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Abstract
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1 Introduction

In the present paper we consider the following two minimization problems:

Problem 1: 
Minimize

n∑
r=1

Ts,b (x− ar) , x ∈ R,

where Ts,b (x) =

{
bx If x > 0
−sx If x < 0

,

b, s > 0, and ar < ar+1 for all 1 ≤ r ≤ n− 1

.

Problem 2:
Minimize

n∑
r=1

cr |x− ar| , x ∈ R,

where {cr}∞r=1 is a sequence of positive real numbers,
and ar < ar+1 for all 1 ≤ r ≤ n− 1

.

In fact, these problems generalize the following problem:

Problem 0:  Minimize
n∑

r=1

|x− ar| , x ∈ R,

where ar < ar+1, for all 1 ≤ r ≤ n− 1
,

which was discussed in several papers under some constraints, see for example [1], [2] and [3]. In
addition, a generalization of this problem was obtained in [4].

The importance of the above mentioned problems is due to their applications in several fields,
e.g., in regression and approximation theory. In addition, Problem 1 is equivalent to the following
separable constrained problem:

Problem 3:



Minimize
n∑

r=1

Ts,b (xr − ar) ,

Subject to



(x1 − x2) +
∑

i ̸=1,2

(x1 − xi)
2 ≤ 0

(x2 − x3) +
∑

i ̸=2,3

(x2 − xi)
2 ≤ 0

(x3 − x4) +
∑

i ̸=3,4

(x3 − xi)
2 ≤ 0

.

.

.

(xn−1 − xn) +
∑

i ̸=n−1,n

(xn−1 − xi)
2 ≤ 0

(xn − x1) +
∑

i̸=1,n

(xn − xi)
2 ≤ 0

where b, s > 0, ar < ar+1, for all 1 ≤ r ≤ n− 1, and x = (x1, x2, ..., xn) ∈ Rn.

,

and, Problem 2 is equivalent to the following separable constrained problem:
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Problem 4:

Minimize
n∑

r=1

cr |xr − ar| ,

Subject to



(x1 − x2) +
∑

i̸=1,2

(x1 − xi)
2 ≤ 0

(x2 − x3) +
∑

i̸=2,3

(x2 − xi)
2 ≤ 0

(x3 − x4) +
∑

i̸=3,4

(x3 − xi)
2 ≤ 0

.

.

.

(xn−1 − xn) +
∑

i ̸=n−1,n

(xn−1 − xi)
2 ≤ 0

(xn − x1) +
∑

i̸=1,n

(xn − xi)
2 ≤ 0

where {cr}∞r=1 is a sequence of positive numbers,
ar < ar+1, for all 1 ≤ r ≤ n− 1, and x = (x1, x2, ..., xn) ∈ Rn

.

Separable problems arise frequently in practice, particularly for time-dependent optimization, and
hence solving separable problems is important for their applicability in different aspects. Different
techniques for solving separable problems were obtained in different articles, see for example [5] and
[6].

In the present paper, we solve Problem 1 and Problem 2. Then we obtain more general forms of
them, and obtain some corollaries. Next, we discuss some applications of the obtained results in
different contexts. The techniques developed in this paper can be applied to generalize the results
obtained in [7] and [8], which will be our target in future work.

Throughout this paper, Ts,b and Ls,b,A , where s and b are positive integers and A = {ar}nr=1 is a
strictly increasing sequence of real numbers,denote the functions which are defined over R, as follows:

Ts,b (x) =

{
bx If x > 0
−sx If x < 0

,

and

Ls,b,A (x) =

n∑
r=1

Ts,b (x− ar) .

2 Main Results

Theorem 2.1. Let s, b be positive numbers, and let A = {ar}nr=1 be a strictly increasing sequence
of real numbers, where n > 1 is an integer.

Then

1. If [kb− (n− k) s] = 0 for some 1 ≤ k < n, Ls,b,A attains its smallest value at any value
t ∈ [ak, ak+1] .

2. If b− (n− 1) s > 0, Ls,b,A attains its smallest value at a1.

3. If (n− 1) b− s < 0, Ls,b,A attains its smallest value at an.
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4. If [(k − 1) b− (n− k + 1) s] [kb− (n− k) s] < 0 for some 1 < k < n, Ls,b,A attains its
smallest value at ak

Proof. First of all, for x ≤ a1,

Ls,b,A (x) = −s

n∑
r=1

(x− ar) = −snx+ s

n∑
r=1

ar ,

and for ak−1 ≤ x ≤ ak,where 1 < k < n,

Ls,b,A (x) = b

k−1∑
r=1

(x− ar)− s

n∑
r=k

(x− ar) = [(k − 1) b− (n− k + 1) s]x+Mk,

where

Mk = s

n∑
r=k

ar − b

k−1∑
r=1

ar.

Also, for x ≥ an,

Ls,b (x) = b

n∑
r=1

(x− ar) = bnx− b

n∑
r=1

ar .

Clearly, Ls,b,A is decreasing over (−∞, a1] and is increasing over [an,∞) . In addition, for each
1 < k < n, we have

[(k − 1) b− (n− k + 1) s] < [kb− (n− k) s] .

Now, we consider the following cases:

Case 2.2. [kb− (n− k) s] = 0 for some 1 ≤ k < n.

If k = 1 thenLs,b,A is constant over [a1, a2] . Since 0 = b − (n− 1) s < ib − (n− i) s for
each 1 < i < n, and since Ls,b,A is increasing over [an,∞) ,we conclude that Ls,b,A is increasing
over [a2,∞) . Since Ls,b,A is decreasing over (−∞, a1] , Ls,b,A attains its smallest value at any
t ∈ [a1, a2] .

If k = n − 1 then Ls,b,A is constant over [an−1, an] . Since ib − (n− i) s < (n− 1) b − s = 0
for each 1 ≤ i < n− 1, Ls,b,A is decreasing over [a1, an−1] . Since Ls,b,A is decreasing over (−∞, a1]
and is increasing over [an,∞) , Ls,b,A attains its smallest value at any t ∈ [an−1, an] .

If 1 < k < n− 1 then Ls,b,A is constant over [ak, ak+1] . Since ib− (n− i) s < kb− (n− k) s =
0 < jb − (n− j) s for each 1 ≤ i < k and k < j < n,Ls,b,A is decreasing over [a1, ak] and is
increasing over [ak+1, an] . Since Ls,b,A is decreasing over (−∞, a1] and is increasing over [an,∞)
, Ls,b,A attains its smallest value at any t ∈ [ak, ak+1] .

Case 2.3. b− (n− 1) s > 0.

Since b − (n− 1) s < ib − (n− i) s for each 1 < i < n,Ls,b is increasing over [a1, an] . Since
Ls,b,A is decreasing over (−∞, a1] and is increasing over [an,∞) , Ls,b,A attains its smallest value
at a1.

Case 2.4. (n− 1) b− s < 0.

Since (n− 1) b− s > ib− (n− i) s for each 1 ≤ i < n− 1, Ls,b is decreasing over [a1, an] . Since
Ls,b,A is decreasing over (−∞, a1] and is increasing over [an,∞) , Ls,b,A attains its smallest value
at an.

Case 2.5. [(k − 1) b− (n− k + 1) s] [kb− (n− k) s] < 0 for some 1 < k < n.

Since [(k − 1) b− (n− k + 1) s] < [kb− (n− k) s] , we conclude that

[(k − 1) b− (n− k + 1) s] < 0 and [kb− (n− k) s] > 0.

163



Obeidat et al.; BJMCS, 9(2), 160-173, 2015; Article no.BJMCS.2015.194

Also, since kb − (n− k) s < ib − (n− i) s for each k < i < n and (k − 1) b − (n− k + 1) s >
jb−(n− j) s for each 1 ≤ j < k−1, Ls,b,A is decreasing over [a1, ak] and is increasing over [ak, an] .
Since Ls,b,A is decreasing over (−∞, a1] and is increasing over [an,∞) , Ls,b,A attains its smallest
value at ak.

Corollary 2.6. Let q > 0 and A = {ar}nr=1 be a strictly increasing sequence of real numbers, where
n > 1 is an integer. Define g : R −→ [0,∞) as:

g (x) =
n∑

r=1

q |x− ar| , x ∈ R.

Then

1. If n is odd, g attains its smallest value at an+1
2

.

2. If n is even, g attains its smallest value at any x ∈
[
an

2
, an+2

2

]
.

Proof. Note that g is nothing but Ls,b,A in Theorem 2.1 with s = b = q. If n is odd then[(
n+ 1

2
− 1

)
b−

(
n− n+ 1

2
+ 1

)
s

] [
n+ 1

2
b−

(
n− n+ 1

2

)
s

]
= (−q) (q) < 0,

which implies by Theorem 2.1 that g attains its smallest value at an+1
2

. If n is even then

n

2
b−

(
n− n

2

)
s = 0,

which implies by Theorem 2.1 that g attains its smallest value at any x ∈
[
an

2
, an+2

2

]
.

The next corollary shows a relationship between Ls,b,A and Lb,s,A regarding the fact where they
attain their smallest values.

Corollary 2.7. Let s, b be positive numbers, and let {ar}nr=1 be a strictly increasing sequence of
real numbers, where n > 1 is an integer. Then

1. If Ls,b,A attains its smallest value at ai, for some 1 ≤ i ≤ n, then Lb,s,A attains its smallest
value at an−i+1 .

2. If Ls,b,A attains its smallest value at any t ∈ [ak, ak+1] , 1 ≤ k < n, then Lb,s,A attains its
smallest value at any t ∈ [an−k, an−k+1] .

Proof. 1. If Ls,b,A attains its smallest value at a1, then b − (n− 1) s > 0 which implies that
(n− 1) s− b < 0. By Theorem 2.1 (Part 3 ), Lb,s,A attains its smallest value at an.

If Ls,b,A attains its smallest value at an, then (n− 1) b − s < 0 which implies that s −
(n− 1) b > 0. By Theorem 2.1 (Part 2 ), Lb,s,A attains its smallest value at a1.

Ls,b,A attains its smallest value at ak for some 1 < k < n, then

[(k − 1) b− (n− k + 1) s] [kb− (n− k) s] < 0.

But

[(k − 1) b− (n− k + 1) s] [kb− (n− k) s]

= [kb− (n− k) s] [(k − 1) b− (n− k + 1) s]

= [(n− k) s− kb] [(n− k + 1) s− (k − 1) b]

= [((n− k + 1)− 1) s− (n− (n− k + 1) + 1) b] [(n− k + 1) s− (n− (n− k + 1)) b] ,

which implies by Theorem 2.1 (Part 4 ) that Lb,s,A attains its smallest value at an−k+1 .
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2. If Ls,b,A attains its smallest value at any t ∈ [ak, ak+1] , 1 ≤ k < n, then [kb− (n− k) s] = 0
which implies that [(n− k) s− kb] = 0. But

[(n− k) s− kb] = [(n− k) s− (n− (n− k)) b] .

Thus, by Theorem 2.1 (Part 1 ), Lb,s,A attains its smallest value at any t ∈ [an−k, an−k+1] .

Corollary 2.8. Let t ∈ R and {ar}nr=1 be a strictly increasing sequence of real numbers, where
n > 1 is an integer. Define g : R −→ [0,∞) as:

g (x) =

n∑
r=1

q |x− ar − t| , x ∈ R.

Then

1. If n is odd, g attains its smallest value at
(
t+ an+1

2

)
.

2. If n is even, g attains its smallest value at any x ∈
[
t+ an

2
, t+ an+2

2

]
.

Proof. Since {ar}nr=1 is strictly increasing, {t+ ar}nr=1is so. Since g (x) =
n∑

r=1

q |x− (ar + t)| for

each x ∈ R, the result follows by Corollary 2.8.

Next, we give a generalization of Theorem 2.1.

Corollary 2.9. Let s, b be positive numbers, and let A = {ar}nr=1 be a strictly increasing sequence
of real numbers, where n > 1 is an integer. Suppose that f : R −→ R is a strictly increasing
continuous function, and suppose that Lf is the function defined on R as follows:

Lf (x) =

n∑
r=1

Ts,b (f (x)− f (ar)) .

Then

1. If [kb− (n− k) s] = 0 for some 1 ≤ k < n, Lf attains its smallest value at any value
t ∈ [ak, ak+1] .

2. If b− (n− 1) s > 0, Lf attains its smallest value at a1.

3. If (n− 1) b− s < 0, Lf attains its smallest value at an.

4. If [(k − 1) b− (n− k + 1) s] [kb− (n− k) s] < 0 for some 1 < k < n, Lf attains its smallest
value at ak

Proof. Since f is strictly increasing, we conclude that B = {f (ar)}nr=1 is strictly increasing. Clearly,
Lf (x) = Ls,b,B (f (x)) for each x ∈ R. Now, we consider the four cases:

1. If [kb− (n− k) s] = 0 for some 1 ≤ k < n, Ls,b,B (x) attains its smallest value at any value
t ∈ [f (ak) , f (ak+1)] . Since f has a continuous strictly increasing inverse, we conclude that
Ls,b,B (f (x)) attains its smallest value at any value t ∈ [ak, ak+1] .

2. If b − (n− 1) s > 0, Ls,b,B (x) attains its smallest value at f (a1) , which implies that
Ls,b,B (f (x)) attains its smallest value ata1.

3. If (n− 1) b − s < 0, Ls,b,B (x) attains its smallest value at f (an) , which implies that
Ls,b,B (f (x)) attains its smallest value atan.

4. If [(k − 1) b− (n− k + 1) s] [kb− (n− k) s] < 0 for some 1 < k < n, Ls,b,B (x) attains its
smallest value at f (ak) , which implies that Ls,b,B (f (x)) attains its smallest value atak.
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Now, we introduce the second main result in the present paper.

Theorem 2.10. Let A = {ar}nr=1 be a strictly increasing sequence of real numbers, where n > 1 is
an integer, and let C = {cr}nr=1 be a sequence of positive real numbers. Define WA,C : R −→ [0,∞)
as:

WA,C (x) =
n∑

r=1

cr |x− ar| , x ∈ R.

Then

1. If
∑n

r=k+1 cr −
∑k

r=1 cr = 0 for some 1 ≤ k < n, WA,C attains its smallest value at any
value t ∈ [ak, ak+1] .

2. If
∑n

r=2 cr − c1 < 0, WA,C attains its smallest value at a1.

3. If cn −
∑n−1

r=1 cr > 0, WA,C attains its smallest value at an.

4. If 0 <
∑k

r=1 cr −
∑n

r=k+1 cr < 2ck for some 1 < k < n, WA,C attains its smallest value at
ak.

Proof. Note that for x ≤ a1,

WA,C (x) =

n∑
r=1

cr (ar − x) = M1 − x

n∑
r=1

cr ,

and for x ≥ an,

WA,C (x) =
n∑

r=1

cr (x− ar) = x
n∑

r=1

cr −M1 ,

where

M1 =
n∑

r=1

crar.

Also, for ak−1 ≤ x ≤ ak,where 1 < k < n, we have

WA,C (x) = Mk − x

(
n∑

r=k

cr −
k−1∑
r=1

cr

)
, where Mk =

n∑
r=k

crar −
k−1∑
r=1

crar.

Clearly, WA,C is decreasing over (−∞, a1] and is increasing over [an,∞) . In addition, the sequence(∑n
r=k cr −

∑k−1
r=1 cr

)n
k=2

is strictly decreasing. Now, we consider the following cases:

1.
∑n

r=k+1 cr −
∑k

r=1 cr = 0 for some 1 ≤ k < n.

If k = 1 then WA,C is constant over [a1, a2] . Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is strictly

decreasing,WA,C is increasing over [a2, an] , and since WA,C is increasing over [an,∞) ,we
conclude that WA,C is increasing over [a2,∞) . Since WA,C is decreasing over (−∞, a1] , We
conclude that WA,C attains its smallest value at any t ∈ [a1, a2] .

If k = n− 1 then WA,C is constant over [an−1, an] . Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is strictly

decreasing,WA,C is decreasing over [a1, an−1] . Since WA,C is decreasing over (−∞, a1] and
is increasing over [an,∞) , WA,C attains its smallest value at any t ∈ [an−1, an] .

If 1 < k < n − 1 then WA,C is constant over [ak, ak+1] . Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is

strictly decreasing,WA,C is decreasing over [a1, ak] and is increasing over [ak+1, an] . Since
WA,C is decreasing over (−∞, a1] and is increasing over [an,∞) , WA,C attains its smallest
value at any t ∈ [ak, ak+1] .
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2.
∑n

r=2 cr − c1 < 0.

Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is strictly decreasing,WA,C is increasing over [a1, an] . Since

WA,C is decreasing over (−∞, a1] and is increasing over [an,∞) , WA,C attains its smallest
value at a1.

3. cn −
∑n−1

r=1 cr > 0.

Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is strictly decreasing,WA,C is decreasing over [a1, an] . Since

WA,C is decreasing over (−∞, a1] and is increasing over [an,∞) , WA,C attains its smallest
value at an.

4. 0 <
∑k

r=1 cr −
∑n

r=k+1 cr < 2ck for some 1 < k < n.

Note that
n∑

r=k

cr −
k−1∑
r=1

cr = 2ck +

n∑
r=k+1

cr −
k∑

r=1

cr.

Since 0 <
∑k

r=1 cr −
∑n

r=k+1 cr < 2ck,we conclude that

n∑
r=k

cr −
k−1∑
r=1

cr > 0 and

n∑
r=k+1

cr −
k∑

r=1

cr < 0.

Since
(∑n

r=l cr −
∑l−1

r=1 cr
)n
l=2

is strictly decreasing,we conclude that WA,C is decreasing

over [a1, ak] and is increasing over [ak, an] . Since WA,C is decreasing over (−∞, a1] and
is increasing over [an,∞) , WA,C attains its smallest value at ak.

Now, let us give a numerical example that supports Theorem 2.10.

Example 2.11. Suppose that we want to minimize the function g(x) = 2 |x+ 0.5| + |x− 0.5| +
3 |x− 1|+ |x− 2|+ 2 |x− 2.5|+ |x− 3| . Clearly, g = WA,C , where A = {ar}6r=1 with a1 = −0.5 <
a2 = 0.5 < a3 = 1 < a4 = 2 < a5 = 2.5 < a6 = 3, and C = {cr}6r=1with c1 = 2, c2 = 1, c3 = 3, c4 =
1, c5 = 2, c6 = 1. Note that

0 <

3∑
r=1

cr −
6∑

r=4

cr = 6− 4 = 1 < 2c3 = 6.

By Theorem 2.10 (Part 4), we conclude that g attains its smallest value at a3 = 1. Graphing the
function g , we get the same conclusion (See Figure 1 below).

The next Corollary shows a more general form of Theorem 2.10.

Corollary 2.12. Let A = {ar}nr=1 be a strictly increasing sequence of real numbers, where n > 1 is
an integer, and let C = {cr}nr=1 be a sequence of positive real numbers. Suppose that f : R −→ R
is a strictly increasing continuous function, and suppose that Wf is the function defined on R as
follows:

Wf (x) =

n∑
r=1

cr |f (x)− f (ar)| .

Then

1. If
∑n

r=k+1 cr −
∑k

r=1 cr = 0 for some 1 ≤ k < n, Wf attains its smallest value at any value
t ∈ [ak, ak+1] .

2. If
∑n

r=2 cr − c1 < 0, Wf attains its smallest value at a1.
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Figure 1: Graph of g(x)

3. If cn −
∑n−1

r=1 cr > 0, Wf attains its smallest value at an.

4. If 0 <
∑k

r=1 cr −
∑n

r=k+1 cr < 2ck for some 1 < k < n, Wf attains its smallest value at ak.

Proof. Since f is strictly increasing, we conclude that B = {f (ar)}nr=1 is strictly increasing. Clearly,
Wf (x) = WB,C (f (x)) for each x ∈ R, as in Theorem 2.10 Now, we consider the four cases:

1. If
∑n

r=k+1 cr −
∑k

r=1 cr = 0 for some 1 ≤ k < n, WB,C (x) attains its smallest value at any
value t ∈ [f (ak) , f (ak+1)] . Since f has strictly increasing continuous inverse, we conclude
that WB,C (f (x)) attains its smallest value at any value t ∈ [ak, ak+1] .

2. If
∑n

r=2 cr − c1 < 0, WB,C (x) attains its smallest value at f (a1) , which implies that
WB,C (f (x)) attains its smallest value at a1.

3. If cn −
∑n−1

r=1 cr > 0, WB,C (x) attains its smallest value at f (an), which implies that
WB,C (f (x)) attains its smallest value at an.

4. If 0 <
∑k

r=1 cr −
∑n

r=k+1 cr < 2ck for some 1 < k < n, WB,C (x) attains its smallest value
at f (ak) , which implies that WB,C (f (x)) attains its smallest value at ak.

Now, we introduce the third main result in the present paper.

Theorem 2.13. Let t > 0 and {ar}nr=1 be a strictly increasing sequence of real numbers, where

n > 1 is an integer. Suppose that 2t < ar − ar−1 for each 1 < r ≤ n. Define G,Ψt : R −→ [0,∞)
as:

Ψt (x) =

{
|x− t| If x > 0
|x+ t| If x < 0

,

and

G (x) =

n∑
r=1

Ψt (x− ar) , x ∈ R.

Then
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1. If n is odd, G attains its smallest value at any x ∈
{
an+1

2
+ t, an+1

2
− t
}
.

2. If n is even, G attains its smallest value at any x ∈
[
an

2
+ t, an+2

2
− t
]
.

Proof. Since 2t < ar − ar−1 for each 1 < r ≤ n , we conclude that for x ≤ a1 − t,

G (x) =
n∑

r=1

|x− (ar − t)| = M0,1 − nx, where M0,1 is constant,

and for x ≥ an + t,

G (x) =

n∑
r=1

|x− (ar + t)| = M0,n + nx, whereM0,n is constant.

Also, for 1 ≤ k < n,

G (x) =

k∑
r=1

|x− (ar + t)|+
n∑

r=k+1

|x− (ar − t)|

= Mk,1 − (n− 2 (k − 1))x for x ∈ [ak, ak + t] ,

G (x) =
k∑

r=1

|x− (ar + t)|+
n∑

r=k+1

|x− (ar − t)|

= Mk,2 − (n− 2k)x for x ∈ [ak + t, ak+1 − t] ,

and

G (x) =

k∑
r=1

|x− (ar + t)|+
n∑

r=k+1

|x− (ar − t)|

= Mk,3 − (n− 2 (k + 1))x for x ∈ [ak+1 − t, ak+1] ,

where Mk,1,Mk,2 and Mk,3 are constants.
Clearly, G is decreasing over (−∞, a1 − t], and is increasing over[an + t,∞). Now, we consider

two cases:

1. If n is odd, n = 2L + 1 for some positive integer L. Note that G is decreasing over
[ak, ak+1 − t] for each 1 ≤ k ≤ L , and over [a1 − t, a1], which implies thatG is decreasing over
(−∞, aL+1 − t] . On the other hand, G is increasing over [ak + t, ak+1] for each L+1 ≤ k < n,
and over [an, an + t], which implies that G is increasing over [aL+1 + t,∞) . Since G is
increasing over [aL+1 − t, aL+1] and is decreasing over [aL+1, aL+1 + t], we conclude that
G attains its smallest value at aL+1 − t or at aL+1 + t. But

G (aL+1 − t) =
L∑

r=1

|aL+1 − t− (ar + t)|+
n∑

r=L+1

|aL+1 − t− (ar − t)|

=
L∑

r=1

(aL+1 − ar − 2t) +
n∑

r=L+2

(ar − aL+1)

= (L− (n− L− 1)) aL+1 − 2tL+

n∑
r=L+2

ar −
L∑

r=1

ar

= −2tL+

n∑
r=L+2

ar −
L∑

r=1

ar,
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and

G (aL+1 + t) =

L+1∑
r=1

|aL+1 + t− (ar + t)|+
n∑

r=L+2

|aL+1 + t− (ar − t)|

=

L∑
r=1

(aL+1 − ar) +

n∑
r=L+2

(ar − aL+1 − 2t)

= (L− (n− L− 1)) aL+1 − 2t (n− L− 1) +

n∑
r=L+2

ar −
L∑

r=1

ar

= −2tL+

n∑
r=L+2

ar −
L∑

r=1

ar,

which implies that G (aL+1 − t) = G (aL+1 + t) . Therefore, G attains its smallest value at

any x ∈
{
an+1

2
+ t, an+1

2
− t
}
.

2. If n is even, n = 2L for some positive integer L. Note that

G (x) = ML,2 on [aL + t, aL+1 − t] ,

G (x) = ML−1,3 on [aL − t, aL] ,

and
G (x) = ML+1,1 on [aL+1, aL+1 + t] .

Also, G is decreasing over [ak−1, ak − t] for each 1 < k ≤ L , and over [a1 − t, a1], which
implies that G is decreasing over (−∞, aL − t] . On the other hand, G is increasing over
[ak + t, ak+1] for each L + 1 ≤ k < n, and over [an, an + t], which implies that G is
increasing over [aL+1 + t,∞) . Since G is decreasing over [aL, aL + t] and is increasing over
[aL+1 − t, aL+1] , we conclude that G attains its smallest value at any x ∈ [aL + t, aL+1 − t] =[
an

2
+ t, an+2

2
− t
]
.

Now, let us give a numerical example that supports Theorem 2.13.

Example 2.14. Suppose that we want to minimize the function G (x) =
5∑

r=1

Ψt (x− ar), where

a1 = −3 < a2 = −1 < a3 = 1.5 < a4 = 3 < a5 = 5, and t = 0.5. Note that 2t < ar − ar−1 for each
1 < r ≤ n. Since n = 5 is odd, Theorem 2.13 implies that G attains its smallest value at x = 2 and
x = 1. Graphing the function G , we get the same conclusion (See Figure 2 below).

3 Some Applications

In this section, we discuss some applications of the results obtained.

Example 3.1. Let N ≥ 2 be a positive integer. For each positive integer k, let C(k) =
{
c
(k)
i

}N

i=1

be the sequence of real numbers which is defined as:

c
(k)
i =


i if i < k∣∣∣ (N−k)(N−k+1)

2
− k(k−1)

2

∣∣∣+ 1 if i = k

n− i+ 1 if i > k

, for 1 ≤ i ≤ N.
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Figure 2: Graph of G(x)

For each positive integer k and each strictly increasing sequence of real numbers A = {ai}Ni=1 ,define
SA,k : R −→ [0,∞) as follows:

SA,k (x) =

N∑
i=1

c
(k)
i |x− ai| for x ∈ R.

Note that for each positive integer k ,we have

k∑
i=1

c
(k)
i −

N∑
i=k+1

c
(k)
i = c

(k)
k +

k−1∑
i=1

i−
N∑

i=k+1

(n− i+ 1)

= c
(k)
k +

k (k − 1)

2
− (N + 1) (N − k) +

N (N + 1)

2
− k (k + 1)

2

< 2c
(k)
k .

Also, it is not hard to see that
∑k

i=1 c
(k)
i −

∑N
i=k+1 c

(k)
i > 0. By Theorem 2.10, we conclude that

for each positive integer k and each strictly increasing sequence of real numbers A = {ai}Ni=1 , SA,k

attains its smallest value at ak.

The next example shows and application of Corollary 2.12 in the context of weighted l1−norm
of real vector-valued functions defined on R.

Example 3.2. Consider the curve r : R −→ R4defined as

r (x) = (2x − 8, 2x − 4, 2x − 16, 2x − 2) .

The weighted l1-norm of r (x) for the weights C = (w1, w2, w3, w4) is defined as

∥r (x)∥lw1 = w1 |2x − 8|+ w2 |2x − 4|+ w3 |2x − 16|+ w4 |2x − 2|

= w4 |2x − 2|+ w2

∣∣2x − 22
∣∣+ w1

∣∣2x − 23
∣∣+ w3

∣∣2x − 24
∣∣ .
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In particular, if we consider the weights C = (2, 3, 6, 2) , then

0 < w4 + w2 + w1 − w3 = 2 + 3 + 2− 6 = 1 < 2w1.

Using Corollary 2.12, we conclude that ∥r (x)∥lw1 attains its smallest value at x = 3, and it is equal
to 72.

Example 3.3. Let s, b be positive numbers such that s = mb, where m is a positive integer. If
n = m+ 1 then

mb− (n−m) s = mb− s = 0.

By Theorem 2.1, for each strictly increasing sequence of real numbers A = {ar}nr=1 , Ls,b,A attains
its smallest value at any t ∈ [am, am+1] . Also, By Corollary 2.7, Lb,s,A attains its smallest value
at any t ∈ [a1, a2] .

We close the section by the following Corollary which is an application of Corollary 2.12 in the
context of integrals.

Corollary 3.4. Let h : R −→ R be a non-negative continuous function. Let A = {ar}nr=1 be a
strictly increasing sequence of real numbers, where n > 1 is an integer, and let {br}nr=1 be a sequence
of non-zero real numbers.. Define g : R −→ [0,∞) as:

g (x) =

n∑
r=1

∣∣∣∣bi ∫ x

ar

h (t) dt

∣∣∣∣ , x ∈ R.

Then

1. If
∑n

r=k+1 |br|−
∑k

r=1 |br| = 0 for some 1 ≤ k < n, g attains its smallest value at any value
t ∈ [ak, ak+1] .

2. If
∑n

r=2 |br| − |b1| < 0, g attains its smallest value at a1.

3. If |bn| −
∑n−1

r=1 |br| > 0, g attains its smallest value at an.

4. If 0 <
∑k

r=1 |br| −
∑n

r=k+1 |br| < 2 |bk| for some 1 < k < n, g attains its smallest value at
ak.

Proof. Note that

g (x) =

n∑
r=1

|br|
∣∣∣∣∫ x

0

h (t) dt−
∫ ar

0

h (t) dt

∣∣∣∣ .
Since

∫ x

0
h (t) dt is a strictly increasing continuous function over R, the result follows by using

Corollary 2.12.

4 Conclusion

In conclusion, the importance of studying Problem 1 and Problem 2 in the present paper is due to
their applications in different fields of study such as Quantile Analysis and Approximation T heory.
In addition, they are equivalent to constrained separable problems over the whole space. The results
obtained in the present paper can be used to solve other problems in different contexts such as the
ones introduced in the previous section. Also, they can be generalized to include more optimization
problems in different aspects. Some new generalizations will be sought in future projects.
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