[L7). However, the relation-
ship between communication noise and network structure is more complicated when teams solve complex
problems (Figure[11). With low communication noise, we reproduce the result that sparse networks allow for
higher quality solutions, as before. However, as communication noise increases, it takes over the role in main-
taining greater diversity of solutions previously achieved by network sparseness. Sparse networks then become
so inefficient that the team often ran out of time before it could reach a consensus or even find a high-quality
solution (Figure[L1] middle row). Accordingly, the effect of communication noise is stronger in denser networks,
and with high levels of communication noise, dense networks can actually outperform sparse networks since
they allow more efficient percolation of high-quality solutions, and the communication noise acts to maintain
solution diversity. This result echoes previous studies that found that dense networks are preferable to sparse
networks for collective solving of complex problems when other mechanisms that prolong solution diversity
are present, including conformist learning (Barkoczi & Galesic|[2016) and strong prior beliefs (Zollman|2010).
As communication noise increases and thereby maintains greater diversity of solutions in a team (Figure[18),
teams reach better solutions but increase the required time and resources needed to reach a consensus.
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Figure 11: Performance of teams with different network structures and communication noise when teams face
complex problems (See Figure[L8|for simple problems) The plots in the top row illustrate the final score of teams
with different individual learning strategies; risk-taking (left), hardworking (in the middle), and normal (on the
left) when teams utilize networks with different connectivity densities. The middle and bottom row plots indi-
cate time and resources, respectively, which are required for teams. All plots are results of simulations when
teams solve complex problems (K = 10). The connected points illustrate the average results of 100 simula-
tions, and the unconnected pale point illustrates the result of a single run simulation.

Interplay of superiority bias and communication noise

The confluence of superiority bias and communication noise demonstrates an additive effect on team perfor-
mance, as illustrated in Figure[12] This suggests that when both superiority bias and communication noise are
present, their combined impact on team performance metrics, such as score and time, is essentially the sum of
their individual effects. This occurs because both noise and bias represent errors, sharing a similar nature, and
both contribute to increasing the solution diversity within a team.
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Figure 12: Depicts the impact of simultaneously experiencing superiority bias and communication noise on the
performance (score and time) of teams comprised of normal agents.

Discussion

Superiority bias and communication noise both make social learning less efficient in the short term. Agents
exhibiting superiority bias ignore information about solutions that are marginally better than their current so-
lutions, only switching when switching carries a large benefit. Agents experiencing communication noise fail
to correctly copy better solutions, introducing random error that is likely to decrease rather than increase the
quality of their solution. Yet each of these mechanisms, when operating at the group level, leads teams to reach
a consensus on higher quality solutions than they reach when the mechanisms are absent. Each mechanism,
though procedurally distinct at the psychological or communicative level, creates a benefit in the same way:
by prolonging the diversity of solutions in the population and allowing a wider area of the solution space to be
explored, they increase the chance that the team will discover a high-quality solution. This work contributes to
anincreasingly larger literature on collective problem solving, spread across several disciplines, and using sev-
eral different models, showing that nearly any mechanism that increases the transient diversity of solutions will
increase the quality of solutions to complex problems discovered by cooperative teams (reviewed in[Smaldino|

et al2023).

The contributions of superiority bias or communicative noise are not, however, unequivocally positive. For
simple problems in which hill-climbing approaches work well and for which a determined individual is likely
to reach the optimal solution, diversity-increasing processes simply prolong the time and resources needed to
reach that solution. This is related to the well-known tradeoff between speed and accuracy in the judgment
and decision-making literature, though that work usually focuses only on individual-level processes. It is also
the case that the contribution of either superiority bias or communicative noise may interact with other mecha-
nisms that increase or prolong diversity, including the sparseness of the social network. When added together,
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too much diversity may prevent a team from reaching a consensus in a timely fashion—a point previously made
by|Zollman|(2010) in his study of networked Bayesian learners solving a two-armed bandit problem. Here we
conceptually replicate this result for NK landscape models of collective problem-solving.

8.3 Itis unclear how actionable the conclusions of this paper are at this time. While communication noise can be
controlled to some extent, changing superiority bias is likely to be more difficult, as it reflects the psychological
characteristics of individual team members. Our results also only apply to cases for which our broad model
assumptions hold. These include the assumptions that problems are well-defined with a finite space of possi-
ble solutions, that solutions are readily assessable and rankable, and that team members share goals and will
therefore readily share information. These assumptions are common to many models of collective problem-
solving (Smaldino et al. 2023), but nevertheless do not always hold in real-life problem-solving conditions. For
example, agents may have competing interests, and the quality of a solution is not always immediately appar-
ent. So-called “wicked” problems (Buchanan|1992) may not even be easily defined in the first place, and so
do not lend themselves to the sort of meandering search processes modeled here. Our model also ignores the
roles of leadership, hierarchy, division of labor, and creativity that often guide collective problem-solving. Nev-
ertheless, this work helps to flesh out work modeling factors that contribute to our understanding of collective
problem-solving.
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® Appendix

Example of computing a solution’s score

N = 6, K = 2. The Solution:
S ={1,1,0,0,1,1} (2)

Interdependency vectors V;:
i={1,1,1},Vo ={1,0,1}, V3 ={0,1,1}, V4, = {0,1,0}, V5 = {1,1,0}, V5 = {1,0,0} (3)
We consider each interdependency vector as a binary number:

V; = binary number V; = 111 (4)

We convert the binary number of each interdependency vector into a decimal number:
V; = binary number = decimal number V; = 111 =7 (5)
The score contribution of V7 is 143, which is the 7th element of the score in the list (indices starting at zero). The
score listis a list of 2(5+1) random numbers from 0 to 1000.
Scorelist : {14, 406,341, 459, 520, 831, 721, 143} (6)
Vi = 143 (7)
The score contribution of all interdependency vectors:

Vi=111=7= 143
Vo = 101 = 5 = 831
V3 = 011 = 3 = 459
V=010 = 2 = 341
Vs =110 = 6 = 721
Ve = 100 = 4 = 510
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The solution score is the average score of all the interdependency vectors:

N
1 143 + 831 + 459 + 341 + 721 + 510
I (©)

=1 6

We raise all scores to power 8 and normalize them in the range of 0 to 1. With this range, we compute the scores
of all solutions in the NK landscape and consider the highest score as 1.

Inferiority bias

Inferiority bias is the perception of an individual belief of being inferior to others (American Psychological Asso-
ciation|2007). We modeled inferiority bias by adding a bias to the solution’s score of neighbor agents through
social learning (Figure[L3). In the social learning process, the agent considers its neighbor’s score as its actual
score plus bias value (B;). B; isarandom number between 0 and the perception level (Bj;q:). P is determined
by the user. Each agent has its B.

Social learning without bias Social learning with inferiority bias
— —
Agent 1 Agent 2 Agent 1 Agent 2
Solution: 0001 Solution : 0011 Solution : 0001 Solution : 0011
Score: 0.3 Score: 0.2 Score: 0.3 Score: 0.2 + 0.2 (bias)
@
A P ——
A'gent 1 Agent 2 AFent 1 Agent 2
Solution : 0001 Solution : 0011 Solution : 0011 Solution : 0011
Score: 0.3 Score: 0B Score: 0.2 Score: 0.2

Figure 13: The illustration shows the social learning process without bias (left) and social learning with an in-
feriority bias (right). Agent 1 compares its score with Agent 2 to adopt the solution of Agent 2 if it is a solution
with a better score. With the inferiority bias, the bias value (B;) is added to the neighbor’s score. B; isarandom
float between 0 and P (set by user) that is selected from a uniform distribution.

The inferiority bias dramatically decreases individual learning. In most cases, agents can find a neighbor with
a score they perceive better than their scores (Figure[6). Therefore, agents adopt their neighbor’s solution and
are not confident enough to explore the landscape through individual learning. This leads a team to converge
quickly.

With inferiority bias, itis less likely for an agent who has already done social learning to be involved in individual
learning (Figure[14). No two neighbors with the same score can be involved in individual learning because

they perceive their neighbor (each others) better than themselves and imitate it (Figure[15). In our model, we
consider the time as the first time a team reaches its highest score. The team score does not always increase

with an inferiority bias (Figures[16}[17).
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Figure 14: The agent could avoid social learning and perform individual learning if the agent’s score was larger
than the summation of the neighbors’ score and the bias value(B). Only cohorts D and E had the chance to bein
theindividual learning. Incohorts A, B,and C, the agent’s score is not larger than the summation of its neighbor’s

score and the bias (B;). Therefore, agents in cohorts A, B, and C are not involved in individual learning.
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Figure 15: The figure showed social learning and individual learning with the different levels of inferiority bias
(B). When B is relatively large (B = 0.5), individual learning does not happen, and agents will involve in social
learning and imitating each other. When B is relatively small (B = 0.1), the team converges quickly. When
inferiority bias is absent (B = 0), agents are involved in individual learning.
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Figure 16: Score, time and resource usage of teams with different levels of inferiority bias. The top three plots
show the score, time, and resources used by the teams with different levels of inferiority bias (Others superiority
bias) when they face complex problems (K = 10). The three plots at the bottom illustrate when teams face

simple problems (K = 0).
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Figure 17: Number of unique solutions in each time step for teams with different levels of connectivity. The
plots illustrate the unique number of solutions in each time step of the first 20 time steps of simulations for
teams solving complex problems (K = 10). The top row illustrates the results of teams that are communicat-
ing via a linear structure network (low-connected network structure), and the bottom row shows the result of
teams that communicate via a fully connected network. The plots compare the unique number of solutions for
each time step when zero communication noise exists, a medium level of noise (20%) exists, and a high level
of noise (50%) exists. The left column indicates the results of teams with a risk-taking strategy, the middle col-
umn represents the teams with a hardworking strategy, and the right column represents a team with a normal
individual-learning strategy. The connected points illustrate the average results of 100 simulations, and the un-
connected pale point illustrates the result of a single run simulation.
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Figure 18: These plots are the result of simulations of teams that are facing simple problems with different net-
work structures. The left column of plots illustrates the score (top), time (middle), and resource usage (bottom)
of a team with a risk-taking individual-learning strategy. The middle and right columns indicate score, time,
and resources for teams with hardworking and normal strategies, respectively. The connected pointsillustrate
the average results of 100 simulations, and the unconnected pale point illustrates the results of a single run
simulation.
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