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ABSTRACT 
 

The main objective of this paper is to determine the non-Abelian finite groups which contain only 
Abelian and Hamiltonian subgroups and to obtain some of their fundamental properties. Two 
exceptional groups of orders 16 and 24 were examined and are completely determined using GAP. 
These were achieved from the fact that if a group G contains at least one Hamiltonian subgroup 
and if all its subgroups are Abelian or Hamiltonian, then the group itself is Hamiltonian. We finally 
generate some Hamiltonian circuits in the two non-Abelian groups and then present a method of 
finding the number of circuits in any finite group. 
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1. INTRODUCTION 
 

In algebra, a non-Abelian group, sometimes 
called a non-commutative group, is a group   
(G, ∗) in which there exists at least one pair of 

elements (x, y)∈G such that x ∗ y ≠ y ∗ x [1]. 
Most non-Abelian groups are concrete in nature 
and are pervasive in mathematics and physics. 
One of the simplest examples is the dihedral 
group Dn and the smallest one is the one of order 
6, which is isomorphic to the symmetric group S3. 
A very common example from physics is the 
rotation group SO(3) in three dimensions. 
Rotating objects 90 degrees to the right and then 
90 degrees to the left is not the same as doing 
them the other way round. Generally, both 
discrete and continuous groups may be non-
Abelian. Most of the interesting Lie groups are 
also non-Abelian, and these play an important 
role in gauge theory [2]. 
 

In mathematical field of graph theory, a 
Hamiltonian path (also call traceable path) is a 
path in an undirected or directed graph that visits 
each vertex exactly once. A Hamiltonian path 
that formed a cycle is called Hamiltonian circuit 
(or Hamiltonian cycle) and the process of 
determining whether such paths and cycles exist 
in graphs is called Hamiltonian path problem. A 
graph is Hamiltonian-connected if for every pair 
of vertices, there is always a Hamiltonian path 
between the two vertices [3]. 
 

Hamiltonian paths and cycles and cycle paths 
are named after William Rowan Hamilton who 
invented the icosian game, now also known as 
Hamilton's puzzle, which involves finding a 
Hamiltonian cycle in the edge graph of the 
dodecahedron. Hamilton solved this problem 
using the icosian calculus, an algebraic structure 
based on roots of unity with many similarities to 
the quaternion (also invented by Hamilton). This 
solution does not generalize to arbitrary graphs. 
 

Now, any non-Abelian Dedekind group is called a 
Hamiltonian group (Dedekind group is a group in 
which every subgroup is a normal subgroup) and 

in addition to some non-Abelian groups, all 
Abelian groups are also Dedekind groups [4]. 
The most familiar and smallest example of 
Hamiltonian group is the quaternion group of 
order 8, denoted by Q8. Dedekind and Baer have 
shown (in the finite and infinite order case 
respectively) that every Hamiltonian group is a 
direct product of the form G = Q8 × M × N, where 
M is an elementary Abelian 2-group, and N is a 
periodic Abelian group with all its elements of 
odd order. Dedekind groups are named after 
Richard Dedekind. He investigated them and 
proved some of the structure theorem for finite 
groups and then named the non-Abelian ones 
after William Rowan Hamilton, the discoverer of 
quaternions. 
 
In the year 1898, George Miller delineated the 
structure of a Hamiltonian group in terms of its 
order and that of its subgroups. For instance, he 
shows that "a Hamilton group of order 2

m
 has 2

2m 

− 6
 where m > 3, quaternion groups as 

subgroups". In 2005 Horvat et al used this 
structure to count the number of Hamiltonian 
groups of any order n, say n = 2

e
q where q is an 

odd integer. If e < 3, there are no Hamiltonian 
groups of order n, otherwise there are the same 
number as there are Abelian groups of order q 
[5]. 
 

2. THE QUATERNION GROUP 
 
In group theory, the quaternion group is a non-
Abelian group of order 8, isomorphic to a certain 
eight-element subset of the quaternions under 
multiplication. It is often denoted by Q or Q8, and 
is given by the group presentation 
 

,1,1)1(|,,,1
2222 −=====−−= ijkkjikjiQ   

 
where 1 is the identity element and −1 commutes 
with every other elements of the group. The Q8 
group has the same order as the dihedral group 
D4, but of different structure, as shown by their 
Cayley graphs below. 

 

                               Cayley graph 

 

 
                  Q8 

  
                    D4 
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The black arrows in Q8 represent multiplication 
on the right by i, and the blue arrows represent 
multiplication on the right by j. The dihedral group 
D4 arises in the split quaternions in the same way 
that Q8 lies in the quaternions. The quaternion 
group has the unusual property of being 
Hamiltonian: every subgroup of Q is a normal 
subgroup, but the group is non-Abelian [6] and 
every Hamiltonian group contains a copy of Q 
[7]. 
 

In abstract algebra, one can construct a real four-
dimensional vector space with basis {1, i, j, k} 
and turn it into an associative algebra using 
multiplication as the binary operation and 
distributive property. This result to a skew field 
called the quaternions. We also note that this is 
not quite the same as the group algebra on Q 
(which would be eight-dimensional). Conversely, 
one can start with the quaternions and then 
define the quaternion group as the multiplicative 
subgroup consisting of eight elements {1, −1, i, 
−i, j, −j, k, −k}. The complex four-dimensional 
vector space on the same basis is called the 
algebra of biquaternions. 
 

Note that all the elements i, j, and k have order 
four in Q and any two of them generate the entire 
group. Another presentation of Q is found in [8] 
as follows: 

 

.,,1|,
11224 −− ==== xxyyyxxyxQ

 
 
One may take, for instance, i = x, j = y and                
k = x y. 
 
It can be seen that the center and the 
commutator subgroup of Q is the subgroup Z(Q) 
= {-1, +1}. The factor group Q/Z(Q) is isomorphic 
to the Klein four-group V. The inner 
automorphism of Q is isomorphic to Q modulo its 
center, and is therefore isomorphic to the Klein 
four-group V and the full automorphism group of 
Q is isomorphic to the symmetric group S4 of 
order 24. The outer automorphism of Q is then 
S4/V of order 6 which is isomorphic to the 
symmetric group S3 [9]. 
 

3. METACYCLIC GROUP 
 
A group G is said to be metacyclic if there is a 
cyclic normal subgroup N whose quotient group 
G/N is also cyclic. If G is finite, then the 
presentation of G contains two generators and 
three defining relations. Much attention has been 
given to some specific types of metacyclic 

groups by many authors such as metacyclic 
groups with cyclic commutator quotient as 
discussed by Zassenhaus and Hall [10]. And the 
result that every finite metacyclic group can be 
decomposed naturally as a semi-direct product of 
two Hall subgroups made by [11] was an 
important progress. 
 
We shall now consider some important 
theorems. 
 
Theorem 3.1: If a group G has a subgroup N of 
index 2 such that every subgroup of N is normal 
in G, then every Cayley diagram in G has a 
Hamiltonian path [12]. 
 
Corollary 3.2: If a group G has a cyclic subgroup 
of index 2, then every Cayley diagram in G has a 
Hamiltonian path. In particular every Cayley 
diagram in dihedral group or generalized 
quaternion group has a Hamiltonian path. 
 
Proof: Let N be a cyclic subgroup of index 2 in 

G. Since [G: N] = 2, GN <  [13]. Now, every 

subgroup of a cyclic normal subgroup is normal 
and so, every subgroup of N is normal in G. 
Thus, Theorem 3.1 applies. 
 
We conjecture that every Cayley diagram in any 
metacyclic group has a Hamiltonian path. 
Holsztynski and Strube [14] conjectured that 
every Cayley diagram in a dihedral group has a 
Hamiltonian circuit. The following theorems show 
that this conjecture can be achieved by 
considering only generating sets which consist 
entirely of reflections. 
 
Theorem 3.3: Let HUS generates a dihedral 
group, where every element of H is a rotation, 
and every element of S is a reflection. If Cay(S) 

has a Hamiltonian circuit, then Cay(H∪S) has a 
Hamiltonian circuit [12]. 
 

Proof: Let (βi: 1 ≤ i ≤ m) be a Hamiltonian circuit 

in Cay(S) and let (αi : 1 ≤ j ≤ n) be a Hamiltonian 

path in Cay(H: (〈H〉/(〈H〉∩〈S〉))). Then {(α1, α2, …, 

αm,βi): 1 ≤ i ≤ m} is a Hamiltonian circuit in Cay(H 

∪ S), and this complete the proof. 
 
The result that Cay(S) has a Hamiltonian circuit 
whenever S is a single reflection or a pair of 
reflections yields the following corollary: 
 

Corollary 3.4: If S generates a dihedral group 
and contains no more than two reflections, then 
Cay(S) has a Hamiltonian circuit. 
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Proposition 3.5: If n is divisible by at most 3 
distinct primes, where n is any positive integer, 
then every Cayley diagram in the dihedral group 
of order 2n has a Hamiltonian circuit [12]. 
 

Proof: Let Dn = 〈α,β|αn
 = β2

 = e, βαβ = α-1
〉. Then 

by the assumption on n, we may further assume 
that S is a minimal generating set of the form     

S = {β, βα
u
, βα

v
}. Let p be the largest prime 

divisor of n. Because S is minimal, p is a divisor 
of u, v or u - v. Since at least one of any p + 1 
consecutive integers is relatively prime to n, it 

follows therefore that Cay(αu
, αv

 :〈α〉) has a 

Hamiltonian circuit (αi: 1 ≤ i ≤ n). Hence ((β, βαi
): 

1 ≤ i ≤ n) is a Hamiltonian circuit in Cay(S). 

 
4. GROUPS OF ORDER 16 AND 24 
 
We shall now consider two non-Abelian groups 
which contain only Abelian subgroups with their 
fundamental properties. This paper is devoted to 
a determination and a study of the non-Abelian 
groups which involve only Abelian and 
Hamiltonian subgroups. It is found that there are 
only two exceptions to the following theorem: If a 
group G contains at least one Hamiltonian 
subgroup and if all its subgroups are either 
Abelian or Hamiltonian, then the group itself is 
Hamiltonian. The two exceptional groups are of 
orders 16 and 24 respectively, and are 
completely determined in this paper. 
 
Now, let G represent any group in which every 
subgroup is either Abelian or Hamiltonian and 
suppose that it is represented as a transitive 
substitution group of the lowest possible degree. 
If it is imprimitive, then its systems of imprimitivity 
are permuted according to some primitive group. 
In order to show that G is solvable, it is only 
necessary to prove that this primitive group is 
composite since it may be simply isomorphic with 
G and since every subgroup of G is solvable. 
The primitive group in question is of class n-1, n 
being its degree, since two of its maximal 
subgroups of degree n-1 can have only the 
identity element in common. And since every 
group of class n-1 and degree n is composite, G 
is solvable. 
 
In the preceding paragraph it is not assumed that 
G necessarily contains a Hamiltonian subgroup. 
The assumption may, however, be made since 
the non-Abelian groups in which every subgroup 
is Abelian are mentioned above. Hence we shall 
assume in what follows that G contains at            
least one Hamiltonian subgroup. Its order can 

therefore not be the power of an odd prime 
number. We shall now consider all the possible 
G'

s
 under two headings as their orders are a 

power of 2 or involve more than one prime factor, 
also examined by Miller, [15]. 
 

4.1 The Order |G| of G is 2m 

 
Now, since the group G involves at least one 
Hamiltonian subgroup, it must involve a 
Hamiltonian subgroup (M) which is composed of 
half of its operators. And since M is Hamiltonian, 
three-fourths of its operators are non-invariant, of 
order four, and have a common square while the 
remaining one-fourth are the invariant operators 
of M. These invariant operators constitute an 
Abelian subgroup (K) of type (1, 1, 1, …). 
Moreover, with respect to the subgroup K, M is 
isomorphic to the four-group and hence, there is 
at least one subgroup (M') in M which involves K 
and one-third of the operators of order four 
contained in M, invariant under G. The subgroup 
M' is thus, Abelian, of type (2, 1, 1, …). Again, 
since M does not contain any operator whose 
order is greater than 4, there can be no operator 
in G whose order exceeds 8. Moreover, every 
operator of order 2 is invariant under G. Hence, 
any operator of G together with K generates a 
subgroup which is either Abelian or Hamiltonian 
since this operator and K do not generate G. 
Also, since every operator of order 2 in a 
Hamiltonian group is invariant, it shows that 
every operator of K is invariant under G. 
 
Supposed any other operator of order 2 were not 
commutative with some operator of order 4 in M, 
then the latter operator could not be in M' since a 
Hamiltonian group involves no non-invariant 
operator of order 2. This shows that each 
operator of M' is commutative with every 
operator of order 2 contained in G. But if an 
operator of order 2 were not commutative with 
any other operator of order 4 in M, it would then 
transform this operator into the product of itself 
with an operator of order 2 contained in M. 
Hence, the order of G could not exceed 16. 

 
We shall now show that there is one and only 
one group G which involves operators of order 8. 

As an operator (α) of order 8 in G is commutative 
with each operator in K and has its square in M', 
it must be commutative with all operators of M'. 
But it cannot be commutative with every operator 

of M since α
2
 transform some of these operators 

into their inverses. Also, as α transforms an 
operator of order 4 in M into itself multiplied by 
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an operator of order 4 which is commutative with 

α, the group generated by α and any other 

operator (τ) of order 4 in M which is not 

commutative with α is of order 16 or 32. This 
group must therefore coincide with G since it is 
neither Abelian nor Hamiltonian. 
 
We proceed to show that the order of the group 

generated by σ and α cannot be 32. If this order 

were 32, then α2
 would not be in the group of 

order 8 generated by (α) and the commutative 

subgroup of {τ, α}. This group and α2
 would 

therefore generate the Hamiltonian group of 
order 16 and G would involve an Abelian group 
of type (3, 1). This Abelian subgroup would 
involve all the operators of order 8 contained in G 
and two of the remaining operators of order 4 
would generate a non-Abelian group of order 16 
involving a commutator subgroup of order 4. But 
such a subgroup could not occur in G. Thus the 
order of G cannot exceed 16. Now, as the groups 
of order 16 are known, we may state the result 
as follows: There is one and only one group of 

order 2
m
, ,

+ℜ∈m  which involves operators 

whose orders exceed four and satisfies the 
additional conditions that every subgroup is 
either Abelian or Hamiltonian, and that at least 
one subgroup is Hamiltonian. This is the group of 
order 16 which contains a cyclic subgroup of 
order 8, where the remaining operators are of 
order 4 and transform each operator of this cyclic 
subgroup into their inverses. 
 
Moreover, half of the operators of G which are 
not in M transform the operators of order 4 in M 
into their inverses while the remaining half are 
commutative with these operators. Hence, M is 
contained in two Hamiltonian and one Abelian 

subgroup of order ||
2

1
G . We now proceed to 

prove that G contains operators of order 2 which 
are not in M whenever its order exceeds 16. Let t 
represent an operator of G not in M and which 
transforms the operators of order 4 in M' into 
their inverses. The operators of order 4 in M and 
t would have a common square and the group 
generated by t and an operator of M which is not 
contained in M is at most, of order 16. But it 
could not be of this order since any two operators 
of a Hamiltonian group cannot generate a group 
whose order is 16. Therefore, it follows that t is 
commutative with half of the operators of M and 
hence with operators of order 4 in M. And as the 
product of t with such an operator is of order 2, G 
is the direct product of M and an operator of 
order 2. Thus, if every subgroup of a group of 

order 2
m
, m > 4, is either Abelian or Hamiltonian 

and if there is at least one Hamiltonian subgroup, 
then the entire group is Hamiltonian. 
 

Finally, we shall now consider groups of order 
16. If such a group of order 16 contains a 
Hamiltonian subgroup, it must be the quaternion 
group. As every group of order 16 contains an 
Abelian subgroup of order 8 and as the groups 
under consideration do not involve any operators 
of order 8, it then follows that G would have to 
contain operators of order 2 in addition to the one 
contained in the quaternion subgroup. Also such 
an operator has to be commutative with each 
operator in the quaternion subgroup. Thus G 
itself is the Hamiltonian group of order 16, and it 
shows that the group of order 16 considered 
above is the only non-Hamiltonian group of order 
2

m
 in which every subgroup is either Abelian or 

Hamiltonian and in which at least one subgroup 
is Hamiltonian. Hence with this single exception, 
the Hamiltonian groups are the only ones 
involving Hamiltonian subgroups, with no other 
non-Abelian subgroups. 
 

4.2 |G| is Divisible by at Least Two 
Distinct Prime Numbers 

 

Since G contained at least one Hamiltonian 
subgroup, its order is divisible by 8. Therefore it 
contains an invariant subgroup M of prime index 
(p) since it is solvable. But this subgroup is the 
direct product of its own Sylow p-subgroups 
since it is either Hamiltonian or Abelian, and the 
order of every operator of G which is not also in 
M is divisible by p. Thus if t represent one of 
these operators, then t

p
 is in M. Also each of the 

Sylow subgroups of M is transformed into itself 
by t. Now when p = 2, then M involves at least 
two different Sylow subgroups and t is 
commutative with all the operators of odd order 
contained in M. Thus, the group generated by t 
and the Sylow p-subgroup of order 2

m
 contained 

in M is Hamiltonian since it is a Sylow subgroup 
of G. Hence, G is the direct product of its Sylow 
subgroups whenever it contains an invariant 
subgroup of half its order as all of its operators 
are commutative with every operator of odd order 
in M. Also, the Sylow subgroup of order 2

m+1
 is 

Hamiltonian while all the others are Abelian. 
Moreover, any such direct product is always a 
group of the required kind. Assuming that p is 
odd. When p > 2, the Sylow subgroup of order 2

m
 

contained in M is obviously Hamiltonian and 
when M involves more than one Sylow subgroup, 
then t is commutative with every operator of M 
since it is commutative with all the operators in 
its Sylow subgroups. Hence G is the direct 
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product of its Sylow subgroups whenever the 
order of M is divisible by at least two different 
prime numbers. It remains now to consider the 
case when M is the Hamiltonian group of order 
2

m
 and p > 2. 

 
Since M contains only three Abelian subgroups 
of order 2

m-1
, t would have to transform each of 

these into itself whenever p > 3. As the group 
generated by t and such a subgroup would be 
Abelian, t would again be commutative with 
every operator of M and we have proved that if 
the order of G is not of the form 2

m
.3, then G is 

always the direct product of an Abelian group of 
odd order and a Hamiltonian group of order 2

m
. 

We shall now assume that the order of G is the 
product 2

m
.3 and then consider the possible 

value of m. But the order of the subgroup 
generated by three operators of order 4 in M 
cannot exceed 16. Then assuming that t is not 
commutative with every operator of order 4 in M. 
It would therefore transform a subgroup of M 
whose order cannot exceed 16 into itself. Since 
the group generated by t and this subgroup is 
neither Abelian nor Hamiltonian, the order of G 
cannot exceed 48 unless it is the direct product 
of its Sylow subgroups. Therefore we may now 

assume that t does not transform each of the 
three Abelian subgroups of order 2

m-1
 into itself, 

otherwise it would be commutative with each 
operator of M, and hence the group which the 
three conjugate operators of order 4 generate is 
the Hamiltonian group of order 16 or the 
quaternion group. Now, as the group contains 
exactly four quaternion subgroups, t and this 
quaternion subgroup generate the group of order 
24 which has no subgroup of order 12. Hence we 
have the following conclusion: 
 

If a group G contains at least one 
Hamiltonian subgroup and if all its subgroups 
are either Abelian or Hamiltonian, then it is 
the direct product of the Hamiltonian group of 
order 2

m
 for some positive integer m and an 

Abelian group of odd order, unless it is the 
group of order 24 which does not contain a 
subgroup of order 12. Hence, there are only 
two non-Hamiltonian groups which contain at 
least one Hamiltonian subgroup and whose 
other subgroups are either Abelian or 
Hamiltonian. The orders of these groups are 
16 and 24 respectively, while there are 
infinite number of non-Abelian groups in 
which every subgroup is Abelian. 

 

5. THE GROUPS D8 AND Q12 

 

We shall start this section by considering the group D8 of order 16 as follows: 
 

gap> D:=DihedralGroup(IsPermGroup, 16); 
Group([ (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) ]) 
gap> r:= D.1; 
(1,2,3,4,5,6,7,8) 
gap> s:= D.2; 
(2,8)(3,7)(4,6) 
gap> M:= Subgroup(D, [r]); 
Group([ (1,2,3,4,5,6,7,8) ]) 
gap> N:= Subgroup(D, [s]); 
Group([ (2,8)(3,7)(4,6) ]) 
gap> Centre(D); 
Group([ (1,5)(2,6)(3,7)(4,8) ]) 
gap> IsCyclic(M); 
true 
gap> IsCyclic(N); 
true 
gap> IsCyclic(Center(D)); 
true 
gap> Size(M); Size(N); Size(Centre(D)); 
8 
2 
2 
 

gap> Read("CircuitCheck"); 
gap> CircuitCheck((1,2,3,4,5,6,7,8)); 
[ (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8,9,10,11,12), (1,4,7,9,11,2,5,8,10,12,3,6), (1,5)(2,6,9,12,4,8,11,3,7,10), 
  (1,6,10,3,8,12,5,9,2,7,11,4), (1,7,12,6,11,5,10,4,9,3)(2,8), (1,8,3,9,4,10,5,11,6,12,7,2), 
  (2,9,5,12,8,4,11,7,3,10,6), (1,9,6,3,11,8,5,2,10,7,4,12), (1,10,8,6,4,2,11)(3,12,9,7,5), 
  (1,11,9,8,7,6,5,4,3,2,12,10), (1,12,11,10,9), (1,10,2,9,3)(4,8)(5,7)(11,12), (1,9,2)(3,8)(4,7)(5,6)(10,12), 
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  (2,8)(3,7)(4,6)(9,12)(10,11), (1,8,12)(2,7)(3,6)(4,5)(9,11), (1,7,12,8,11)(2,6)(3,5)(9,10), 
  (1,6,12,7,11,8,10)(2,5)(3,4), (1,5,12,6,11,7,10,8,9)(2,4), (1,4,12,5,11,6,10,7,9,8)(2,3), (1,3,12,4,11,5,10,6,9,7), 
  (1,2,12,3,11,4,10,5,9,6)(7,8), (1,12,2,11,3,10,4,9,5)(6,8), (1,11,2,10,3,9,4)(5,8)(6,7), (1,2,3,4,5,6,7,8) ] 
 
gap> CircuitCheck((1,3)(2,4)(5,7)(6,8)); 
[ (1,3)(2,4)(5,7)(6,8), (1,4,7,6,5,8,9,10,11,12,3,2), (3,7,9,11)(4,8,10,12), (1,2,7,10,3,8,11,4,5,6,9,12), 
  (1,7,11)(2,8,12)(3,5,9)(4,6,10), (1,8,3,6,11,2,5,10)(4,9)(7,12), (1,5,11,7,3,9)(2,6,12,8,4,10), 
  (1,6,3,10,7,4,11,8)(2,9)(5,12), (1,9,7)(2,10,8)(3,11,5)(4,12,6), (1,10,5,4,3,12,9,8,7,2,11,6), 
  (1,11,9,5)(2,12,10,6), (1,12,11,10,9,6,7,8,5,2,3,4), (1,10,3,6,7,2,9,4,5,8)(11,12), (1,9,3,5,7)(2,6)(4,8)(10,12), 
  (1,6)(2,5)(3,8)(4,7)(9,12)(10,11), (1,5)(2,8,12,6,4)(3,7)(9,11), (1,8,11,6,3,2,7,12,5,4)(9,10), 
  (1,7,11,5,3)(6,12,8,10), (1,2)(3,4)(5,12,7,10)(6,11,8,9), (2,4,12)(5,11,7,9)(6,10,8), (1,4,11,2,3,12)(5,10,7,6,9,8), 
  (1,3,11)(2,12,4,10)(5,9,7), (1,12,3,10)(2,11,4,9)(5,6)(7,8), (1,11,3,9)(2,10,4,6,8), (1,3)(2,4)(5,7)(6,8) ] 
 

gap> CircuitCheck((1,7)(2,6)(3,5)); 
[ (1,7)(2,6)(3,5), (1,6)(2,5)(3,4)(7,8,9,10,11,12), (1,5)(2,4)(6,8,10,12)(7,9,11), (1,4)(2,3)(5,8,11,6,9,12)(7,10), 
  (1,3)(4,8,12)(5,9,7,11)(6,10), (1,2)(3,8,7,12)(4,9,6,11)(5,10), (2,8,6,12)(3,9,5,11)(4,10), 
  (1,8,5,12)(2,9,4,11)(3,10)(6,7), (1,9,3,11)(2,10)(4,12,8)(5,7), (1,10)(2,11,8,3,12,9)(4,7)(5,6), 
  (1,11,9)(2,12,10,8)(3,7)(4,6), (1,12,11,10,9,8)(2,7)(3,6)(4,5), (1,10,7,4)(2,9,6,3,8,5)(11,12), 
  (1,9,7,5,3)(2,8,6,4)(10,12), (1,8,7,6,5,4,3,2)(9,12)(10,11), (8,12)(9,11), (1,2,3,4,5,6,7,12)(8,11)(9,10), 
  (1,3,5,7,11)(2,4,6,12)(8,10), (1,4,7,10)(2,5,12,3,6,11)(8,9), (1,5,11,3,7,9)(2,6,10)(4,12), 
  (1,6,9,2,7,8)(3,12,5,10)(4,11), (1,7)(2,12,6,8)(3,11,5,9)(4,10), (1,12,7,2,11,6)(3,10,5,8)(4,9), 
  (1,11,7,3,9,5)(2,10,6)(4,8), (1,7)(2,6)(3,5) ] 
 

Next, we consider the double dihedral group Q12 of order 24. Algebraically, the double dihedral group 

Q12 is the group generated by two elements α (rotation) and β (reflection) subject to the following 

relations; α
12

 = e, β2
 = e, αβα = β, and βαβ = α

-1
. Hence, by the appropriate program in GAP, we have 

the following result: 
 

gap> G:= DihedralGroup(IsPermGroup, 24); 
Group([ (1,2,3,4,5,6,7,8,9,10,11,12), (2,12)(3,11)(4,10)(5,9)(6,8) ]) 
gap> a:= G.1; 
(1,2,3,4,5,6,7,8,9,10,11,12) 
gap> H:= Subgroup(G, [a]); 
Group([ (1,2,3,4,5,6,7,8,9,10,11,12) ]) 
gap> b:= G.2; 
(2,12)(3,11)(4,10)(5,9)(6,8) 
gap> J:= Subgroup(G, [b]); 
Group([ (2,12)(3,11)(4,10)(5,9)(6,8) ]) 
gap> K:= Subgroup(G, [a,b]); 
Group([ (1,2,3,4,5,6,7,8,9,10,11,12), (2,12)(3,11)(4,10)(5,9)(6,8) ]) 
gap> Center(G); 
Group([ (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) ]) 
gap> Elements(Center(G)); 
[ (), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) ] 
gap> IsAbelian(G); 
false 
gap> IsAbelian(H); 
true 
gap> IsAbelian(J); 
true 
gap> IsCyclic(G); 
false 
gap> IsCyclic(H); 
true 
gap> IsCyclic(J); 
true 
gap> Size(G); Size(H); Size(J); 
24 
12 
2 
gap> Size(Center(G)); 
2 
gap> Center(G) = J; 
false 
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From the above results, it is obvious that both D8 
and Q12 are not Abelian but the subgroup 
generated by the rotations and the reflections 
from each group is Abelian. The order of the 
centre of each group is 2 and in both cases, each 
reflection generates a cyclic subgroup J of order 

2 since o(β) = 2 for each reflection β.                
These subgroups are normal. Again, if H is             
the subgroup consisting of all the rotations in    

any of the groups, then H is obviously a              
normal subgroup since [G:H] = 2, [16].              
Hence by induction, all subgroups of                             
the groups D8 and Q12 are Abelian and                  
cyclic. 
 
We shall now write the appropriate program in 
GAP to obtain some Hamiltonian circuits in the 
group Q12 as follows: 

 
gap> Read("CircuitCheck"); 
gap> CircuitCheck(()); 
[ (), (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,4,7,10)(2,5,8,11)(3,6,9,12), 
  (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,6,11,4,9,2,7,12,5,10,3,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), 
  (1,8,3,10,5,12,7,2,9,4,11,6), (1,9,5)(2,10,6)(3,11,7)(4,12,8), (1,10,7,4)(2,11,8,5)(3,12,9,6), 
  (1,11,9,7,5,3)(2,12,10,8,6,4), (1,12,11,10,9,8,7,6,5,4,3,2), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12), 
  (1,9)(2,8)(3,7)(4,6)(10,12), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11), (1,7)(2,6)(3,5)(8,12)(9,11), 
  (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (1,5)(2,4)(6,12)(7,11)(8,10), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9), 
  (1,3)(4,12)(5,11)(6,10)(7,9), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,12)(3,11)(4,10)(5,9)(6,8), 
  (1,12)(2,11)(3,10)(4,9)(5,8)(6,7), (1,11)(2,10)(3,9)(4,8)(5,7), () ] 
 
gap> CircuitCheck((1,2,3,4,5,6,7,8,9,10,11,12)); 
[ (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,4,7,10)(2,5,8,11)(3,6,9,12), 
  (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,6,11,4,9,2,7,12,5,10,3,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), 
  (1,8,3,10,5,12,7,2,9,4,11,6), (1,9,5)(2,10,6)(3,11,7)(4,12,8), (1,10,7,4)(2,11,8,5)(3,12,9,6), 
  (1,11,9,7,5,3)(2,12,10,8,6,4), (1,12,11,10,9,8,7,6,5,4,3,2), (), (1,11)(2,10)(3,9)(4,8)(5,7), 
  (1,10)(2,9)(3,8)(4,7)(5,6)(11,12), (1,9)(2,8)(3,7)(4,6)(10,12), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11), 
  (1,7)(2,6)(3,5)(8,12)(9,11), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (1,5)(2,4)(6,12)(7,11)(8,10), 
  (1,4)(2,3)(5,12)(6,11)(7,10)(8,9), (1,3)(4,12)(5,11)(6,10)(7,9), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), 
  (2,12)(3,11)(4,10)(5,9)(6,8), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7), (1,2,3,4,5,6,7,8,9,10,11,12) ] 
 
gap> CircuitCheck((2,12)(3,11)(4,10)(5,9)(6,8)); 
[ (2,12)(3,11)(4,10)(5,9)(6,8), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7), (1,11)(2,10)(3,9)(4,8)(5,7), 
  (1,10)(2,9)(3,8)(4,7)(5,6)(11,12), (1,9)(2,8)(3,7)(4,6)(10,12), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11), 
  (1,7)(2,6)(3,5)(8,12)(9,11), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (1,5)(2,4)(6,12)(7,11)(8,10), 
  (1,4)(2,3)(5,12)(6,11)(7,10)(8,9), (1,3)(4,12)(5,11)(6,10)(7,9), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), 
  (1,4,7,10)(2,5,8,11)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,6,11,4,9,2,7,12,5,10,3,8), 
  (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,8,3,10,5,12,7,2,9,4,11,6), (1,9,5)(2,10,6)(3,11,7)(4,12,8), 
  (1,10,7,4)(2,11,8,5)(3,12,9,6), (1,11,9,7,5,3)(2,12,10,8,6,4), (1,12,11,10,9,8,7,6,5,4,3,2), (), 
  (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (2,12)(3,11)(4,10)(5,9)(6,8) ] 
 
gap> CircuitCheck((1,3,5,7,9,11)(2,4,6,8,10,12)); 
[ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,4,7,10)(2,5,8,11)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12), 
  (1,6,11,4,9,2,7,12,5,10,3,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,8,3,10,5,12,7,2,9,4,11,6), 
  (1,9,5)(2,10,6)(3,11,7)(4,12,8), (1,10,7,4)(2,11,8,5)(3,12,9,6), (1,11,9,7,5,3)(2,12,10,8,6,4), 
  (1,12,11,10,9,8,7,6,5,4,3,2), (), (1,2,3,4,5,6,7,8,9,10,11,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7), 
  (1,11)(2,10)(3,9)(4,8)(5,7), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12), (1,9)(2,8)(3,7)(4,6)(10,12), 
  (1,8)(2,7)(3,6)(4,5)(9,12)(10,11), (1,7)(2,6)(3,5)(8,12)(9,11), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), 
  (1,5)(2,4)(6,12)(7,11)(8,10), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9), (1,3)(4,12)(5,11)(6,10)(7,9), 
  (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,12)(3,11)(4,10)(5,9)(6,8), (1,3,5,7,9,11)(2,4,6,8,10,12) ] 
 
gap> CircuitCheck((1,10,7,4)(2,11,8,5)(3,12,9,6)); 
[ (1,10,7,4)(2,11,8,5)(3,12,9,6), (1,11,9,7,5,3)(2,12,10,8,6,4), (1,12,11,10,9,8,7,6,5,4,3,2), (), 
  (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), (1,4,7,10)(2,5,8,11)(3,6,9,12), 
  (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,6,11,4,9,2,7,12,5,10,3,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), 
  (1,8,3,10,5,12,7,2,9,4,11,6), (1,9,5)(2,10,6)(3,11,7)(4,12,8), (1,7)(2,6)(3,5)(8,12)(9,11), 
  (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (1,5)(2,4)(6,12)(7,11)(8,10), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9), 
  (1,3)(4,12)(5,11)(6,10)(7,9), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,12)(3,11)(4,10)(5,9)(6,8), 
  (1,12)(2,11)(3,10)(4,9)(5,8)(6,7), (1,11)(2,10)(3,9)(4,8)(5,7), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12), 
  (1,9)(2,8)(3,7)(4,6)(10,12), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11), (1,10,7,4)(2,11,8,5)(3,12,9,6) ] 
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Sometimes one may ask question like “Does any 
non-trivial finite group have a Hamilton circuit?” 
The obvious answer is always yes. But the next 
question may turn out to be “how many different 
Hamilton circuits does it have?” Now, to answer 
this question, we shall consider a set of four 
different objects and denote it by V4, so that V4 = 
{A, B, C, D}. Now, if we move through the four 
points of V4 in an arbitrary order, we get a 

Hamilton path. Take for example, C→B→D→A 

(= B→D→A→C = D→A→C→B = A→C→B→D) 

is a Hamilton path; D→C→B→A (= C→B→A→D 

= B→A→D→C = A→D→C→B) is another 
Hamiltonian path; and so on. Each of these 
Hamilton paths can be closed into a Hamilton 

circuit. The path C→B→D→A begets the circuit 

C→B→D→A→C; the path D→C→B→A begets 

the circuit D→C→B→A→D; and so on. Hence, in 
each non-trivial finite group, there is abundance 
of Hamilton circuits. 
 
Now, to find all the Hamiltonian circuits in V4, for 
simplicity, we shall consider each circuit just 
once, using a common reference point say A 
because as long as we are consistent, it doesn’t 
really matter which reference point we shall pick. 
Therefore each Hamilton circuits will be 
described by a sequence that starts and ends 
with the object A, with the objects B, C and D, 
permuted in between in some order. Thus, there 

are a total of 3 × 2 × 1 = 6 different ways to 
shuffle the objects B, C, and D, each producing a 
different Hamilton circuit in V4. Therefore by 

induction, there are (n – 1) × (n – 2) × … × 2 × 1 
= (n – 1)! Hamilton circuits in any set Vn 
consisting of n objects. 
 

We shall now find the number of Hamiltonian 
circuits in D8 and Q12 as follows: 
 

gap> Factorial(15);  
1307674368000 
 

gap> Factorial(23);  
25852016738884976640000 

 

Hence, there are 1307674368000 and 
25852016738884976640000 Hamiltonian circuits 
in D8 and Q12 respectively. 
 

6. CONCLUSION 
 
We have successfully shown that all subgroups 
of the non-Abelian groups D8 and Q12 are 
Abelian and cyclic where Z(D8) and Z(Q12) are 
found to be doublets (i.e. each of order 2). These 
subgroups are Hamiltonian. Hence, if a group              
G contains at least one Hamiltonian subgroup 

and if all its subgroups are either Abelian or 
Hamiltonian, then it can be express as the direct 
product of the Hamiltonian group of order 2

m
 for 

some positive integer m and an Abelian group of 
odd order, unless it is the group of order 24 
which does not contain a subgroup of order 12. It 
was also shown that every finite non-trivial group 
contains a Hamiltonian circuit and we were able 
to generate some Hamiltonian circuits in the non-
Abelian finite groups D8 and Q12, and the total 
number of the circuits in each group was 
determined using GAP. 
 

This concept of Hamiltonian circuits in finite 
groups is very useful in electrical network and 
even computer networking which is to be 
addressed in our next paper. Nevertheless, we 
shall give a concrete example in our daily 
routine. Consider a school bus for a certain 
school. We call such school bus “the traveler” 
which always lives school in the morning time 
and picks up children at the designated bus 
stops which is called “the sites” and drops them 
off at the end of the day at the same sites. For a 
typical school bus route, there may be 10 to 20 
such sites. In this case, total time on the bus is 
always an important variable because students 
have to get to school on time, and there is a 
known time of travel between any two sites. 
Since children must be picked up at every site, a 
tour of all the sites, starting and ending at the 
school is required. And since the bus repeats its 
route every school day throughout the session, 
finding an optimal tour is crucial, and each route, 
starting and ending at the school, is called a 
Hamiltonian circuit. 
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