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ABSTRACT
There are a number of algorithms for the solution of continuous
optimization problems. However, many practical design optimiza-
tion problems use integer design variables instead of continuous.
These types of problems cannot be handled by using continuous
design variables-based algorithms. In this paper, we present
a multi-objective integer melody search optimization algorithm
(MO-IMS) for solving multi-objective integer optimization pro-
blems, which take design variables as integers. The proposed algo-
rithm is a modified version of single-objective melody search (MS)
algorithm, which is an innovative optimization algorithm, inspired
by basic concepts applied in harmony search (HS) algorithm.
Results show that MO-IMS has better performance in solvingmulti-
objective integer problems than the existing multi-objective inte-
ger harmony search algorithm (MO-IHS). Performance of proposed
algorithm is evaluated by using various performance metrics on
test functions. The simulation results show that the proposed MO-
IMS can be a better technique for solvingmulti-objective problems
having integer decision variables.

Introduction

In the literature, a number of algorithms are available for the solution of
continuous-space optimization problems. However, very often only integer
variables occur in practical design optimization problems. Moreover, these
optimization problems can have multiple conflicting objectives. As such situa-
tions often occur in practice, there is need to have efficient methods to solve
these types of problems. In this section, first the basic concepts used in solving
multi-objective optimization problem are briefly discussed. Engineering design
multi-objective optimization involving integer variable may be stated as
a minimization of M components of a vector function FðxÞ with respect to
a vector variable x in a design space S. It can be expressed in mathematical form
as follows:

min F xð Þ ¼ ½F1ðxÞ; F2ðxÞ; . . . ; FmðxÞ�
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x ¼ ½x1; x2; . . . . . . ::; xn�
where FnðxÞ represents the nth objective.

Researchers are continuously developing powerful and effective optimiza-
tion methods inspired by nature (Karaboga and Akay 2009). The methods
involving stochastic search are very popular for solving optimization pro-
blems (Karaboga and Basturk 2007). Many meta-heuristic algorithms, such
as genetic algorithm, particle swarm optimization (PSO), tabu search, ant
colony optimization, and simulated annealing (SA), etc., have been widely
employed for various optimization problems. A relatively new meta-heuristic
technique, named as harmony search (HS) algorithm, has been proposed by
Geem, Kim, and Loganathan (2001), inspired by the music improvisation
process. Initially, these algorithms were designed for continuous problems
with single objectives. However, latter these algorithms were modified for
integer variable case and multi-objective optimization problems.

Inspired by basic concepts applied in HS algorithm, Ashrafi and Dariane
(2011) have developed an optimization algorithm called melody search (MS)
algorithm. MS is based on musician group performance processes. The MS
algorithm proposed by Ashrafi and Dariane (2011) is designed for single-
objective optimization problem with continuous variables. In this paper, we
have proposed a multi-objective integer melody search (MO-IMS) algorithm
to solve multi-objective problems having integer design variables.

This paper is organized as follows. A review of various optimization
algorithms for solving integer variable optimization problems is reported in
Section 2. A detailed summary on MS algorithm is presented in Section 3.
The proposed MO-IMS algorithm is discussed in Section 4. In Section 5,
performance metrics for evaluating performance of the algorithm are dis-
cussed. Simulation setup and results are discussed in Section 6. Sensitivity
analysis of algorithm parameter is provided in Section 7. Finally, concluding
remarks are reported in Section 8.

Related Work

Several optimization algorithms are already developed to solve integer vari-
able optimization problems. Some of these optimization algorithms deal with
one objective, while the other optimization algorithms can solve multi-
objective optimization problems. A brief review of several algorithms is
presented in this section.

SA is a stochastic algorithm which have the ability to solve continuous
and discrete optimization problems. Kirkpatrick (1984) presented modified
SA for combinatorial optimization. They discussed the algorithm compu-
tational efficiency by applying it to the travel salesman problems.
Furthermore, Cardoso et al. (1997) presented SA algorithm approach to
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solve mixed integer nonlinear (MINLP) problems. They applied the pro-
posed algorithm to solve several test functions dealing with single-
objective optimization.

Deep et al. (2009) proposed a real-coded genetic algorithm named as MI-
LXPM for solving integer and mixed integer optimization problems. Their
algorithm is an extended version of LXPM. Ocenasek and Schwarz (2002)
developed a new variant of estimation of distribution algorithm (EDA) to
solve mixed continuous-discrete optimization problems. Rao and Xiong
(2005) developed a hybrid genetic algorithm for solving mixed-discrete non-
linear design optimization. They used genetic algorithm to determine the
optimal feasible region that contains the global optimum point. To find the
final optimum solution, hybrid negative subgradient method integrated with
discrete one-dimensional search was subsequently used. Furthermore, Rao
and Xiong (2005) suggested the harmony element algorithm (HEA), which
combines the principles of the HS algorithm and the GA. HEA works for
continuous variables.

Laskari, Parsopoulos, and Vrahatis (2002) investigated performance of
PSO variants for integer programing problems. They compared PSO perfor-
mance with well-known Branch and Bound technique on several test pro-
blems. Results indicated that PSO clearly has better performance than Branch
and Bound techniques. Geem, Kim, and Loganathan (2001) presented HS
algorithm for discrete variables. The methods involving HS algorithm have
been applied to various problems from structural design to solving Sudoku
puzzles, from musical composition to medical imaging, and from heat
exchanger design to course timetabling. Geem (2005) firstly adopted the
standard HS with binary-coding (BHS) to solve water pump switching
problems by discarding the pitch adjustment operator. Then Geem and
Williams (2008) utilized BHS to solve an ecologic optimization problem
and achieved better results than those using the SA algorithm.

Geem (2008) introduced the novel stochastic partial derivative for discrete
decision variables. A new HS algorithm was presented for solving mixed-
discrete optimization problems. Jaberipour and Khorram (2011) presented
a new HS algorithm for solving mixed-discrete engineering optimization
problems. They presented a mixed-discrete HS approach for solving these
nonlinear optimization problems which contain integer, discrete, and con-
tinuous variables. Wang et al. (2010) presented a discrete binary harmony
search (DBHS) algorithm for solving binary problems. They developed a new
pitch adjustment rule for DBHS to enhance the optimization capability of
HS. Results show that DBHS outperformed the discrete PSO algorithm and
standard HS algorithm. Furthermore, they extended DBHS to solve the
Pareto-based multi-objective optimization problems (Wang et al. 2011).
Moreover, Wang et al. (2013) presented modified version called an improved
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adaptive binary search algorithm (ABHS). They used different benchmark
functions and 0–1 knapsack problem to evaluate the performance of ABHS.

Kong et al. (2015) developed a simplified binary harmony search (SBHS)
algorithm to tackle 0–1 knapsack problems, which is an important subset of
combinatorial optimization. Results from SBHS show that it can obtain
better solutions than most well-known state-of-the-art HS methods including
nine continuous versions and five binary-coded variants. According to
Ashrafi and Dariane (2011), the MS algorithm finds better solution than
genetic algorithm (GA), PSO, artificial bee colony (ABC), and HS algorithms.
The current MS algorithm is applicable only to problems with continuous
variables, and it handles only single-objective optimization problems.
Therefore, in this paper, we propose an MO-IMS algorithm for solving the
multi-objective optimization problems having integer variables more effi-
ciently and effectively.

Melody Search Algorithm

Ashrafi and Dariane (2011) developed a new meta-heuristic algorithm
inspired by the HS algorithm inspired by musical performance process
where group of musicians attempt to find better series of pitches in
melodic line. In this algorithm, named as MS algorithm, group music
improvisation processes have been mathematically modeled for solving
single-objective optimization problem. MS adopts the basic concepts
applied in HS algorithm but its structure is different. Each melodic pitch
represents a decision variable of the real problem and each melody repre-
sents a solution of the optimization problem. Unlike single-harmony
memory as in HS, MS algorithms have several memories. Each of these
memories is called as Player Memory (PM). Hence, several solutions are
generated and evaluated in the same computational step. Several series of
pitches are performed each time while each player sounds a series of
pitches within the melodic line. An interactive relation between players
enhances efficiency of MS algorithm. Each player sounds a series of pitches
within their possible ranges, and if succession of pitches makes a good
melody, then that melody is stored in the PM. Then melodic improvisation
step for each PM is performed. There are two phases in the MS algorithm:
in the first phase, each music player can improvise his/her melody without
the influence of others, while in the second phase, the algorithm acts as
a group performance by interactions of several players.

Proposed Multi-Objective Integer Melody Search (MO-IMS) Algorithm

To solve multi-objective problems having integer variables, Pareto domi-
nance scheme along with new improvisation process is incorporated in the
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proposed MO-IMS algorithm. The two important concepts used in multi-
objective optimization are Pareto dominance and Pareto optimality.

Pareto Dominance

Given two candidate solutions x1 and x2 from S, vector F(x1) is said to
dominate vector F(x2) (denoted by F(x2) � F(x1) if and only if,

Fiðx1Þ � Fiðx2Þ; "i 2 1; ::::;mf g (1)

Fiðx1Þ< Fiðx2Þ; 9i 2 1; ::::;mf g (2)

If solution x1 is not dominated by any other solution, then x1 is declared as
a nondominated or Pareto optimal solution. There may be other equally
good solutions but not superior than x1.

Pareto Optimality

The candidate solution x1 2 S is Pareto optimal if and only if,

Fðx2Þ � Fðx1Þ; :9x2 2 S (3)

Solutions that satisfy (3) are known as Pareto optimal solutions and Pareto
front is obtained from fitness objective function values corresponding to
these solutions.

The parameters defined in MS algorithm are number of player memories
(PMN), player memory size (PMS), maximum number of iterations for the
initial phase (NII), maximum number of iterations (NI), and player memory
considering rate (PMCR).

Algorithm 1 MO-IMS: Pseudo code of multi-objective integer melody search
optimization

Initialize Parameters {PMS, PMN, PMCR, PAR, NVAR, NI and NII}

First Phase

1: for PMN times do

2: Melody Memory initialization

3: for PMS times do

4: PM  {new random melodic vector x with fitness F}
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5: end for

6: end for

7: repeat {

8: start of improvisation process

9: for j from1 toNVAR times do

10: Memory consideration

11: if rand()< PMCR then

12: index  int(rand()*PMS)+1

13: for i from1 to PMN times do

14: x
0
i ¼ PMðindex; iÞ . selection from melody memory

15: end for

16: Pitch adjustment

17: if rand()< PAR then

18: if rand()< 0.5 then

19: if index> 1 then

20: index index� 1

21: for i from1 to PMN times do

22: x
0
i  PMðindex; iÞ

23: end for

24: else

25: break

26: end if

27: else

28: if index< PMS

29: index indexþ 1

30: for k from1 to PMN times do

31: x
0
i  PMðindex; iÞ

32: end for

33: else

34: break

35: end if

36: end if

37: else
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38: break

39: end if

40: Randomization

41: else

42: x
0
i ¼ SLi þ randðÞ � ðSUi � SLi Þ . random selection from
solution space

43: end if

44: end for

45: end of improvisation process

46: F  fitness(x)

47: update_PM(x,F)

48:} until(NII is reached)

49: while (iteration<NI)

50: Second Phase

51: Improvisation of new melody vector from each PM

52: Update_PM . if applicable update PM
with new melody vector

53: Paretofront  {pareto front evaluated from new melodic vector’s
fitness}

54: define new range for variables

55: end while

56: return Paretofront

The main steps in MO-IMS algorithm are summarized in the following table.
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The first step comprises of initializes the parameters PMN, PMN, PMCR,
NII, and NI. It is mentioned in start of Algorithm 1.

Each music player searches the best arrangement of pitches in the melody
separately in the first phase. Lines 2–6 of Algorithm 1 specify this step. In the
primary part of the initial phase, the player memories are initialized. Melody
memory (MM) has several player memories:

MM ¼ ½PM1;PM2; ::::; PMPMN� (4)

where

PMi ¼
x1i;1 x2i;1 :: xDi;1 F1i
x1i;2 x2i;2 :: xDi;2 F2i
: : :: :

x1i;PMS x2i;PMS :: xDi;PMS FPMS
i

2
664

3
775 (5)

xki;j ¼ LBk þ ðUBk � LBkÞ (6)

where i ¼ ½1; :::; PMN� j ¼ ½1; :::; PMS�; k ¼ ½1; :::;D�
where D is the number of decision variables and [LBk;UBk] is the range of

kth variable, which is not changed in the initial phase but is changed in
the second phase.

In the second phase, a new melody vector is improvised for each PM. The
new vector of decision variables from each PM, Xi;new ¼
x1i;new; x

2
i;new; :::; x

D
i;new

� �
is generated from improvisation rule that consists

of the following three parts

• Memory consideration For selection of every element of new melody
vector for each player, player memory consideration rate (PMCR) deci-
des whether it should be selected from corresponding PM or from the
solution space as follows:

xki;new ¼
xki;1; x

k
i;2; :::; x

k
i;PMS with probability PMCR

xki;new 2 S with probability ð1� PMCRÞ

(
(7)

where k ¼ 1; 2; :::;D

○ Pitch adjustment After memory consideration, value of the currently
selected element in the new melody vector is checked for possible pitch
adjustment as follows:
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Pitch adjusting decision for xki;new  
Yes with probability PAR

No with probability ð1� PARÞ
�

(8)
where k ¼ 1; 2; :::;D

If pitch adjustment decision is yes, then the corresponding neighbor value
is selected.

• Random selection
With probability (1-PMCR), values for new melodic vector are randomly
selected from the given ranges of variable.

Melody improvisation process is described in lines 8–45 of Algorithm 1.
Updation of each PM: In this step, melody memory is updated based on

the fitness value of the newly generated melody vector. If fitness value of
newly generated melody vector is better than the fitness value of any of the
vector already stored in the melody memory then, that vector is replaced by
the new melody vector.

Possible ranges of variables for next improvisation: In the second phase,
for the next improvisation process, new possible ranges of variables are
calculated. This step is used to increase the possibility of composing
a better melody vector in the second phase:

for k ¼ 1; :::;D times do
LBk

l ¼ minðx1;k; :::; xPMN;kÞ
LBk

u ¼ maxðx1;k; :::; xPMN;kÞ
end

(9)

Performance Metrics

Several performance metrics are used to evaluate the performance of the
MO-IMS algorithm. Here we used the following performance metrics to
compare the performance of MO-IMS algorithm with multi-objective IHS
algorithm.

Overall Nondominated Vector Generation (Vnd)

This metric shows how many nondominated solutions an algorithm finds
in a particular run (Van Veldhuizen and Lamont et al. 2000). If we
represent the computed nondominated solution set with Q and the true
Pareto-optimal set with P. Then, ideally overall nondominated vector gen-
eration of Q is equal to the total number of solutions in P. It is denoted
by Vnd
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Vnd ¼ jQjc (10)

where :j jc is cardinality operator.

Overall Nondominated Vector Generation Ratio (VRnd)

This is the ratio of N (the number of solutions in Q) to the number of
solutions in P. It indicates how close the computed and true Pareto fronts are
to each other (Van Veldhuizen and Lamont et al. 2000):

VRnd ¼ Vnd

P
(11)

The value of VndR varies between 0 (worst) and 1 (best).

Error Ratio (Er)

It is a relative error ratio of the set Q with respect to the set P. It indicates
how many solutions in the computed Pareto front set Q are not in the true
Pareto front set P knowles2002metrics:

Er ¼
PVnd

i¼1 ei
Vnd

(12)

ei ¼ 0 if a vector in Q is also in P
1 otherwise

�

Zero error ratio is the ideal value indicating 100% correspondence between
Q and P.

Set Coverage Metric (SCM)

Set coverage metric, as proposed by Zitzler and Thiele (1999), calculates the
relative spread of solutions between the computed nondominated solution
set(Q) and true Pareto-optimal set(P):

CðP;QÞ ¼ jq 2 Q; 9p 2 P : Pqjc
Vnd

(13)

The metric C(P,Q) calculates the proportion of solutions in Q which are
weakly dominated by solutions of P.
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Generational Distance (Gd)

This metric, as suggested by Van Veldhuizen and Lamont et al. (2000), finds
the average distance of the computed nondominated solutions from the true
Pareto optimal set. It is formulated as follows:

Gd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 d
2
i

q
N

(14)

where N represents the number of computed nondominated solutions and di
is the Euclidean distance from the ith solution(qi) to the nearest member of
P. di can be calculated as follows:

di ¼ min
j

qi � pj
�� �� (15)

where qi is the ith solution Q and pj is the jth member of P.

Maximum Pareto-Optimal Front Error (MPFE)

Van Veldhuizen and Lamont et al. (2000) also proposed maximum Pareto-
optimal front error as another performance metric. This metric gives the
maximum error band that, when considered with respect to Q, covers every
solution in P. This is basically the maximum value of di from Equation 15. It
is calculated by the following equation:

MPFE ¼ max
j

min
j

qi � pjj j� �
¼ max

i
ðdiÞ (16)

where qi 2 Q and pj 2 P. Ideal value of this metric is zero. This metric gives
a broad idea on the closeness of Q to the P.

Spacing (S)

This metric, proposed by Schott in 1995, gives the measure of closeness of the
solutions to the uniformly spread and is calculated with a relative distance
measure between consecutive solutions in Q:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Vnd

XVnd

i¼1
ðdi � d̂Þ2

vuut (17)

where Vnd is same as in Equation 1, di ¼ mink
PM
i¼1

qim � qkm
�� ��� �

, k ¼
1; 2; :::;Vnd and i�k. M is the number of objectives being optimized and d̂
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is the mean of all di. q in di is a solution from set Q. An algorithm having
a smaller value of S is better in terms of uniformly spread.

Spread (Sp)

Zitzler, Deb, and Thiele (2000) proposed a metric which measures the extent
of spread in the computed solution set Q which they formulated as follows:

Sp ¼
PM

m¼1 d
e
m þ

PVnd
i¼1 di � d̂

��� ���PM
m¼1 dem þ Vnd � d̂

(18)

where Vnd is the number of solutions in Q, di is the distance between
neighbor solutions in Q, M is the number of objectives being optimized,

and d̂ is the mean of all di. The parameter dem is the distance between
the extreme solutions of P and Q corresponding to the mth objective.

Simulation Setup and Results

We performed simulation in MATLAB to demonstrate the performance of
MO-IMS for two test functions. Results obtained from proposed algorithm
are compared with MO-IHS. The MO-IMS algorithm parameters are as
follows: PMN = 3, PMCR = 0.9, PAR = 0.9 and rand() is a random number
in the range [0,1]. The parameters of MO-IHS are as follows: HMS = 12,
HMCR = 0.9, PARmin = 0.4, PARmax = 0.9. Pareto front obtained from
algorithms are shown for each function. The average and standard deviation
of results obtained from 10 independent experiments for all performance
metrics are represented in tables. The values in bold font are the best average
result with respect to each performance metric in the tables.

Test Function 1

This function was proposed by Deb (1999) as follows:

F :
Minimize f1ðx1; x2Þ ¼ x1
Minimize f2ðx1; x2Þ ¼ gðx1; x2Þ:hðx1; x2Þ

�
(19)

where

gðx1; x2Þ ¼ 11þ x22 � 10:cosð2πx2Þ

hðx1; x2Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
f1ðx1;x2Þ
gðx1;x2Þ

q
; if f1ðx1; x2Þ � gðx1; x2Þ

0; otherwise

(
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and x1 2 ½1; 100�; x2 2 ½�300; 300�
For this experiment, total number of iterations is 1000. Figures 1–2 show

the obtained Pareto front from MO-IMS and MO-IHS along with true Pareto
front, respectively. Continuous line in each picture shows the true Pareto
front for test function 1. MO-IMS and MO-IHS are able to obtain nondo-
minated solution along the true Pareto front. The figures show that the
proposed MO-IMS algorithm covers the true Pareto front with large number
of points (i.e., nondominated solutions) compared to the MO-IHS algorithm.

Figure 2. Pareto front obtained from MO-IHS for test function 1.

Figure 1. Pareto front obtained from MO-IMS for test function 1.

220 J. SHAFIQUE ET AL.



Performance of both algorithms is compared using performance metrics, as
shown in Table 1. MO-IMS performs better for generational distance, spacing and
maximum Pareto-optimal front error, spread, overall nondominated vector gen-
eration, set converge metric, and overall nondominated vector generation ratio
metrics.MO-IHS performs better for error ratiometric with respect tomean,MO-
IMS perform better than MO-IHS for this metric when considering standard
deviation. MO-IMS has an average value of 54.1 for ONVG and 45.5 for SCM
performance metrics. This means, on average, MO-IMS results in 54 nondomi-
nated points of which 45 points are on the true Pareto front. MO-IHS has an
average value of 48.6 for ONVG and 5.8 for SCMmetrics. This clearly showsMO-
IMS performs better than MO-IHS in terms of ONVG, SCM, and other perfor-
mance metrics.

Test Function 2

This function was proposed by Deb (1999) as follows:

Minimize ¼
f1ðxÞ ¼ 1� exp �Pn

i¼1
ðxi � 1ffiffi

n
p Þ2

� 	

f2ðxÞ ¼ 1� exp �Pn
i¼1
ðxi þ 1ffiffi

n
p Þ2

� 	
8>><
>>: (20)

where

Table 1. Performance metric for test function 1.
Algorithm MO-IMS MO-IHS

Generational distance
Average 0.2895 1.0704
Standard deviation 0.7397 1.1430

Spacing
Average 1.4001 1.7585
Standard deviation 0.5485 0.7068

Spread
Average 0.4435 0.5102
Standard deviation 0.0824 0.0937

Maximum Pareto-optimal front error
Average 4.5789 10.3491
Standard deviation 9.5345 10.0950

Overall nondominated vector generation
Average 54.1000 48.6000
Standard deviation 7.8804 11.2862

Set converge metric
Average 45.5000 5.8000
Standard deviation 18.7394 18.3412

Overall nondominated vector generation ratio
Average 0.5356 0.4812
Standard deviation 0.0780 0.1117

Error ratio
Average 0.8102 0.1000
Standard deviation 0.3063 0.3162
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xi 2 ½�400; 400�

i 2 ½1; n�
In this experiment, 1000 number of iterations have better result for most of the
performance metrics as shown in Table 6. Figures 3–4 show the obtained Pareto
front from MO-IMS and MO-IHS along with true Pareto front, respectively.
True Pareto front for test function 2 is shown by continuous line in each picture.
It can be clearly observed from the figures that the true Pareto front is completely
covered by the proposed MO-IMS algorithm with significantly large number of

Figure 4. Pareto front obtained from MO-IHS for test function 2.

Figure 3. Pareto front obtained from MO-IMS for test function 2.
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points (i.e., nondominated solutions) compared to the MO-IHS algorithm.
Comparison among two algorithms is done by using different performance
metrics are shown in Table 2. MO-IMS performs better than MO-IHS with
respect to generational distance, spacing, spread, maximum Pareto-optimal
front error, set converge metric and error ratio, overall nondominated vector
generation and overall nondominated vector generation ratio metrics. MO-IMS
has an average value of 149.7 for ONVG and 1 for SCM performance metrics.
MO-IHS has an average value of 26.2 for ONVG and 0 for SCM metrics. MO-
IMS performs better than MO-IHS for all the performance metrics.

Sensitivity Analysis

Impact of various algorithm parameters upon performance on MO-IMS is
studied in this section. Two experiments are carried out to show the parameters
effect on algorithm.

Effect of Variation in Player Memory Size

In this experiment, number of PM size is varied to check the performance of the
algorithm via the performance metrics. We perform simulation for three differ-
ent values of PMS, i.e., 6, 12, and 24. For each PMS, algorithm is run 10 times.

Table 2. Performance metric for test function 2.
Algorithm MO-IMS MO-IHS

Generational distance
Average 0.0014 0.0033
Standard deviation 0.0001 0.1099

Spacing
Average 0.0034 0.0336
Standard deviation 0.0005 0.8440

Spread
Average 0.3181 0.7476
Standard deviation 0.0502 0.5322

Maximum Pareto-optimal front error
Average 0.0327 0.0314
Standard deviation 0.0000 5.9136

Overall nondominated vector generation
Average 149.7000 26.2000
Standard deviation 10.4142 12.4405

Set converge metric
Average 1.0000 0
Standard deviation 0.0000 0.8540

Overall nondominated vector generation ratio
Average 5.1621 0.9034
Standard deviation 0.3591 0.4290

Error ratio
Average 0.0067 0
Standard deviation 0.0005 0.4420
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Test Function 1
Table 3 shows that PMS of 24 have best result in all of performance metrics.
This shows increasing number of PMS results in better results; however,
increasing PMS results in increment in simulation time. Results of PMS of 12
are near to the results of PMS of 24.

Test Function 2
With respect to generational distance, spread, spacing, overall nondominated
vector generation and nondominated vector generation ratio, error ratio
metrics, PMS of 24 has best average result as shown in Table 4. While the
PMS of 6 has best average result for set converge metric. For the maximum
Pareto front error metrics PMS of 12 has best average result.

Observation
The use of PM size of 24 gives better average results for test functions 1 and 2
with respect to most of the performance metrics. Therefore, PM size of 24 is
a good choice for the test functions 1 and 2. Generally, the increasing number of
PMS results in better results. However, algorithm takes more time by increasing
PMS. A larger value of PMS leads to more simulation time and small value of
PMS can degrade the performance of algorithm. Therefore, an appropriate
value of PMS should be selected according to the problem.

Table 3. Effect of variation in PMS for test function 1.
PMS 6 12 24

Generational distance
Average 0.0270 0.0294 0.0264
Standard deviation 0.0440 0.0440 0.0443

Spacing
Average 0.0708 0.0704 0.0654
Standard deviation 0.0550 0.0570 0.0581

Spread
Average 0.7181 0.7045 0.6886
Standard deviation 0.1742 0.1884 0.1744

Maximum Pareto-optimal front error
Average 0.2750 0.3034 0.2721
Standard deviation 0.4616 0.4584 0.4629

Overall nondominated vector generation
Average 16.8500 19.5500 22.7500
Standard deviation 5.1122 7.9636 9.6675

Set converge metric
Average 7.8000 8.9000 9.0000
Standard deviation 8.2437 10.7405 12.3884

Overall nondominated vector generation ratio
Average 0.1685 0.1955 0.2275
Standard deviation 0.0511 0.0796 0.0967

Error ratio
Average 0.4393 0.4039 0.3699
Standard deviation 0.3820 0.3852 0.4065
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Effect of Variation in Iterations

In this experiment, we varied number of iterations to analyze the effect of
variation in iterations number on the MO-IMS algorithm. Different runs
with 100, 200, 500, and 1000 number of iterations are carried out, while all
the other parameters are kept fixed.

Test Function 1
Table 5 shows the best average results for test function 1. It can be observed that
1000 number of iterations have better result in Generational distance, spacing,
spread and maximum Pareto-optimal front error. In case of set converge
metric, overall nondominated vector generation and overall nondominated
vector generation ratio metrics, 500 number of iterations have better result.

Test Function 2
In this experiment, 1000 number of iterations have better result for most of
the performance metrics. Results obtained from 1000 number of iterations
for generation distance, spacing, spread, set converge metric, ONVG, and
ONVGR are found better as compared to other number of iterations.

Table 4. Effect of variation in PMS for test function 2.
PMS 6 12 24

Generational distance
Average 0.0040 0.0051 0.0013
Standard deviation 0.0004 0.0022 0.0000

Spacing
Average 0.0340 0.0578 0.0031
Standard deviation 0.0067 0.0345 0.0003

Spread
Average 0.4028 0.4637 0.3101
Standard deviation 0.0778 0.1154 0.0255

Maximum Pareto-optimal front error
Average 0.0302 0.0300 0.0327
Standard deviation 0.0028 0.0030 0.0000

Overall nondominated vector generation
Average 16.1000 11.8000 158.3000
Standard deviation 2.1833 4.2635 6.8484

Set converge metric
Average 0.9000 0.6000 0.8000
Standard deviation 0.3162 0.5164 0.4216

Overall nondominated vector generation ratio
Average 0.5552 0.4069 5.4586
Standard deviation 0.0753 0.1470 0.2362

Error ratio
Average 0.0564 0.0486 0.0051
Standard deviation 0.0212 0.0449 0.0027
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Observation
As 1000 iteration proved better average results with respect to most of the
performance metrics for the test functions 1 and 2. Therefore, 1000 iterations
is suitable choice for these two test functions. Further increase in iterations
takes more computational time with little improvement in results. Generally,

Table 5. Effect of variation in iterations for test function 1.
Iterations 100 200 500 1000

Generational distance
Average 0.2380 0.1958 0.0402 0.0294
Standard deviation 0.2327 0.2087 0.0515 0.0440

Spacing
Average 0.3977 0.2287 0.1275 0.0704
Standard deviation 0.7531 0.1852 0.1819 0.0570

Spread
Average 0.9153 0.8953 0.8294 0.7045
Standard deviation 0.2760 0.2025 0.2951 0.1884

Maximum Pareto-optimal front error
Average 3.1256 2.3044 0.8484 0.3034
Standard deviation 3.3469 1.9309 1.2506 0.4584

Overall nondominated vector generation
Average 19.9500 20.8500 24.6300 19.5500
Standard deviation 6.8937 8.5303 4.6594 7.9636

Set converge metric
Average 0.9000 2.9000 12.4200 8.9000
Standard deviation 2.1981 6.5446 8.6037 10.7405

Overall nondominated vector generation ratio
Average 0.1995 0.2085 0.2463 0.1955
Standard deviation 0.0689 0.0853 0.0466 0.0796

Table 6. Effect of variation in iteration for test function 2.
Iterations 100 200 500 1000

Generational distance
Average 0.0069 0.0095 0.0058 0.0013
Standard deviation 0.0015 0.0056 0.0019 0.0001

Spacing
Average 0.1596 0.1599 0.0928 0.0035
Standard deviation 0.0893 0.1012 0.0724 0.0005

Spread
Average 0.6452 0.7158 0.5489 0.3343
Standard deviation 0.2355 0.1865 0.1857 0.0498

Maximum Pareto-optimal front error
Average 0.0249 0.0399 0.0310 0.0327
Standard deviation 0.0069 0.0329 0.0143 0.0000

Overall nondominated vector generation
Average 5.5000 5.6000 8.7000 151.2000
Standard deviation 1.7795 1.2649 3.6530 8.3506

Set converge metric
Average 0.1000 0.1000 0.4000 0.9000
Standard deviation 0.3162 0.3162 0.5164 0.3162

Overall nondominated vector generation ratio
Average 0.1897 0.1931 0.3000 5.2138
Standard deviation 0.0614 0.0436 0.1260 0.2880
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the performance of the algorithm improves with increasing number of
iterations at the cost of increased computational complexity. Therefore,
based on the problem in hand, a tradeoff between performance improvement
and computational complexity needs to be made.

Conclusion

In this paper, a new MO-IMS algorithm is presented for solving optimiza-
tion problems having more than one objective and containing integer
decision variables. Bi-objective test problems with several performance
metrics are used to compare the performance of the proposed MO-IMS
algorithm with MO-IHS algorithm. Results show that on average MO-IMS
performs better than MO-IHS for almost all the performance metrics. This
validates the use of MO-IMS for solving multi-objective integer optimiza-
tion problems.
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