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Abstract

Despite the advances in medical research on its treamenintensie public education o
prevention and control, the Buruli ulcer (BU) continues to lmeagor public health problem
that continues to overwhelm authorities in Ghana. Ghana iseitend most endemic country
after the Ivory Coast at the global level. While it is comnkaowledge in literature that the
disease can affect people of all ages, the mode of trasismiis still evasive. The studied
model is expressed as a system of hyperbolic (firstrpyultial differential equations. We
first, employ a representation from the method of charetics and a fixed point argument
and also prove the existence and uniqueness of solutioms tmhlinear system. We establish
the mathematical well-posedness of the time evolutiablpm using the semigroup theory
approach. We then determine the basic reproduction Ratibhen we present a numerigal
scheme to model the dynamics of BU. The simulationlt®@showed that Mycobacterium
ulcer has peak period of spread and reduced subsequently.

Keywords: Buruli ulcer, SIR, hyperbolic transport, finitéference schemes, simulations.

1 Introduction

Buruli ulcer, also known as Bairnsdale ulcer is a chraniglent, and necrotizing disease of the
skin tissue caused by Mycobacterium ulcerans (M. ulegrdh. The disease usually begins as a
painless nodule or papule and may progress to massive skimatidog?]. It also appears that
different modes of transmission occur in different geogegtand epidemiological setting [3].
Though the disease can affect people of all ages, ehildss the 15 years of age are particularly
more vulnerable in many tropical and subtropical countdgsHuruli ulcer causes serious pain as
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well as permanent physical damage. The physical sigonallisnark the individual and deprive
them of societal standards of beauty. Additionally, ptajsideformities may prevent the
individual from participating in any economic and sociaivétes.

The study of Buruli ulcer continues to be an important problemathematical epidemiology as
outbreaks of M. ulcerans continues to pose a public healdtlenbe [5]. The mode of
transmission of the ulcer is not well understood, howevederase near aquatic environment has
been identified as a risk factor for the ulcer in Afric&6[4The modes of transmission vary with
geographical and epidemiological settings [3]. In Africas iestimated that almost 30, 000 cases
were reported between 2005 and 2010 [7]. Buruli ulcer is arsgdisfiguring disease which
affects all age groups but particularly children less theydars of age in many tropical and
subtropical countries [8]. The disease has emerged ovegraitdwo or more decades, especially
in Central and West Africa and has been confirmed by latmyrégst in 26 countries with reports
in other countries around the world [3].

The known common of model for the spread of an infectious shisisathe Susceptible-Infected-
Recovered {IR) model, which is .based on the categorization of individualdiénclasses of
susceptible (those at risk of getting the infection)edtéd (those with the ulcer) and recovered
(those cured of the ucler). TI®IR models of Buruli ulcer developed at the moment are time
dependent models which lead to system of ordinary differerfahteons (ODESs), see [9]. In
order to model the pathway of infection clearly, we propos®del which considers the role of
M. ulcerans introduced to the water reseviors by disturbedamment and stratify the population
with age.

Age is an important consideration in the modeling infectidisease that depends on age.
Different age groups of populations may have different reptaguand survival capacities. A
disease may vary with respect to infection and mortalitydifferent age groups [10]. In reality,
individuals of varying age groups may exhibit differenéh&éviours and immunological
competencies. Behavioural and immunological changes areiwitabntrol and prevention of
many infectious diseases and in particular the Buruli ueung individuals are known to be
more active in interacting with or between populations, anddibease. This paper therefore,
intends to use an age-structured model to study thadpfeBuruli ulcer.

At the heart of an age-structured model, is a coupled myefehyperbolic partial differential
equations (PDEs). The introduction of a system of PDHeadsof a system of ODEs gives rise to
the interconnectivity of the problem greatly. Although usauge-structured models to study the
spread of diseases is not something new, to the bestrdnowledge, no such model has been
proposed for the Buruli ulcer. The equations which account égtbwth of the M. ulcerans will
not be age structured and therefore, will remain dmary differential equations.

Further background of age-structured models, we entrealers to see [11,12]. The earliest
models of age structured populations, due to [11,12] developeduraldiion for a partial
differential equations approach to modeling continuum agetsteiin an evolving population.
new drive of research in age structured models came thpthé pioneering work of Gurtin and
[13] for nonlinear age structured models. Barbu [14] developathematical theory behind age-
structured populations [10] and studied nonlinear age-dependentajp@pwand predator prey
dynamics.
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The increasing mathematical complexity of biologicaliéss nonlinearities and age structure in
biological models, has brought about new dimension of analyzimg. tB@e of these powerful
tools is method semi-groups of linear and nonlinear operaid@anach spaces.

This paper sought to develop an age-structured BU model and pravite theoretical and
numerical analysis of the model. The system differertjalations along with initial and boundary
conditions that form the disease model will be discussedwW further prove the existence and

uniqueness of the solutions Id and L™ to our PDE system using the fixed point theory on a
representation derived from the method of characterigtioslly the numerical simulations and
its implications will be discussed.

2 TheModd and Its Analysis

2.1 Model Formulation

We consider the human population divided into three subgroupsudteptible individuals who

are do not have Buruli ulcer but are at risk of gettingpfgcted individuals with the ulcer and the
recovered, who would have been treated of the disease. \W#tuh category, the age and
population changes over time are taken into accountntihoer of people in each subgroup are

expressed aS= g a ), | =l (@,t) andR= R g ), each variable is a function of age

and timet. In order to use a dimensional approach in this model,oneally apply units of
weeks for the age of humai@ and days for the simulation tinte However, conventional units
of years are also used in some instances to elucidatgéhef human population. The number of

L)
susceptible people between, say @yeand @, at a timet is expressed a§ S(a 1) deapplying

a
convectional understanding that all humans frarf g,year toa = &, +1lyear takend, year
old. A similar approach is also used for the infected andvered humang (a,t)and R(a, t)
respectively. There is one water bug compartment of imEecM. ulcerans denoted by
B, = B, (1) . The four quantitiesS, |, R, B, are dependent variables of the model. Buruli ulcer

is considered a water-borne disease and in most casesnigsing of the disease is through
contact with contaminated water bodies ([15], [16]). Toipwarious factors that influence the
dynamics of a BU epidemic, we have put in the model ara extefficient function which maybe
constant or may vary with age or time (or both). Auwised environmensitaken into account in

the model formulation. We include a human demographic teweat term/\(a,t) alongside
natural death ratgs, (a).

The possible interrelations between humans, the M. ulcen@nsepresented by the schematic
diagram below (Fig. 1).

The susceptible individuals become infected through interaetitig the environment with M.
ulcerans at ratg3,, (a) B, (1) /(k, (8 + B,()) with M ulcerans concentration measured with
respect to infectious dose denotedyb¥he human population is suffers a natural per capita
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mortality rateuy(a). Individuals recover from BU at a rat4(a) which depends on age. M.
ulcerans bacteria experience a natural removal raé, adue to death or predation. A strategy

g(a, t) that can help reduce the spread of BU that represent antibieditment was included in

the model. This reduces the duration and quantity of infebtedans concentration to the
concentration of M.ulcerans bacteria in the environment. &dgly the age-time domain

P =(0, A)x (0,W) with interventiong(a) . With the above notations, we study the following

infected-age- structured model with Mycobacterium ulcetaassmission. See Table 1 for a
complete description of the model quantities and theisunit

g(a) R(a 1)

/\(_a:t)’ S(at) Mat) S(a 9 R |(a t)M’ R(a,t)

My (2) l My (@) My (@)
n M. ulcerans Ov
—> —>

Fig. 1. Proposed transmission dynamics of the Buruli ulcer between humansand M.
ulceransin the environment

95,05, o B, (1) _
L AT VL CLVACE LS
o, a_ B. () _ e _ ,
o T P @ e XA (3Na)-A0- dad (ad-p da) La) D)
Rea®R=p-g@i)i@y+p,0@dia)-p @Ra4-0(3Ra) . (@)
dB, _ 7 _
- !rn(a,t)da J,B, (1 - (2d)
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1
For the above equatior@ = 7 is the coefficient introduced to balance the units of @ge

days
in weeks and timd in days. With respect to infected class, the multiie factors,ol(l— g)

and 0,Q represent the rates of recovery for the individuals whe I no antibiotic treatment
and those who have undergone such treatment respectively.

2.1.1 The boundary and initial conditions

Buruli ulcer disease does not transmit vertically fromepato infants and therefore we can infer
that children have some immunity. In this regard, newbarifisappear in theR class inSIR
model. This is significantly different from mo&, |, Rmodel. We translate this consideration to

state the boundary conditions.
S(0,9=0,1(0,t)=0, R(O,t)=j(S(a 9+ I(ad+ Ra)) f( 3 dz (2e)

where the fecundity function f is stated as

lsinz(n(a_—w)j if 15<a< AC
fa)=15 30

0 otherwise

The fecundity function f (.) is stated here in units of per year for easiedabdity and assumes

that from age 15 to 40 years a woman will give gehemgilve birth to three children, since
a+t

J f(a)da=3, where a’ =60 is the largest age allowed for the simulation [17].
0

The initial conditions are stated as
S(a0)= $(3.1(a,0)=1,@).R(2,0)= R(dand0<B,,<B. (20
2.2 Abstract Cauchy Problem For mulation

We assume that all the parameters are nonnegativ, j.¢ 0,4, > 0,3, > 0,6, > C.
The parameters fulfil the following assumptions.

(1) Théunctionsp,(a), o,(a),7(a)0 L (0,0), wherei= 1,2,.
(2) Thdunction ¢(a) is nonnegative and integrable.
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2.2.1 Abstract cauchy problem

In this section we seek to deal with quantitative properti€2a)-(2d) as in [17,18]. In order to
undertake this, we consider the Banach spaces. Charactiizespace of functions

Y =Rx [}(0,00)xR x L*(0,00 ) Rx L*(000),

Endowed by the nornﬂqﬂY = 23:||¢p||L1;
i=1

where @= (Q,@,@)r Y. Let us denoteY, the positive cone ol . It is well known that
(Y,| || |Y) is a Banach space. Let A:D(A)Y - Y be a operator defined by
Ap=—@'- 4, @, with the domain

Table 1. Model parameters and the state variables

Quantity Descriptions
S( a t) Susceptible humans of ag@ at time{ divided uniformly over all
ages
| (a,t) Infected humans of ag@l at time t
R( a, t) Removed and immune humans of ageat time {
BH (t) Mycobacterium ulcerans population
/\(a, t) Recruitment rate of human population of ageat timet
g ( a, '[) Antibiotic treatment rate for humans of agk at time t
:8 Contact rate of MU at agél
H
f ( a) Maternity rate
g(a) Rate of waning immunity of human at age
k Saturation constant of MU at agg
H
uH Natural mortality rate of human at age
Recovery rate of untreated Buruli ulcer
2]
0 Recovery rate of treated Buruli ulcer
2
n Age — specific contribution of infected humanshe &nvironment
SL Clearance rate of MU in the environment
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@) |0
D(A) =< 9=(¢,8,¢)0W"(0,d R*) and @ (0)=| 0
@) | %

[If@[a@+a@+a(d] da

the function F : DA - Y defined by

By

, A-B, kH+a4¢1—uH<q+9¢e
B
Fla|= IBHﬁﬂ_ﬂH(az_pl(l_g)wz_ng(az '
2 w * By
pl(l_g)%-"ng(az_(ﬂH +9)¢3

F, = T/]@da
0

Let us consider that

DA= X,.
Now by carefully observind S(t,.), I(t,.),R(t,.), B, (t))in (2a)-(2d) together with
u(t)=(0,0,0S(,.),1 ¢, )R¢,.)B ¢))

One obtains thati(t) satisfies the following abstract Cauchy problem

du

ot = Au(t) + F(up), t>1, (2.21a)
together with the initial dat&l(0) = y=(0,0,0,§ ,|, ,R N0 ¥
We also take into account the positive cones

Y, =[RTR[LL0,0)], Yo =Y,n Y.

Theorem 1There exists a continuous semifl{(\U (t))}t>oon Y, into itself such that for each

yUY,,, the mapt — U (t)y is the unique integrated solution ¢f.213 with initial data y ,
namelyt — U (t)y satisfies
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t
() JU(s9)ydsd O A0 &0,
0
t t t
i) JURy=x+ AUy ds § UPYc
0 0 0
Moreover we have for eacl L1, .

lim sup| Ut || y< N
to oo /'IH
Proof:

Let us take into consideration that for edshcentered af) . One gets the existence of maximal
positive semiflow for (2.21a) olY,, into itself. It remains to prove that this semiflosvglobally

defined. In order to achieve this, lef [1Y], be given and recall that

U®)y=(0,0,0S(.),1 ()R-
Also let us consider the quantity
N\
M40,

QW =uyy=[ St da| (tadaf RtacB,®)s
0 0 0
the total population at timé. Then it satisfies the differential inequality

imsuplU €] ys - 0Y0 Y, =4, QO

H

Thus the mag — Q(t) cannot blow up in finite time and the global existence lrdsliows.
Let us in addition, notice that, from this inequality one gets

. N
Ilr? sup|U ¢)y]| y< e OyOdY, .
— 00 H
One the other hand one has

dQ(y

dt :/\_/'IHQ(t)

2N-,.
So that
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nh

imin Ut y||ysﬂA, OyoY, | B, (t) <

H H
This completes the proof of the result.
2.3 Equilibriaand Their Stabilities

Let 77 =max{n}, n = EeSSUP «)

invariant for the system (2a-d)

/7‘ . It is easy to demonstrate the following set is by

wes LR Sap] (ar] Rap @l 8Os (2.232)

System of equation (2a-d) always has the disease fregbeaqui EO(/\e”Ha,o,o,o). To simplify

expressions, we introduce the following notations

~[ta+ () dv
ma)=e"@e?

Let (S(@), I (8, R(3, B) represent any arbitrary endemic equilibrium of the modetij2a
This equilibrium satisfies the following equations

dS (9 _ _ B, _ T\ 2.4a
da =N@D-A @ S(A-H (3 SO RR X (2.43)
di'(a) _ B, _ e . e w (2.4b)

ia ﬁH(a)K*(a)wLa*S’(a) H(3l(3-pA-d 13-, R 3
B - pa-g@)r @+p9@d (-4 (AR(3-0(3R 3 (2.4¢)

= @ o, 2.4d
ddit*zgm (@)da-d,B, =0 (2.4d)

Solving the second and fourth equations of (2.4b)-(2efgectively, leads

I"(@) =1"(0)r(@),

* 1 < *
B, =— | nl (a)da.
5]
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Let

R =22 [in(a ()] da (0.48)

According to [16] R, in (2.4e) can be regarded as the basic reproduction nuwhtiee disease
and explained as follows. Since the total infectivity attiimis the sum of the infectivity in the
compartment and the Mycobacterium ulcerans compartmem!eﬁneF{) = R + Fg where

R = [ S, (973 o

is the number of secondary cases generated by individuthe infective compartment, and

N
SO =—— is the number of susceptible individuals in the absencthefdisease. The term

Hiy

a

- E[(ﬂH (V)+0,(1-g(WV))+p,g(V)) dv
ma)=e

infected class.

is the survival probability as a function of agen the

The reproduction number of the infectious caused by the fgeobacterium ulcerans is
_Bi < .
RE, =5 SELE X
0

Now we consider the existence of the endemic equilibiiam (2.4b) and (2.4d), we obtain that
the equilibrium level of susceptible individug satisfies the following equations

1+oo
k +—
§:H+QQWMM

%IWMM

(Ha(B+p.(1- g A+, I 8) (&

3Existence of the Solution to the State System by Method of
Characteristics

We determine solution of the system applying the methathafacteristics [19]. By using Banach
contraction mapping principle, we prove the existence and uméggeof the solutions of the
system. To compute the solution representation for themsyfa)-(2b), we add new notation to
the right hand side of the partial differential equatioDER):
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- _ B.(H) (3a)
f(B,(1),S(ad, Ra)=A B (—— L t+0( p R,a)
1By (). S(a D al) (a} ( k,(a)+ B, () ¥ a)to(

fxmaxaaommo,mam:amap@%géar$arp4r gay (arp, ¢ax(a 0

fy(S(a 9. I(at). Rad dad=p (1 d(a)) (app, da)(a)yé(aRa: (30)

A notice was made that/, () S(a 9, 4, (@)1 (a,t)and £, (&) R(a 1) were not part of the

f, for i =1,2, 3 terms. They were added in the left side of the thretiapdifferential equations
(2a-c) to make use in the representation of the soluticedbas characteristics.

Let B be chosen such that

[s(dda< B[ |(3dx Bf R nda |
and0<B,,<B,

The state solution is defined as
Y={(S LR B)OI(E(Q, T LO, A)fx (L(0,T)

supf|3a)1 da2 B Suﬁi (I atda2 ,
sup[|Ra)|da=2 g B()<2 B

By applying the method of characteristics, we can determhi@eepresentation of the solution
and then use that representation to construct the mapempleyed in the fixed point argument
for existence and uniqueness. Now we define a map

L:Y = Y suchthat

LELRB)=(L(SLRB) L(SIRB) M SIRB,,LSIRB

where L is associated with equation (2a) ahdis associated with equation (2b) and where
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t
—.([,uH (ar-at+a) drso( aal)
e

t
t —I,uH (ar-at+a)drx
+fe

0
(f,(B,(s9), Sast aat}

R(as+ a—at 9)) ds
if a>at

(3d)
L(S LR B)(a9=

1 ae_ZuHa(r)d,x
a

0

(1,(B, G192 gt g g FAE §)
a a a

if a<at,

t
—0/1H (ar—at+a)dr,0(a_m)
e

t —'tf,uH (ar-at+a)drx
+fe*
0
(f,(By(9),Sas+ aaty a3 aa trs

glas+a-at 9ds
L(S LR B)(ad=4if a>at

[1ja - Dar
Lhje:
a

(5,8, I8 539y o FIEF )y
a a a

s+at-a
g(s——))ds
a

if a<at, (30
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L(S, LR B)(a 9=

with

t
—O,uH (ar—at+a)drpo(a_m)
e

t —j,uH (ar-at+a)drx
+fe*
0
f,(S(ast aat 3 (s aaty R & ag ,t)
glas+a-at 9)) ds
if a>at

B g
— J.e S
a

0

(F,(S(s319178) (P98 g FAE 8 g
a a a

s+at-
g(s,Ta))ds

if a<at,

L.(S. LR B,)()= B, & +[[ &y (a} dac

A fixed point of the map L was derived, meeting the conditions

(S LRB)=(L L, L, L)S LRB)

(39)

with each one ofS(at), I(at), R a ) and B, being positive, will be a solution
(S 1LR B)=(S | R B)( gto the system of the model.

Theorem 2: (Existence and Uniqueness of solution). gFbfW as defined in (2.23a) and

sufficiently small, there exists a unique solutit8, |, R B, )to the system (2a) —(2c) with
boundary 2e and initial conditions 2f

Proof : We prove that the map

LY - Y

2310



British Journal of Mathematics & Computer Scien€&6}, 2298-2319, 2014

stated above is a strict contraction. Note that the fumcfio f, and f; used in theS, I, R

equations are Lipschitz in their arguments with the Lipsatdizstants base on coefficients and
parameters from our model and also on B, an addition to the bour8s lgriRfrom the setY .

The definition of the mafL , was given to show that L maps Y into Y and the definitiothef
Li functions fori =1, 2, 3was expressed as

fA|Li(S, IR B )(afda DBW B2 |

A A
where the singleBin the first inequality obtained from the boundfjﬁo( a daJ. L( 9 daor
0 0

A

IR)(a) da respectively fori =1, 2, 3.By the factW is sufficiently minimal, then the above
0

estimate is less than or equal to 2B.

In an addition forj =1,2,3

ILi(S,1,R B,) < sup{B,}+ DBW<2 E.

The constants D1 and D2 hinge upon the coefficients and the pgararimtethe model. Also for
D to be sufficiently small, we get the estimates aboekhmmce, the L maps Y into Y.

Note that for the contraction property, foi =1,2,3 we take into account

JIL(s. 1R B)- (S, L R, B,J(a) d

There is a need to examine some of the terms on the model ssch

B, (a)h,(:)H—-l-(tl)EH(t) S(a ) and in specific their differences. For instance, we have
Buu(®) o _ S,(af) k| Bi= BJ()
c@a0 T e+ 8.0) X

and consider from equations (3a) and (3b). In order teerttangs simple, we show an estimate of
suchatermfoa>at in L(S, IR B,)(a )

2311



British Journal of Mathematics & Computer Scien€&6}, 2298-2319, 2014

t
=y, (ar —at+a)drx

e S

o t—>
O —y

B, (as+a-at 9( B.2(9

K, +B(3 ° T a0y

L Slastaat3k| B~ BI(X
(K +Bra(9)(K, + BL(Y

+f(as+a-at 9(R- R@ ¢ aa t} dsc
Note that we letS =a(S— )+ a and S,=Sthen O<-agt+a<a(s—-t)+a< a or

0<(s—-t)+a< Aand0<s, <W. In addition, the Jacobian for this transformation becomes
finite. Hence, we can now bound the estimate above by

[[Dsls,-Sl(s 9+ OB R s 5 ds
+D,[[Is(s 9 dfl BL 3- B( ¥ &

<DWsup[(|S - §+ B- B (ayc

+DNWsug[| B~ B.,| (0]

In the above equations, we have substitqudand S2 by a andt respectively. Again, the
constantSDk for k =3,..., 7 depend on the bounds of the coefficients. For termsctiasist of

the fractional parts, we have employed the 2B bound &otdims made up of tha fori=1,2
in the second term of 7 for integrals over (0,A)x(0, t) wige> at or for integrals over (0,A) x
(0, a) whena < at < aT. We can determine these estimates which lead
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LS. LR, B)-L(S, LR BJ(a)d

A
<DWsup[(|S,- 9+ B~ B(ayda DNwup| ,B- .8 ()
0
Similarly we estimate forj = 2,3 and for j =4, 5we have

L(S LR B~ L(S LR B ()
SWS:Jp'“ll— l,| @ tXHa+DQ Stuﬂ)Eh ~ Bt

where D,, has to do withy and 0.

By putting the work and carefully selectiMy sufficiently small, we obtain the contraction result
and therefore , desire fixed point to the system 2 —2d.

4 Numerical Simulations

We state briefly the numerical method employed in our sioms The equations for the
quantitiesS, | and R from (2a) —(2¢) from hyperbolic system of PDESs; in additio these,
we have one ODE foB, from 2d. Our choice of numerical method is a forwarcefilbackward

space finite difference [20]. For the convenience of our mede use the scalar one- way wave
equation.

@+a@ = f(a,t)
ot oa

where @ is a constant (that is the wave speed), tisahd X denote time and space, respectively.
The forward time/backward space scheme [20] for the abmgkel is expressed as

frofn

fn+1_fn
m m_a ml:q()ﬁn,)%)’

At AX

where N stands for the time index and m the space index in the ticheace grid. The stability
of our scheme is achieved by applying Courant-Friedrich-Levy (€Bbyition [20] to ensure a
necessary and sufficient condition and satisfies that
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alx < At

For a given spatial discretizatidhX , this produces a restriction on the time stefda< AX/ a
5 Simulations with no I nfected Individuals

Buruli ulcer disease requires more antibiotic in childitean adults. We model the rate of losing
immunity of humans at age a by

1/365for a< 15year ()

6(a) = .
1/2.363for a> 15/ear 6

The rate of waning is important because it influenagchoice of initial conditions

We assumed a pool of 20, 000 humans distributed uniformlytbeesge rang® < a < A, for

all ages a at =0. Therefore, all 20, 000 humans are distributed to teeegiible and removed
classes. Based on the rate of losing immunity conditionsHitdren and adult, it requires a year
for a newborn baby to lose his or her immunity and become stitseeto Buruli ulcer. In this
regard, we initialize everyone with age less than or equahéoyear old in the removed section
and everyone older than one year old in the susceptiblersetlis leads to the initial conditions

Oif O<a< 40weeks
d if a>40weeks

&am={

0if O<ac< 40weeks
d if a>40weeks

Wa®={

for the susceptible and removed population, respectiVélg.numerical value of the age density
d in the initial conditions depends on the number of humads@ numerical resolution of the
age variable.

By applying numerical and having age resolution in weekswillethen have to have a fixed

density d for each age for< @ < 40, given by

= 20,000 (humans) = 8.33 humans/weel
50 (weeks/year 60 (year)

This provides the values of d in the initial conditions &{ra 0) and R(&, 0). Given the age

resolution of 1 week, that at the initial time with camtdensity d, this leads 40 to 333 humans of
each age a. In other words, we are saying that 20, Githtohans are distributed to the ages 0 to
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60 uniformly as20,000/60= 33humans. See Table 2 for a complete description of the
model parameters value and their sources.

Table 2. These are the values of the model parametersin the simulation

Parameter Value/Range  Sources
A(a,t) 0 Estimated
g(at) 0.8 Estimatel
B, 1.5/7 2]

K, 10° Estimated
,BH 0.00065 [2]

m (a) 0.45 [2]

0, 1/5 Estimated
yoX 1/3 Estimated
n 0.04 Estimated
d/ 1/5 Estimated

In Fig. 2 billow, we show the dynamics in the total popiala susceptible population, infected
population, and recovered population over time. We note hegeddcrease in the susceptible
population, which is attributed to humans who died of nhtaases during the period-line of the
simulation. Furthermore, we notice an increase in recoveopdlation, which is partly due to

antibiotic and partly due to natural recovery of MU by lans

This however, takes sometime for human to lose immunigetdyack to susceptible class and is
governed by the rate of waning of immunity. In Fig. 2b we baé the infection reduced with
respect to time and this could be inferred from people gettivayeness of MU and antibiotic
medications which are now available to BU patients. Even thdugte is no epidemic in this
simulation, our model indicates more than just the population dgsa®iur three-dimensional
surface plots in Fig. 3 depict the advantages of this agetsred model even in this basic
simulation. Each plot in Fig. 3 indicates the number of huraare agea in years at time t in
weeks; the colour provides the same information asi¢hght of surface. The number of humans
at a particular age is calculated by integrating each gefsit instanceS( g 1) from a years to

a+l

a+lyears byj S(_a, ] d_600nstituting the basic apprehension that humans fromaage
a

a+l
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Fig. 2. Shows simulations of BU with susceptible, infected population and recover ed
population dynamics over time

are taken to be a years old. Notice that we use autesobf 1 week in age, thus at the initial time
with constant densitgl . This leadsb2= 120humans of each aga. We also examined the

dynamics of B, over time which is shown in Figs. 2(d). It depicts a peakiwitew days of the

spread of BU and this is due to the fact that initiglgople do not pay attention to the
environment. Hence a greater accumulation in the engeeiarthe curve was observed.

To make excessive use of our PDE model, we can obsetle atodel quantities in Fig. 3 which

indicate how the quantities vary over time across diffeagje groups. For instance, in Fig. 3, in
the surface plot of the susceptible, infected and recoveopdlation, the height (the vertical

coordinate) at poin{a, t) is the number of susceptible, infected and recoveeegplp of aged

at timet as the height of surface respectively. Since the subteptnd infected populations
decline, as anticipated, the recovered rise over timeagadWe note that owing natural recovery
and antibiotic given, the recovered increase. There isceed&e in both Fig. 3(a) and 3(b) as
assumed to crop up as a result of medication and long dufatinumans to who have recovered
to wane their immunity. We note a rise in the Fig. 3&caaesult of high recovery rate based on
natural and antibiotic medications.
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Fig. 3. Shows simulation of BU with susceptible, infected population and recovered
population dynamics as function of age and time

6 Conclusion

An age-structured model can model the infection pathway of Buruli ulcer more accurately since
the risk for contracting the disease has something to do with the age of a human being [5]. We
observe that introducing age as another independent variable encompasses solving a system of
partial differential equations instead of simpler ordinary different equation systems and this brings
in new challenges for the existence of a solution of the system, and for the numerical method. We
also present our existence result for the PDE system applying a fixed point argument. We

determined the reproduction number of BU disdgse We present time depende; I, R

simulation. We also present numerical simulation on both age and time the dynamics of BU
disease. We also observe that Mycobacterium ulcrans spread is facilitated by the behaviour of
humans as the rate of recovery untreated Buruli ulcer depend on the immunity. Treatment of
Buruli ulcer at early stages reduces the epidemiology of BU disease. The inclusion of treatment
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control strategies in an age-structured Buruli ulcer modiélhelp in further explanation of the
dynamics of BU.
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