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Abstract

Motivated by the result of Fibonacci numbers for which the ratio of successive terms tends to a

limit, which is commonly known as the Golden Ratio, we prove an immediate generalization for

a wider class of recurrence sequences. We note that such limiting behavior for ratio of successive

terms of general linear recurrence sequences has been well discussed, but still they need to satisfy

specific conditions for the limit to exist. Our contribution is that we show that such conditions

are indeed satisfied for the cases we are considering. For an application of our main result, we find

a natural way to approximate an algebraic number, which is a zero for some class of polynomial

equations, by rational numbers. As recently there seem to be renewed interests on Fibonacci

numbers and related recurrence sequences, we hope that our elementary methods and results

may shed some light for solving the related problems.
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1 Introduction

We recall that the Fibonacci numbers are defined inductively by F1 = 1, F2 = 1 and Fn =
Fn−1 +Fn−2 for n ≥ 3. This interesting sequence arose prominently from early on in the history in
many different areas including mathematics, natural sciences, visual arts, architecture, music, and
so on ([1], [2], [3], [4], [5]). Let αn = Fn+1/Fn. In this section we will give four different proofs for
the following proposition showing that limn→∞ αn exists, which serves as our initial motivation for
generalizing this phenomenon to other (possibly higher) recurrence sequences. Our main theorem
is given in the second section. In section 3, we conclude by giving some remarks, applications, and
pointing out some related (seemingly) open problems. For basic properties about Fibonacci and
other recurrence sequences, and for the basic theory of continued fractions, we refer the readers
to [6]. We mention in passing that the study of recurrence sequences and continued fractions has
long attracted the attention of leading mathematicians, computer scientists, and other researchers,
hence there has been an extensive literature (to name just a few, [7], [8], [9], [2], and a recent talk
entitled “Alf van der Poorten and Continued Fractions” by J. Shallit); amazingly this continues to
grow, as can be seen from some recent literature (see for example, [10], [11], [12], [13], [14]) and
many recent online preprints available by keyword search. We made our presentation self-contained
by providing direct arguments for some existing results such as the Binet type formulas.

Proposition 1.1. The limit of αn as n→∞ exists, and in fact

lim
n→∞

αn =
1 +
√

5

2
.

First proof. Clearly αn+1 =
Fn+2

Fn+1
=

Fn+1+Fn

Fn+1
= 1 + 1

Fn+1
Fn

= 1 + 1
αn
. Since α1 = 1, it follows

that αn’s are simply the convergents of the continued fraction [1; 1, 1, 1, · · · ]. For example, α2 =
1 + 1

1
, α3 = 1 + 1

1+ 1
1

. By the general theory of continued fractions ([6]), the limit of αn as n → ∞
exists. The limit can be easily solved from the equation x = 1 + 1

x
. A positive solution gives

x = 1+
√
5

2
.

Second proof. The recursion Fn+2 = Fn+1 + Fn with initial conditions F1 = F2 = 1 can be solved
directly: Substituting Fn = zn into the relation yields z2 = z + 1. The equation z2 − z − 1 = 0 has

roots 1+
√
5

2
and 1−

√
5

2
. Then by linearity and the initial conditions, the solution of the recursion is

given by

Fn =
1√
5

((
1 +
√

5

2

)n
−
(

1−
√

5

2

)n)
.

Then it is straightforward to show that limFn+1/Fn exists and equals 1+
√
5

2
.

Third proof. As in the first proof, αn+1 = 1 + 1
αn

for n ≥ 1. Then we also have αn+2 = 1 + 1
αn+1

.

Subtracting gives

αn+2 − αn+1 =
αn − αn+1

αn+1αn
.

It follows that

|αn+2 − αn+1| =
1

αn+1αn
|αn+1 − αn|.

Now by induction, it is easy to establish that

3

2
≤ αn ≤ 2 for n ≥ 3.
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This shows that the contraction factor 1
αn+1αn

is less than or equal to
(
2
3

)2
< 1. Then by standard

argument, αn is a Cauchy sequence, and therefore limn→∞ αn exists. Solving x = 1 + 1
x

yields a

positive solution x = 1+
√
5

2
. Alternatively, we note that the mapping f : [ 3

2
, 2] → [ 3

2
, 2] defined by

f(x) = 1+ 1
x

is a contraction mapping (see for example [15]), so the unique fixed point can be found
by taking limit of fn(x0) for any initial point x0 ∈ [ 3

2
, 2] as n→∞.

Fourth proof. Let f(x) = a0+a1x+a2x
2+ · · · be the generating function for the Fibonacci numbers

(here a0 = 0, ai = Fi for i ≥ 1 as defined above). We can easily find f(x) by using the recursive
relation

an+2 = an+1 + an, n ≥ 0.

Namely by summing n from 0 to ∞ of the following relation∑
n≥0

an+2x
n+2 =

∑
n≥0

an+1x
n+2 +

∑
n≥0

anx
n+2,

we see that
f(x)− a0 − a1x = x(f(x)− a0) + x2f(x),

which yields

f(x) =
a0 + (a1 − a0)x

1− x− x2 =
x

1− x− x2 =
x

(1− λ1x)(1− λ2x)
, (1)

where λ1 = 1+
√
5

2
, λ2 = 1−

√
5

2
are the reciprocal roots of the polynomial equation 1 − x − x2 = 0.

By partial fraction expansion, we have that

x

(1− λ1x)(1− λ2x)
=

1
λ1−λ2

1− λ1x
+

1
λ2−λ1

1− λ2x
.

Expanding this in power series in (1) and equating coefficient of xn, we see immediately that

an =
λn1 − λn2
λ1 − λ2

.

This essentially is the solution from the second proof, so we know

lim
n→∞

an+1

an
= λ1 =

1 +
√

5

2
.

Observation 1.1. By the ratio test, the radius of convergence for the power series of f(x) is

given by lim
∣∣∣ an
an+1

∣∣∣, provided that the limit exists. This is related to the poles of f(x) of minimum

absolute value, which in the above case is 1
λ1

. So if lim
an+1

an
exists, then the answer would be λ1.

The more difficult part of the question is why the limit exists.

Our goal in the next section is to generalize this phenomenon. We first look at the following
examples.

Example 1.1. Let an+2 = αan+1 + βan, where α, β > 0 and a0 = 1, a1 = α. Then it is easy to
see that f(x) = 1

1−αx−βx2 . We claim that lim
an+1

an
= 1

x0
, where x0 is the unique positive root of

1− αx− βx2 = 0.

Proof. Let y0 (necessarily negative) be the other root of 1− αx− βx2 = 0. If we let λ1 = 1
x0
, and

λ2 = 1
y0

, then by the fourth proof, the solution an is of the form an = k1λ
n
1 + k2λ

n
2 , where k1, k2

are constants depending on the initial conditions (one can argue that k1 6= 0 because f(x) has a
pole at x = x0). Therefore it suffices to show that |y0| > x0. For this, rewrite the equations as

y20 + α
β
y0 − 1

β
= 0

x20 + α
β
x0 − 1

β
= 0

.
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Subtracting and simplifying, this gives

y20 − x20 = −α
β

(y0 − x0) > 0⇒ |y0| > x0.

Example 1.2. Let an+2 = αan+1 + βan with α = 2, β = 3, a0 = 1, and a1 = 2. Then by the
previous example, we see that lim

an+1

an
= 3. Note that this can also be seen by using the generalized

continued fraction:
an+2 = 2an+1 + 3an

⇒ an+2

an+1
= 2 +

3
an+1

an

,

which suggests that

3 = lim
an+1

an
= 2 +

3

2 + 3
2+···

.

On the other hand, if we let α = m > 0, β = 1, a0 = 1, and a1 = m. Then lim
an+1

an
equals the

simple continued fraction

m+
1

m+ 1
m+···

.

This was referred to as metallic mean by [16].

2 Generalization

Theorem 2.1. Let the sequence {an} be defined by the linear recursion

an+k =

k−1∑
i=0

cian+i, ci > 0, n = 0, 1, 2, · · · , (2)

where a0, a1, · · · , ak−1 are nonnegative and not all zero. Then

lim
n→∞

an+1

an

exists and equals the unique positive solution of the characteristic polynomial

yk − ck−1y
k−1 − · · · − c1y − c0 = 0.

For the proof of Theorem 2.1, if we write the generating function of the recurrence sequence by
f(x) = g(x)

h(x)
(see details below), then the essential point is to show that the unique positive root of

the characteristic polynomial has the maximum modulus (i.e. the unique positive root x0 of h(x)
has minimum modulus) and that g(x) does not vanish at x = x0. These facts are established in
Lemmas 2.2-2.5. For convenience of the readers we fill in the standard arguments leading to the
solutions of linear recurrence relations. Note that the equation h(x) := 1 −

∑k
i=1 ck−ix

i = 0 is

obtained from yk −
∑k
i=1 ck−iy

k−i = 0 by applying the transformation y = 1
x

, hence their roots are
reciprocal to each other.

Lemma 2.2. The polynomial equation

1−
k∑
i=1

ck−ix
i = 0

has a unique positive solution.
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Proof. Let P (x) = 1−
∑k
i=1 ck−ix

i. Then clearly P (x) is a monotone decreasing function for x ≥ 0
with P (0) > 0 and P (x) < 0 if x is sufficiently large. Then the result follows from intermediate
value theorem for continuous functions.

Let f(x) =
∑∞
n=0 anx

n be the generating function of {an}, n ≥ 0. From the definition of recursion
(2), it follows that

∞∑
n=0

an+kx
n+k =

∞∑
n=0

k−1∑
i=0

cian+ix
n+k =

k−1∑
i=0

cix
k−i

∞∑
n=0

an+ix
n+i,

which implies

f(x)− a0 − a1x− · · · − ak−1x
k−1 = ck−1x(f(x)− a0 − · · · − ak−2x

k−2)

+ck−2x
2(f(x)− a0 − · · · − ak−3x

k−3) + · · ·+ c1x
k−1(f(x)− a0) + c0x

kf(x).

Rewriting, we see that

(1− ck−1x− · · · − c1xk−1 − c0xk)f(x) = a0(1− ck−1x− · · · − c1xk−1)

+a1x(1− ck−1x− · · · − c2xk−2) + · · ·+ ak−2x
k−2(1− ck−1x) + ak−1x

k−1.

We see that

f(x) =
g(x)

1− ck−1x− · · · − c1xk−1 − c0xk
,

where
g(x) := a0(1− ck−1x− · · · − c1xk−1)

+a1x(1− ck−1x− · · · − c2xk−2) + · · ·+ ak−2x
k−2(1− ck−1x) + ak−1x

k−1.

Now define
h(x) := 1− ck−1x− · · · − c1xk−1 − c0xk.

Lemma 2.3. Using the above notations, we have that g(x0) 6= 0, where x0 is the unique positive
solution of h(x), i.e. x0 is a pole of f(x).

Proof. Let x0 be the unique positive zero for the polynomial h(x). Then it is easy to see that
g(x0) > 0, by using the relation

1− ck−1x0 − · · · − c1xk−1
0 − c0xk0 = 0,

which implies
1− ck−1x0 − · · · − c1xk−1

0 = c0x
k
0 > 0, etc.

This shows that f(x) = g(x)
h(x)

has a pole at x = x0.

Lemma 2.4. Let b1, · · · , br be positive real numbers, ζ a complex number with |ζ| = 1, and let
d1, · · · dr be positive integers. Then

|b1ζd1 + · · ·+ brζ
dr | = b1 + · · ·+ br ⇔ ζgcd{dj−di:i<j} = 1.

Proof. We prove the less obvious direction (⇒). Let ζ̄ be the complex conjugation. We note that
ζ̄ = 1

ζ
.

|b1ζd1 + · · ·+ brζ
dr | = b1 + · · ·+ br

⇒ (b1ζ
d1 + · · ·+ brζ

dr )(b1ζ̄
d1 + · · ·+ br ζ̄

dr ) = (b1 + · · ·+ br)
2

⇒ bibj(ζ
di ζ̄dj + ζdj ζ̄di) = 2bibj , for all (i, j) with i < j

⇒ ζ̄dj−di + ζdj−di = 2 for all (i, j) with i < j

⇒ ζdj−di = 1 for all (i, j) with i < j,

from which the result follows.
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Lemma 2.5. f(x) has no other poles in the closed disk |z| ≤ x0.

Proof. It suffices to show that h(x) has no other zeros in the closed disc |z| ≤ x0. Clearly if |z| ≤ x0,
then

|h(z)| = |1− ck−1z − · · · − c1zk−1 − c0zk|
≥ 1− |ck−1z + · · ·+ c1z

k−1 + c0z
k|

≥ 1− ck−1|z| − · · · − c1|z|k−1 − c0|z|k

≥ 1− ck−1x0 − · · · − c1xk−1
0 − c0xk0 = 0.

In order that h(z) = 0, all the above inequalities must be equalities. Necessarily the last (in)equality
shows that |z| = x0. If we write z = x0ζ with |ζ| = 1, then the equality

1− |ck−1z + · · ·+ c1z
k−1 + c0z

k| = 1− ck−1x0 − · · · − c1xk−1
0 − c0xk0 = 0

shows ζ = 1 by applying Lemma 2.4 with bi = ck−ix
i
0, i = 1, · · · , k, and di = i, i = 1, · · · , k.

Therefore z = x0ζ = x0.

Proof of Theorem 2.1 To prove the theorem, we first consider the case when h(x) has only simple
roots. Then

f(x) =

∞∑
n=0

anx
n =

g(x)

h(x)
=

k∑
i=1

αi
1− λix

, (3)

where λi’s are reciprocal roots of h(x) such that λ1 := 1
x0

corresponds to the unique positive root

of yk − ck−1y
k−1 − · · · − c1y − c0 = 0, and furthermore, α1 6= 0 because f(x) has a pole at x = x0

by Lemma 2.3. Note that Lemma 2.5 shows that |λi| < λ1 for i > 1.

Formula (3) shows that

an =

k∑
i=1

αiλ
n
i

from which it follows that

lim
n→∞

an+1

an
= λ1 =

1

x0
.

Now let’s deal with the general case. We claim that x0 is a simple root of h(x). This can be easily
checked by noting that h(x0) and h′(x0) do not vanish simultaneously, for if they did, then

1− ck−1x0 − ck−2x
2 − · · · − c0xk0 = 0

−ck−1 − 2ck−2x0 − · · · − kc0xk−1
0 = 0.

Multiplying the first equation by − 1
x0

and adding to the second equation yields

− 1

x0
− ck−2x0 − 2ck−3x

2
0 − · · · − (k − 1)c0x

k−1
0 = 0

which is absurd.

Let λ1, λ2, · · · , λr be the distinct reciprocal roots of h(x). Then by partial fraction expansion, we
can write

f(x) =
∑

anx
n =

α1

1− λ1x
+

r∑
i=2

βi1
1− λix

+
βi2

(1− λix)2
+ · · ·+ βimi

(1− λix)mi
,

where mi is the multiplicity of λi for 2 ≤ i ≤ r. Using Taylor’s theorem or negative binomial
coefficients, we obtain that

an = α1λ
n
1 +

r∑
i=2

gi(n)λni , (4)
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where gi(n) is given by
mi∑
j=1

βij

(
n+ j − 1

n

)
,

where
(
n+j−1
n

)
=
(
n+j−1
j−1

)
= (n+j−1)···(n+1)

(j−1)!
, if j ≥ 2,= 1 if j = 1. Clearly gi(n) is a polynomial in

n of degree at most mi − 1. Now it is straightforward to see from (4) (noting that α1 6= 0) that

lim
n→∞

an+1

an
= λ1 =

1

x0
.

Remark 2.1. The assumption in Theorem 2.1 regarding ci > 0 for all i can be relaxed. For example,
it is sufficient to assume that k = 1, c0 > 0, or for k ≥ 2, ci ≥ 0, ci > 0 for at least two indices
0 ≤ i ≤ k − 1, and gcd{j − i|i < j with ci > 0 and cj > 0} = 1. Here gcdS for a nonempty set
S 6= {0} of integers means the greatest integer d such that d divides each of the element in S.

Remark 2.2. The restrictions on the initial conditions in Theorem 2.1 for a0, · · · , an−1 can be
relaxed. By following the proof, it is easy to see that the theorem remains true as long as g(x0) 6= 0,
where x0 is the unique positive root of h(x). Note that the theorem becomes false if g(x0) = 0. For
example, consider the linear recurrence an+3 = an+2 + an+1 + 2an, n ≥ 0 with initial conditions
a0 = 1, a1 = 0, and a2 = −1. It can be checked directly that x0 = 1

2
, g(x0) = h(x0) = 0 and

lim
an+1

an
does not exist. On the other hand, if a0 + a1 + a2 6= 0, then g(x0) 6= 0 and the result in

Theorem 2.1 is true.

3 Conclusion

3.1 Applications and Future Work

We illustrate here a way to approximate the unique positive zero of polynomials of the form
h(x) = 1 − ck−1x − · · · − c0x

k, where for simplicity ci’s are assumed to be integers, so the
solution is an algebraic number. The idea is simple: we simply compute the generating function
associated with the recursion an+k = ck−1an+k−1 + · · · + c0an, and compute the ratios an

an+1
.

These rational numbers converge to the unique positive root of h(x) by Theorem 2.1. For example,
from the ratio of coefficients of the generating function associated with the recurrence sequence
an+3 = 2an+2 + 3an+1 + 2an, we find a natural sequence of rational numbers which give the
approximation for the unique positive root of the polynomial equation 1 − 2x − 3x2 − 2x3 = 0.
We remark here that many questions can be asked. For example, how is the above approximation
related to the convergents of the continued fraction associated with the algebraic number? How is
the above approximation compared to the Newton’s method? Furthermore the methods we have
employed seem to be applicable for solving the problem of reciprocal sum of Fibonacci numbers and
its generalization (see [10]), a problem that has attracted many recent researches ([11], [14], [12],
[13], etc.).
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[9] Bombieri E, van der Poorten A. Continued fractions of algebraic numbers. In Computational
Algebra and Number Theory. Math. Appl. 325, Kluwer Acad. Publ. Dordrecht. 1992;137-152.

[10] Ohtsuka H, Nakamura S. On the sum of reciprocal Fibonacci numbers. The Fibonacci
Quarterly. 2008;46-47(2):153-159.

[11] Wu Z, Zhang H. On the reciprocal sums of higher-order sequences. Advances in Difference
Equations. 2013;189.

[12] Kilic E, Arikan T. More on the infinite sum of reciprocal usual Fibonacci. Pell and higher order
recurrences. Appl. Math. Comput. 2013;219:7783-7788.

[13] Holliday S, Komatsu T. On the sum of reciprocal generalized Fibonacci numbers. Integers.
2011;11:441-455.

[14] Wu Z, Zhang J. On the higher power sums of reciprocal higher-order sequences. The Scientific
World Journal. Volume 2014, Article ID 521358, Hindawi Publishing Corporation.

[15] Wikipedia (2015). Banach fixed point theorem.
Available: http : //en.wikipedia.org/wiki/Banach fixed−point theorem (Last accessed on
April 23, 2015)

[16] de Spinadel V. From the golden mean to chaos. Nueva Libreria; 1998. (Second edition, Nobuko,
2004).

——————————————————————————————————————————————–
c©2015 Perng & Coan; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
www.sciencedomain.org/review-history.php?iid=1143&id=6&aid=9333

93

http://creativecommons.org/licenses/by/4.0

	Introduction
	Generalization
	Conclusion
	Applications and Future Work


