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Abstract
Inferring the input parameters of simulators from observations is a crucial challenge with
applications from epidemiology to molecular dynamics. Here we show a simple approach in the
regime of sparse data and approximately correct models, which is common when trying to use an
existing model to infer latent variables with observed data. This approach is based on the principle
of maximum entropy (MaxEnt) and provably makes the smallest change in the latent joint
distribution to fit new data. This method requires no likelihood or model derivatives and its fit is
insensitive to prior strength, removing the need to balance observed data fit with prior belief. The
method requires the ansatz that data is fit in expectation, which is true in some settings and may be
reasonable in all settings with few data points. The method is based on sample reweighting, so its
asymptotic run time is independent of prior distribution dimension. We demonstrate this MaxEnt
approach and compare with other likelihood-free inference methods across three systems: a point
particle moving in a gravitational field, a compartmental model of epidemic spread and molecular
dynamics simulation of a protein.

1. Introduction

Simulation-based inference (SBI) is a class of methods that infer the input parameters and unobservable
latent variables in a simulator from observational data. SBI is different from traditional statistical inference
or machine learning because simulators are typically not differentiable and their likelihoods are intractable.
There have been great strides in methods for SBI and a recent review may be found in [1]. Most SBI methods
are concerned with finding a few simulator parameters from a rich set of observations [2–4]. Here, we
consider updating a simulator with many trusted parameters to match a sparse set of observations. The
ancestor for this line of research is in molecular dynamics simulations of proteins. These simulations require
thousands of parameters and the observed data (macroscopic experimental values) is often on the order of 10
to 100 data points (e.g. Reißer et al [5]). An approach that has emerged in molecular dynamics simulations is
maximum entropy (MaxEnt) biasing [6–9]. MaxEnt biasing minimially modifies the simulator to match
observations. The premise of MaxEnt is that the original model is approximately correct and observations
should be matched in expectation, which is not the usual approach in SBI. These two assumptions lead to a
unique bias [10] to the simulator that is independent of the parameters and can be implemented as a simple
reweighting procedure. The MaxEnt method’s run-time scales only with sample number, rather than the
number of model parameters which is atypical of most SBI methods because they require joint sampling.

Our MaxEnt method reweights a black-box simulator to agree with observed data in a provably minimal
way. The reweighted simulator can then be used to infer either better input parameters or other simulation
outputs. The two conditions are that (i) the simulator is accurate enough that the observed data could have
been derived from an average of runs of the simulator; and (ii) predicted values for the observed data can be
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computed from the outcome of the simulator. The MaxEnt method results in an ensemble of outcomes from
the simulator whose means agree with data and provide a regressed agreement to observed data while being
as close to the original simulator outcomes as possible. The method is efficient, provides uncertainty
estimates, and can account for unknown systematic errors.

This paper focuses on a setting where distribution moments (e.g. population average) are the data for
fitting a posterior. This is a common setting of MaxEnt and it has a number of advantageous properties.
Finding the MaxEnt posterior is equivalent to maximizing the likelihood function under a distribution
family (exponential in this work) [11]. The MaxEnt posterior is the closest to the prior distribution (under
KL divergence) under the constraint of fitting the population averages [12]. The MaxEnt posterior exactly fits
the distribution moments under mild assumptions [10]4. Examples of MaxEnt in this setting can be seen in
statistical mechanics as described above, biology [13], natural language processing [11], and ecology [14].
Any application of maximum likelihood on distribution moments can be recast as MaxEnt. Our
contribution to this setting is to summarize the general theory and provide an efficient and simple
implementation that is system independent.

The second setting of MaxEnt is to make an ansatz that an observation can be substituted as a distribution
moment. For example, consider observing a particle trajectory and we would like to make inferences about
where the particle will go next. Our observations are specific pairs of time and position that describe the
trajectory. If we have a good model for how the particle behaves, MaxEnt will minimally change the model to
agree with the particle trajectory on average. The MaxEnt posterior will agree in expectation exactly with the
observed trajectory. Thus, from a practical point of view, MaxEnt provides an accurate description of the
data and a probability distribution for the posterior. The inferred continuation of the trajectory will come
from the expectation of that posterior. An alternative would be treating the observation as exact and
regressing the prior model, which would not give a posterior but instead a mode (most likely trajectory). Yet
this gives no uncertainties with the predictions and can lead far away from the prior model, leading to issues
like overfitting and covariate shift. Bayesian inference could be used to fit the particle trajectory by supposing
a measurement error distribution. Yet this creates an over-constrained problem where a weak error
distribution reduces the agreement with the observed trajectory and a strong error distribution reduces the
agreement of the prior model. In essence, by ‘relaxing’ the observation to be an average we enable agreement
with the observation exactly, maximize the agreement with the prior, and do not require potentially ad-hoc
construction of error distributions5. This can be justified through the principle of maximum parsimony: the
MaxEnt formulation requires the fewest input parameters. If multiple observations are gathered, then the
Bayesian inference setting is more appropriate because the distribution moment ansatz would exclude
information about variance in multiple observations. Another potential application area could be in
few-shot regression with Bayesian network models [15], where only a few examples are available in a new
task. MaxEnt provides a way to fit a previously trained Bayesian network to those few examples, balancing
agreement with them exactly and while minimizing the effect on the trained model.

The MaxEnt method presented here has a run time scaling that is independent of the number of
model/prior parameters; it acts entirely on samples. This also means that intractable or infinite dimensional
priors (such as sampling both models/priors) can be treated with MaxEnt. This can be a large advantage over
other approximate inference methods like approximate Bayesian computing (ABC) and likelihood free
inference.

The MaxEnt approach in simulation can be traced to Jayne’s early work on deriving statistical physics
from MaxEnt [16]. It was shown, for example, that the Boltzmann distribution could be derived by simply
adding a restraint on average energy that must be satisfied in expectation, analogous to matching an
observation. A similar method of incorporating observations in expectation returned 50 years later in
determining how to match protein molecular dynamics simulations to observations [17]. This method was
then recast as an approximation to MaxEnt [12]. Matching observations in molecular dynamics with MaxEnt
was also shown in Pitera and Chodera [10]. This was followed by rapid progress to create practical methods
for use in simulations [9, 18–20]. The MaxEnt method based on reweighting has been presented in the
context of molecular dynamics simulations in many forms over the years [5, 21–29]. MaxEnt-based methods
have a long history of use in the molecular dynamics community across various types of systems, and this
approach is still widely used for biasing applications in modern molecular simulations, demonstrating
ongoing interest and engagement in the community [30–32]. A review by Bonomi et al provides broader
context for the use of MaxEnt and other similar methods in the molecular simulation community [7]. The
review by Cesari, Reißer and Bussi [33] provides an overview of the mathematics of MaxEnt, its connections

4 Bayesian inference for fitting distribution moments requires specifying an error distribution that requires additional system insight and
its strength relative to the prior belief affects the agreement with the distribution moment data. See system 1.
5 Our MaxEnt formulation does allow uncertainty on distribution moments if desired.
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to Bayesian inference and maximum likelihood, and some discussion of the potential hurdles involved. Also,
for a comparative study weighing the benefits of MaxEnt and restraint-based methods, see Rangan et al
2018 [34].

Our contribution here is deriving a general MaxEnt framework that is applicable to arbitrary simulators,
demonstrating its application to areas outside of molecular dynamics, and showing one method of
improving the support (sampling) of the posterior, which is important when the simulator is far from the
observations. In the remainder of this work, we develop the theory, discuss sampling issues, and compare the
MaxEnt method to ABC [3, 35–37], sequential neural likelihood (SNL) [38], and direct Bayesian inference
when the likelihood is tractable. Additional background on these methods used for comparison can be found
in the supporting information (available online at stacks.iop.org/MLST/3/025006/mmedia).

2. Theory

Given a simulator f(θ⃗) with a set of parameters θ⃗, we have a prior distribution of parameters P(θ⃗). For
example, the function f(θ⃗) could be propagating a system of ODEs for some set number of timesteps or a
molecular dynamics simulation with intrinsic noise.

Suppose we have some set of N observations, {ḡ}k, k ∈ [1, . . . ,N], which we would like to match with our
model. Assume the measurement of each ḡk has some uncertainty εk, where εk is a random variable
distributed according to some prior distribution about uncertainty, P0(ϵk). We would like to constrain our
model such that

ˆ
dθ⃗dϵ⃗P ′(θ⃗)P0(ϵk)

(
gk[ f(θ⃗)]+ ϵk

)
= E[gk + ϵk] = ḡk ∀k. (1)

This means that we want the average over the distribution of our updated models (P ′(θ⃗)) to match the
observations data, with an allowable average disagreement based on {ϵk}. This is an unusual constraint and
is weaker than most simulation inference methods. It reflects the strong belief in our prior model in this
setting. Note that inclusion of the P0(ϵk) and εk terms is optional: it is not necessary to allow disagreement on
average with data, unlike in a Bayesian framework. This would be equivalent to setting the error distribution
to a Dirac delta about 0: P0(ϵk) = δ(ϵk = 0). Another difference is that this distribution of uncertainty is
about bias. It accounts for systemic deviation in average agreement and does not describe the underlying
variance of the observational data. This approach is analogous to Bayesian model averaging [39], in that it is
an average over many model parameter settings, reweighted by the posterior likelihood.

The MaxEnt modification to the prior distribution P(θ⃗) to satisfy the N constraints is given
by [9, 10, 12, 40]:

P ′(θ⃗, ϵ⃗) =
1

Z ′ P(θ⃗)
N∏
k

e−λkgk[ f(θ⃗)]e−λkϵkP0(ϵk), (2)

Z ′ =

ˆ
dθ⃗dϵ⃗P(θ⃗)P0(ϵ)e

−
∑

kλk(g[ f(θ⃗)]+ϵk), (3)

where Z
′
is a normalization constant and λk are chosen such that E[gk + ϵk] = ḡk. The dependence on ϵ⃗k can

be removed by computing the marginal,

P ′(θ⃗) =

ˆ
dϵ⃗P ′(θ⃗, ϵ⃗) =

1

Z ′ P(θ⃗)
N∏
k

e−λkgk[ f(θ⃗)]

ˆ
dϵke

−λkϵkP0(ϵk). (4)

The problem is reduced to finding λk such that the constraint is satisfied. Again, we must remove ϵ⃗k from
E[gk] + E[ϵk] = ḡk, where E[ϵk] is:

E[ϵk] =

´
dϵke−λkϵkP0(ϵk)ϵk´
dϵke−λkϵkP0(ϵk)

, (5)

and is understood to still be a function of λk. If we define ξk(λk) = E[ϵk] the constraint equation can be
rewritten as E[gk] + ξk(λk) = ḡk. If the prior is an exponential family, the λks will exist and be unique under
some mild assumptions about support of the prior and covariance of observables (i.e. cannot have perfectly
correlated observables with incompatible observations)[10, 12].

3
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Algorithm 1.MaxEnt weights with uncertain observations

Input P(θ⃗), f(θ⃗),M, N of P0(ϵk), gk, ḡk, η
Initialize λk = 0∀k
for i← 1 toM do

Sample θ⃗i ∼ P(θ⃗)
for k← 1 to N do

Evaluate gk[ f(θ⃗i)]
end

end
While

∑
iwigk[ f(θ⃗i)]/

∑
iwi + ξk(λk) ̸= ḡk for any k do

for i← 1 toM do
for k← 1 to N do

λk← λk− η ∂
∂λk

(∑
l

(
ḡl−

[
g[ f(θ⃗i)]wi/

∑
jwj + ξl(λl)

])2
)

where wi =
∏

k e
−λkgk[ f(θ⃗i)]

´
dϵke

−λkϵkP0(ϵk)
end

end
end
return w⃗

2.1. Computing weighted properties and sampling efficiency
In algorithm 1, we show the procedure for sampling from the MaxEnt distribution defined in equation (4)
via importance sampling [41]. Here, P(θ⃗) is the prior distribution over simulation parameters θ⃗, f is the
simulator,M is the number of samples from the prior to take (and hence the number of weights to be
computed), N is the number of constraints, P0(ϵk) is the error distribution, gk is the kth observation, and ḡk
is the target observable value to which we would like to constrain our simulator. η is the learning rate. Note
that the loop overM can be batched, as all samples of model parameters are independent. The output of this
algorithm, {wi}, are the weights of trajectories { f(θi)}, and any desired property g can be computed as∑

i g[ f(θ⃗i)]wi/
∑

iwi.

The challenge of using MaxEnt is sampling from P ′(θ⃗). Our assumption thus far is that our prior P(θ⃗) is
approximately correct, so that samples from P(θ⃗) should be similar to P ′(θ⃗). In this ideal case, the algorithm
is simply a matter of reweighting. One samples θ⃗i, computes f(θ⃗i), compute weights proportional to

wi[P ′] =
∏N

k e
−λkgk[ f(θ⃗)] consistent with the experimental data (algorithm 1), and then any other property is

reweighted with the same weights. In the non-ideal case (if for instance sampling is expensive, the space is
high-dimensional, or the model is far from correct), there can be insufficient support to agree with the
constraints. To treat insufficient support, we take a simple approach and use gradient descent to modify the
sampling distribution parameters θ⃗j to minimize the cross-entropy with P ′(θ⃗):

θ⃗ j+1 = θ⃗ j − η∇θ⃗j

∑
i

wi[P
′] lnP(θ⃗i), (6)

where wi[P ′] depends on θ⃗j via the expectation function. We remove the effect of the sampling distribution
from the posterior via reweighting by P(θ⃗)/P(θ⃗j)We refer to this approach as variational.

The good efficiency of MaxEnt is because samples from the prior and evaluation of the observations gk
can be done once, as can be seen in the separate loop at the beginning of algorithm 1. This reduces the
evaluation of gk[ f(θ⃗i)] to a table lookup. The asymptotic runtime complexity of the fitting loop of MaxEnt is
thus O(MNZ), where Z is the number of fitting steps required to reach convergence, which is unknown a
priori. A maximum number of training iterations can be specified, and as noted previously, theM inner
loops can be unrolled and performed concurrently, because samples from the prior are independent.

We will compare briefly with similar methods to give context, but recall that these methods have different
assumptions/objectives and so it is not relevant to claim one is clearly more efficient than another. The SNL
algorithm by Papamakarios et al [42] re-samples parameters for each iteration of training using a Markov
process, running a new simulation for each sample, and trains a neural network to estimate the posterior
using a dataset consisting of the cumulative sampled parameters and simulator results from each iteration.
This precludes the ability to sample a priori, resulting in an asymptotic runtime complexity of
O(RN logN)×O( f)×O(S), where R is the number of training rounds, N is the number of simulations per
round, O(f ) is the simulator’s runtime, and O(S) is the runtime of the Markov chain Monte Carlo parameter
sampling step.
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The ABC algorithm also precludes a priori sampling. It employs several simulations per iteration, each
with parameters drawn from some prior distribution, which are iteratively updated until they fall within
some tolerance (ε) of the observation(s). This bias of the ABC estimate has been shown to be asymptotically
proportional to O(ϵ2) as ε decreases [43]. Thus, the runtime complexity becomes O(RN)×O( f)×O(ϵ2),
where again R is the number of iterations, O(f ) is the runtime complexity of the simulator f, and N is the
number of simulations evaluated each round based on the number of samplings.

3. Methods

Here we present detailed descriptions of the methods used for each of the example systems described in the
Results section.

3.1. Point particle gravitation simulation
For this simulation, the prior parameter distribution was taken as a multivariate normal distribution
centered at {m1 = 85,m2 = 40,m3 = 70,v0x = 12,v0y =−30}, with covariance matrix I× 50. This wide
prior was chosen because MaxEnt needs parameter support that overlaps with the observations we would
like to fit. Fitting was done using the SBI package for Python [44] with the SNL method, [38] and a custom
implementation of MaxEnt reweighting using Keras [45, 46]. Both methods used 2048 prior samples for
fitting. SNL used default parameters from the SBI package [44] and MaxEnt used the Adam optimizer [47]
with a learning rate of 0.0001 with mean squared error for 30 000 epochs and batch size 2048.

3.2. Epidemiology modeling
Epidemic spreading in networks can be modeled as a reaction-diffusion process. The reaction corresponds to
an infection caused by interactions of subjects within a fully-mixed region or patch of varying granularities
(a meta-population), while diffusion corresponds to movement of people (of various infection states)
between patches [48]. In this example, the meta-population system is comprised of three isolated local
populations (patches) connected via flows corresponding to migrating individuals. The spreading process is
represented through a temporally discretized ODE that includes the spatial distribution of the population as
well as their mobility patterns [49].

In our simulation, the infection begins in patch 1, propagating to the other two patches according to a
synthetic mobility matrix. This mobility matrix was randomly generated with dominating diagonal elements
to satisfy the fully-mixed region assumption. Five uniformly random data points within the first half of the
trajectory of the compartment I in patch 1 were considered as observations with a 5% random additive noise
and Laplace prior of 0.01 (shown as restraints in figure 4(a). The true parameters for the reference epidemic
trajectory are: {startI = 0.02, startA = 0.05,Eperiod = 7,Aperiod = 5, Iperiod = 14}. Parameters for this simulation
were asymptomatic, infectious and exposed periods along with the fractional starting values for I and A
compartments. The prior parameter distribution were taken as a truncated-normal distribution centered at
{startI = 0.001, startA = 0.001,Eperiod = 2,Aperiod = 2, Iperiod = 10}, with variances of {0.8,0.8,1,4,5},
respectively. For the simulation, the pyABC [50] package was used with default parameters, and the same
MaxEnt implementation was used with the Adam optimizer, a learning rate of 0.1, and loss of mean squared
error for 1000 epochs with a batch size of 8192.

3.3. MBP fragment molecular dynamics
Molecular dynamics was done with Gromacs 2020.03 [51–57] as driven by GromacsWrapper [58] with a
timestep of 2 fs. Myelin basic protein (MBP) initial structure were generated with PeptideBuilder [59] and
Packmol [60]. The CHARMM27 forcefield was used for [61, 62]. Canonical Sampling through Velocity
Rescaling thermostat was used [63]. Long-range electrostatic forces were calculated with the particle mesh
Ewald method [64]. Shifted Van der Waals and short-range electrostatics were used with a cutoff distance of
1 nm. Hydrogen containing covalent bonds were constrained using the LINear Constraint Solver algorithm
[65]. MaxEnt implementation as described above was used with 500 epochs in Adam optimizer with learning
rate of 0.1.

4. Results

4.1. Trivial simulation with gaussian noise
We first consider a toy simulator f that outputs a scalar r. We have a prior belief about the value of the
constant as a normal distributionN (̂r,θ). This example serves to compare the MaxEnt approach with
Bayesian inference. The observed data is a single point (̄r) and we treat it as an average constraint in the
MaxEnt. That is, we have a single observation and we constrain our simulator to on average match this

5
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Figure 1. Comparison of Bayesian inference and MaxEnt reweighting. Panel (a) shows the simulator prior distribution in orange
and the two versions of MaxEnt posterior with observations of 5 and 10. Panel (b) shows the interplay between strength of prior
and assigned uncertainty to the observation at 10 for Bayesian inference. The value is arbitrary and chosen to illustrate how
Bayesian inference strongly alters the shape of the posterior compared to the prior, whereas MaxEnt preserves the shape well. Note
the scale change between panels (a) and (b). Panel (c) further illustrates this by comparing the posterior entropy of the two as a
function of the observation location.

observation. Figure 1 panel (a) shows how the MaxEnt posterior changes with different observations
(̄r= 5 or r̄= 10). The r= 10 observation requires the variational sampling (equation (6)) because the
observed value is outside the sampled support of the prior. The expected value of E[r] of the posterior always
matches the observation and the moments of the posterior are identical to the prior, except the 1st moment
(the mean). Although figure 1(a) is calculated with algorithm 1, the analytic equation for the posterior is
simplyN (̄r,θ) [10].

With Bayesian inference, we must assume some noise model of our simulator so that we can compute the
probability of the single observation arising from the simulator, namely P(data|model) [66]. We take this to
beN (̂r,σ). The Bayesian posterior balances this evidence with the prior distribution:

PB (r| r̄) =
1

Z
e−

(r−̄r)2

2σ e−
(r−̂r)2

2θ . (7)

The expected value of r̂ will not match the observed value except in the limit of σ/θ reaching 0. E[̂r] will
be between the observed value and the prior belief expectation. Figure 1(b) compares the Bayesian inference
and MaxEnt posteriors. Panel (a) shows how the MaxEnt method leaves the variance of r̂ unchanged as we
consider different observed values. Panel (b) shows the use of Bayesian inference to match the observation at
r= 10. It requires extreme ratios between prior belief and experimental uncertainty to match the observation
at 10. This is not necessarily a disadvantage, we simply are showing that observations are matched in
expectation with MaxEnt and not with Bayesian inference. Panel (c) shows how the MaxEnt method keeps
the posterior entropy maximized regardless of the observation value (x-axis), as expected for a MaxEnt
method. Bayesian inference shows a more peaked distribution when the observed value is far away from the
prior, giving less entropy. That is, to agree with the observation we must necessarily increase the strength of
evidence, which peaks the posterior.

4.2. Example system 1: point particle gravitation simulation
For our first example system, figure 2 shows a comparison of SNL and MaxEnt reweighting on a unit mass
particle in a gravitational field of three attractors. The simulator here is a point particle following Newtonian
gravitational mechanics. The goal here is to modify the simulation trajectories to align with a small set of
observations. An example task might be fitting the trajectory of a comet to a small number of observations
separated by years.

The parameters for this simulation werem1,m2,m3, v0x and v0y, the masses of the three attractors, and
the initial velocity of the particle, respectively. The positions of the attractors and the initial position of the
particle were all fixed. We treat these parameters as unknown, and the prior belief for them follows a normal
distribution, shown in figure 2. Repeatedly sampling from this prior and running the simulator results in a
distribution of trajectories, whose means are shown in figure 2(a). MaxEnt reweights this ensemble of
trajectories to agree with five observed positions along the trajectory. (The mean path does not exactly pass
through the observations because some zero-mean normally-distributed noise with standard deviation of 3
was added to each observation.) The average posterior trajectory indeed agrees with all observations. The
prior and posterior for the parameters are shown in figure 2(b).

The observed points were synthesized by choosing a set of true parameter values and imposing
zero-mean normally-distributed noise with standard deviation 3 on every 20th timestep on the 100-step
simulation. Thus, one way to evaluate the MaxEnt performance is to see if the posterior means are close to

6
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Figure 2. Comparison of SNL and MaxEnt methods on a gravitational field simulation of a particle moving through a fixed field
with three attractors. All units are SI values (m, m s−1, kg). (a) weighted mean paths generated by SBI with SNL (green) and
MaxEnt (purple), alongside the path generated by the mean of the prior distribution (dash-dotted grey), and the true path used to
generate observations (dashed black). Target points appear as black stars, and the attractors are black circles. (b) Kernel density
estimate of the posterior distribution of parameters after fitting, alongside their respective priors.

these true values. We can see that the MaxEnt posteriors are closer to these values than the prior, but still
largely in agreement with the prior. It fits the observations while staying as close to the prior as possible,
because that maximizes entropy. In contrast, SNL results in a much narrower posterior around the true
values, while diverging from the prior, because that maximizes likelihood.

We computed the cross-entropy of the prior and posterior produced by MaxEnt and SNL. These values
were 5.09 for SBI with SNL, and 3.43 for MaxEnt reweighting. This demonstrates how MaxEnt minimally
alters the prior distribution while still matching observations in expectation—the average path followed by
the MaxEnt particle matches all target points, while matching the posterior to the prior’s shape more closely
than SNL.

This example illustrates two key points. Firstly, it shows that MaxEnt is robust to chaotic systems, as it is
still able to match observations on average, with minimal change to the prior. However, it is also an example
of when another SBI method may be preferable, depending on the goal. The goal of MaxEnt is, by
construction, to alter the prior as little as possible while agreeing with observations on average. In cases
where the true underlying parameters governing a model are in a low-density region of the prior, the
posterior resultant from MaxEnt will therefore assign relatively low probability to these parameter values as
well. Thus, in the sense of estimating likelihood when the prior is not close to the true values, other methods
like SNL can be preferable to MaxEnt. We can see that while SNL makes a better estimate of the true
parameters used to generate those observations, it does not reproduce a path that aligns with the
observations. This presents a choice to the simulator. If the goal is to alter a model to agree with observations,
MaxEnt is preferred, especially if the prior is strongly trusted. If the goal is accurate likelihood estimation,
methods like SNL are preferred, especially if the prior is not strongly trusted.

4.3. Example system 2: epidemiological modeling
In our third example, we apply our framework to modeling the spread of a pathogen in vulnerable
populations. We consider an SEAIR compartmental model of epidemic spread (figure 3) on metapopulations
connected via a spatial network of patches. Each patch corresponds to a location such as a zipcode in a city,
or a county, and connections between patches correspond to mobility flows of residents encoded in aM×M
mobility matrix forM patches, whereMij is the number of people moving from patch i to patch j in one time
increment. Contacts within patches occur in a fully-mixed mean field manner where individuals can be in
any one of five states of infection: Susceptible (S), Exposed (E), Asymptomatic (A), Infected (I), and Resolved
(R). The choice for this particular combination of compartments was inspired by its relevance in modeling
the evolution of the current SARS-CoV-2 pandemic [67, 68]. Each individual patch is represented with
fractions of S, E, A, I, R, rather than the count of individuals within each compartment.

We first create a ‘reference’ trajectory that represents the true disease model. From this reference
trajectory, we extract observations which are used as the input to the MaxEnt methods, by extracting values at
specific timepoints in the reference trajectory. A challenge in modeling the spread of epidemics is associated
with reporting of the empirical number of confirmed cases (compartment I), which is typically very
noisy [69]. To simulate this uncertainty, we add random additive noise to the observations from the reference
trajectory (see Methods for details). This reference trajectory is represented as dashed lines in figure 4(a). We
choose 5 uniformly random data points within the first half of the trajectory of the compartment I in patch 1
as observations (represented as black dots). The performance of the model is evaluated by comparing the

7



Mach. Learn.: Sci. Technol. 3 (2022) 025006 R Barrett et al

Figure 3. SEAIR model. Populations in each patch can be in any one of Susceptible (S), Exposed (E), Asymptomatic (A), Infected
(I) and Resolved (R). Susceptible individuals can get exposed to the disease by having contacts with the asymptomatic or the
infected at infectivity rate β. Once exposed, they become asymptomatic and infected at rates η and α. The infected finally
recovers or dies at rate µ and becomes resolved.

Figure 4.MaxEnt reweighting of disease trajectory in a meta-population SEAIR model. (a) Prior-generated trajectory in one of
the spatial patches for compartments S (blue), E (orange), A (green), I (red) and R (purple) are shown with solid lines and the
reference trajectory is in dashed lines. The colored area represents the one-third higher and lower quantiles than average.
Observations shown as restraints (black circles) are selected randomly from compartment I with 5% additive noise and Laplace
prior of 0.01. (b) Comparing the performance of MaxEnt (pink), Least-squares (blue), ABC (yellow) in fitting to reference model
(black dashed line) in patch 3, based on observations in patch 1. Table inset shows standard deviations from five-fold cross
validation of the observations at three different times. Shading on MaxEnt is from±67% weighted quantiles.

predicted trajectory and the reference in a different patch (3). In figure 4(b) we compare the performance of
MaxEnt, a least-squares fit, and ABC in fitting the prior to the observations. Compared to MaxEnt, the result
from the least squares method was a poor fit with high variance, as it over-fits to observation noise. This was
shown by doing a five-fold leave-one-out cross-validation of the observations and evaluating the standard
deviation at times t= 0,125 and 250 for each method (inset in figure 4(b)). Out of all methods evaluated,
ABC had the least variance, but was computationally more expensive to run, whereas MaxEnt can include
more model parameters without additional computational cost. Variational MaxEnt was also implemented
to reweight the disease trajectory (See details in supporting information figure S2).

4.4. Example system 3: MBP fragment molecular dynamics
Finally, we consider an application from biophysical modeling of the MBP epitope fragment. MBP is a
common autoimmune target for the disease multiple scelrosis [70]. Spyranti et al [71] characterized the
specific region of MBP (83–99) that is the binding epitope for T-cell receptor recognition with solution
nuclear magnetic resonance (NMR). NMR provides per-atom chemical shifts, which are population averages
of a measurement of an atoms’ local environment [72]. However, we must infer a specific structure to
understand the molecular biology of MBP. In this example we use molecular dynamics as a prior model, the
chemical shifts as MaxEnt restraints, and compute a posterior of protein configurations. MaxEnt analysis has
been applied frequently already in molecular dynamics, although not this exact approach with
uncertainty [34].

Our prior model is an empirical distribution consisting of MBP fragment atomic positions as sampled
from molecular dynamics. The specific fragment sequence was ENPVVHFFKNIVTPRTP and the molecular
dynamics was initialized from an extended conformation. Simulations was performed in NVT ensemble in
Gromacs 2020 [51–57] with CHARMM27 force field at a density of 25 mgml−1 [61, 62]. The simulation
duration was 1.3 µs with frames saved for this analysis every 500 ps. To compute the chemical shift, gk, we
use a graph neural network that can compute chemical shift from atomic positions [73]. We only biased
backbone HN atoms, due to their higher accuracy [73]. The first 6 HN atoms were biased (NPVVHF),
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Figure 5.MaxEnt reweighting of protein molecular dynamics simulation. Molecular dynamics simulation of MBP epitope
fragment was used to generate prior. Prior was reweighted with MaxEnt to have agreeing chemical shifts at indicated sequence
positions. Chemical shifts are HN, as predicted by graph neural network [73]. Experiments from Spyranti et al [71]. Mode is most
weighted structure after MaxEnt. Spyranti is from NMR structure refinement.

excluding the N-terminus. The remaining HN atom chemical shifts were unbiased (KNIVTRT). P0(ϵ) was
chosen to be a Laplace distribution with scale parameter 0.05—allowing a small amount of systematic
disagreement.

Figure 5 shows the MaxEnt posterior average chemical shifts. As expected, exact agreement is found for
the chemical shifts for which observations are provided. The posterior for which there are no observations
follow the the prior closely (as expected in MaxEnt), although they move in the wrong direction at some
positions. The protein structures are shown to the right of the plot. ‘Spyranti’ is a representative structure
from the deposited structure constructed by Spyranti et al [71]. The posterior mode fromMaxEnt is shown
to the right. It has a helix, though not the α-helix as shown in Spyranti. An advantage of this MaxEnt
approach to analyzing NMR data is that there are 6500 structures in the posterior, whereas the traditional
approach of NMR structure refinement results in 5–20 structures. This large distribution can then be used
for other tasks with better calibration, such as finding drugs to target the protein structure, predicting
protein-protein interfaces, and assessing structural properties.

5. Discussion

We have presented MaxEnt reweighting as an inference method for altering an approximately-correct
simulator to agree with observations. This method can be used on arbitrary simulators with arbitrary
numbers of parameters, requiring only sufficient sampling of the prior distribution. The simulator need not
have derivatives or tractable likelihoods. We demonstrated this by comparing with other SBI methods using
three different simulators in different example contexts. The framework is particularly effective and robust
when data is scarce or expensive (epidemic spreading being an archetypal example). MaxEnt provably
changes the prior minimally to fit observations. While the method was initially developed for and
particularly well-suited for molecular dynamics simulations—where experimental observations are much
more costly and few in number compared to simulation—as demonstrated here, its applicability has
potential for use in any setting of stochastic modeling where the derivative of the simulator’s output with
respect to latent variables is unavailable or intractable.

The approach to sampling described here is an implementation of variational inference to sample from
the posterior. One could instead use Monte Carlo sampling. This would have the advantage of not requiring
prior distribution derivatives, but since the derivatives here are closed-form it is computationally convenient
to use importance sampling. MaxEnt’s advantages over other widely used SBI methods, such as SNL, are that
it is simple to implement, requires no hyperparameter choices like a neural network design, and can fit
observations in expectation.

Data availability statement

Code for this work is available at https://github.com/ur-whitelab/maxent. The SEAIR model implementation
used in this work is publicly available as a python package at https://github.com/ur-whitelab/py0.
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