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Abstract

We derive an analytical theory of the PDF of density fluctuations in supersonic turbulence in the presence of
gravity in star-forming clouds. The theory is based on a rigorous derivation of a combination of the Navier–Stokes
continuity equations for the fluid motions and the Poisson equation for the gravity. It extends previous approaches,
first by including gravity and second by considering the PDF as a dynamical system, not a stationary one. We
derive the transport equations of the density PDF, characterize its evolution, and determine the density threshold
above which gravity strongly affects and eventually dominates the dynamics of turbulence. We demonstrate the
occurrence of two power-law tails in the PDF, with two characteristic exponents, corresponding to two different
stages in the balance between turbulence and gravity. Another important result of this study is to provide a
procedure to relate the observed column density PDFs to the corresponding volume density PDFs. This allows us to
infer, from the observation of column densities, various physical parameters characterizing molecular clouds,
notably the virial parameter. Furthermore, the theory offers the possibility to date the clouds in units of tcoll, the
time since a statistically significant fraction of the cloud started to collapse. The theoretical results and diagnostics
reproduce very well numerical simulations and observations of star-forming clouds. The theory provides a sound
theoretical foundation and quantitative diagnostics to analyze observations or numerical simulations of star-
forming regions and to characterize the evolution of the density PDF in various regions of molecular clouds.

Unified Astronomy Thesaurus concepts: Molecular clouds (1072); Star formation (1569); Hydrodynamics (1963)

1. Introduction

It has been established by many studies that the volume-
weighted probability density function (PDF) of supersonic
isothermal turbulence displays a nearly log-normal shape for
solenoidally driven turbulence, at least for Mach numbers
  30 (Vazquez-Semadeni 1994; Passot & Vázquez-Sema-
deni 1998; Kritsuk et al. 2007; Federrath et al. 2008, 2010; Pan
et al. 2019a), even in the presence of magnetic fields (Lemaster
& Stone 2008; Collins et al. 2012). In dense star-forming
regions, however, the line-of-sight extinction and inferred
column density PDFs have been observed to develop a power-
law tail at high densities, for extinctions AV2–5 (e.g.,
Kainulainen et al. 2006, 2009; Schneider et al. 2012, 2013 and
references therein), a feature identified as the signature of
gravity. Indeed, a similar feature of the PDF is found in
numerical simulations of turbulence that include self-gravity
(e.g., Kritsuk et al. 2010; Ballesteros-Paredes et al. 2011; Cho
& Kim 2011; Collins et al. 2012; Federrath & Klessen 2013;
Lee et al. 2015; Burkhart et al. 2016).

Whereas these two opposite signatures of the PDF, log-
normal versus power law, seem to be clearly identified, when
and how precisely gravity starts affecting the dynamics of
turbulence and thus the properties and the evolution of the PDF
remains to be fully understood. Understanding the statistical
properties of supersonic turbulence is at the heart of analytical
theories of the star formation process, so understanding the
physics governing the shape and the evolution of the density
PDF of supersonic turbulence is of prime importance. A few
attempts have been made to explain the development of power-
law tails in the density PDF (Girichidis et al. 2014; Donkov &
Stefanov 2018; Guszejnov et al. 2018). These approaches,
however, focus only on the gravitationally unstable parts of a
cloud, using self-similar gravitational collapse models and/or

geometrical arguments. While these models derive asymptotic
exponents of power-law tails, they lack a complete description
of the density fluctuations, in both the gravitationally stable and
unstable parts of the cloud, and treat the PDF as a static system,
even though Girichidis et al. (2014) follow its time evolution
numerically. A first attempt to derive a robust theoretical
framework of density fluctuations in compressible turbulence
has been addressed by Pan et al. (2018, 2019a) based on the
formalism developed by Pope (1981, 1985) and Pope & Ching
(1993) for the PDF of any quantity, expressed as the
conditional expectations of its time derivatives. Within the
framework of this formalism, Pan et al. (2019a) used a
probabilistic approach to turbulence to derive a theoretical
formulation of the PDF of density fluctuations in a steady state
from first principles. In this paper, we follow a similar approach
and derive an analytical theory to describe the dynamics of
turbulence in dense regions of molecular clouds (MCs) and its
interplay with gravity. The approach generalizes the aforemen-
tioned ones in two ways. First, we include the impact of gravity
on the cloud’s dynamics. Second, we consider the density PDF
not as a stationary system but as one evolving with time,
implying that the conditional expectation of the flow velocity
divergence is time-dependent and nonzero. The theory explains
the evolution of the PDF and determines the density thresholds
above which gravity strongly affects and eventually dominates
the dynamics of the turbulence. We provide a procedure to
relate the observed column density PDFs to the underlying
volume density PDFs, allowing us to infer various physical
parameters characterizing molecular clouds from observations.
The theory and its diagnostics are confronted with numerical
simulations of gravoturbulent collapsing clouds and with
various available observations.
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2. Mathematical Framework

2.1. Description of a Molecular Cloud

We consider an isolated, turbulent, self-gravitating molecular
cloud. Neglecting for now the magnetic field, the cloud’s
evolution is given by the standard Navier–Stokes and Poisson
equations:

· ( ) ( )r
r

¶
¶

+ =v
t

0, 1

( · ) · ( )   s
r r

¶
¶

+ = - + + nv
v v

t
P

1 1
, 2

· ( ) p r= - G4 , 3

where ρ and P denote respectively the density and pressure of
the gas in the cloud, v the velocity field, the gravity field, and
sn the viscous stress tensor. We close the system of equations
by using a barotropic equation of state P(ρ)∝ργ for the gas.

We separate the evolution of the background from that of
local density deviations. We thus split the velocity field v
between the mean velocity V and the (turbulent) velocity u
(Ledoux & Walraven 1958) and we introduce the logarithmic
excess of local density s,

( )
r
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1
, 4

( )º -u v V, 5

( ) ( )r rº x t e, , 6s

where ( )F x t, denotes the mathematical expectation, also called
statistical average or mean, of any random field Φ (e.g.,
Pope 1985; Frisch 1995). We note that ¹u 0 a priori but
r ºu 0 by definition (Equations (4) and (5)). This ensures that
on average there is no transfer of mass due to turbulence and
the equation of continuity (1) remains valid for the mean field,
i.e., for r and V . Averaging Equations (1) and (2) yields an
evolution equation for the mean flow written in conservative
form,
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with all quantities replaced by their mean values, except for the
appearance of the turbulent Reynolds stress tensor, r- Äu u.
The trace of this tensor corresponds to the turbulent pressure
while its traceless part is related to the turbulent viscous tensor.
We consider molecular viscous effects to be negligible in
molecular clouds and thus neglect the viscous tensor sn in the
general equations.

Having obtained the averaged evolution of the cloud, we can
obtain the evolution of the density deviations by subtraction.
This yields a transport equation for s, written in a Lagrangian
form:

· ( · ) ( ) ( )  r= - -u u
Ds

Dt
ln , 8

where ( · )= +¶
¶

vD

Dt t
is the Lagrangian derivative.

2.2. Transport Equations for the Probability Distribution
Function of Logarithmic Density Fluctuations

Assuming that turbulent fields are statistically homogeneous,
one can derive two transport equations for the probability
distribution function of logarithmic density fluctuations (s-
PDF) f (Pope 1981, 1985; Pan et al. 2018, 2019a, 2019b):
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where terms of the form ∣ ∣ ( )áF ñ º áF = ñxs s t s, denote the
conditional expectations of the random field Φ knowing that
( ) =xs t s, , and can be computed as the average of the field Φ

in all regions where ( ) [ ]Î +xs t s s ds, , .

2.3. Stationary Solutions

Equations (9) and (10) give insights into the interplay
between dynamical quantities and the steady-state value of the
density s-PDF, f. Pan et al. (2018, 2019a, 2019b) have shown
and tested numerically that

1. f is stationary if and only if · ∣á ñ =u s 0, " s,
2. In a steady state, f can be formally computed as

( )
( · ) ∣

∣

( · ) ∣
( )

·⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ò 

=
á ñ

-
¢

á ¢ñ
¢


-

u u
f s

Ce

s

s

s
dsexp , 11

u
s s

D

Dt

2 0 2

enabling us to discuss the impact of dynamical effects on
the density PDF f (s).

2.4. Effects of Gravity on the Density PDF

The effect of gravity on the density PDF without assuming a
steady state can be inferred by recasting Equation (10) as an
equation for ln f:

{ }
· ∣ ( · ) ∣ · ∣

· ∣ ( · ) ∣ ( )

  

 

á ñ
¶
¶

- á ñ
¶
¶

+
¶
¶

á ñ

= + +
¶
¶

á ñ

u u u

u
u

s
t

f s
s

f
t

s

D

Dt
s

s
s

ln ln

1 , 12

2

2

where the terms on the right-hand side (rhs) are then treated as
source terms. We note that, due to Equation (9), the term

· ∣¶ á ñut s on the left-hand side of Equation (12) is in fact
seen as an operator acting on f; in a similar way the pressure
gradient is seen as a nonlocal operator acting on the velocity
field in standard studies of incompressible hydrodynamics with
periodic boundary conditions (see, e.g., Frisch 1995). We then

split ∣· suD

Dt
as

· ∣ ( ) ( ) ( ) ( )
= + +

uD

Dt
s S s t S s t S s t, , , 13turb grav th

with
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where ( ) ( )  = ¶ ¶x y x y: i j j i using Einstein’s summation
convention. Equations (14)–(16) are obtained by taking the
divergence of Equation (2) and subtracting its average, knowing
that the turbulent fields ρ and u are statistically homogeneous.
Their explicit derivation is given in Appendix A. Then, using
Equation (12), the statistics of the flow within the cloud will be
dominated by gravity (i.e., will differ from the statistics of pure
gravitationless turbulence), whenever

∣ ( )∣ (∣ ∣ ∣ ∣ ∣{ } ( · ) ∣ ∣) ( )+ ¶ á ñ uS s S S smax , , 1 . 17sgrav turb th
2

Note that if the dynamics is dominated by gravity, we expect
( · )∣á ñu s to be amplified in collapsing regions such that

∣ ( )∣ ( · ) ∣~ á ñuS s sgrav
2 (see Section 3.3).

Physically, Equation (17) expresses the fact that gravity
dominates whenever one of the two following conditions is
fulfilled. Either (1) it overcomes thermal (pressure) or turbulent
contributions to the dynamics of the cloud (∣ ( )∣ S sgrav

(∣ ∣ ∣ ∣)S Smax ,turb th ); or (2) either convergent flows are produced
by gravitational collapse (∣ ( )∣ ( · ) ∣~ á ñuS s sgrav

2 ) or diver-
gent flows are forced to collapse, regardless of their their initial
expansion ( ( )∣ ( · ) ∣>á ñuS s sgrav

2 ).
As the aim of our study is to know when gravity will yield

significant departures from pure (gravitationless) turbulence,
we can evaluate the terms on the rhs of Equation (17) as for
standard steady-state turbulence without gravity (which we
denote with the subscript G ):

∣ ( )∣ (∣ ∣ ∣ ∣ ∣{ } ( · ) ∣ ∣) ( )+ ¶ á ñ uS s S S smax , , 1 . 18s Ggrav turb th
2

Pan et al. (2019a) performed such an analysis and found
that ( · ) ∣ ( · ) á ñ ~u us G G

2 2 , while the other terms have
no straightforward functional forms. To further simplify
Equation (18), we start from Equation (12) for turbulence
without gravity,
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then use of the triangle inequality,
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yields for the condition given by Equation (18)
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Making the standard approximation that fG is a log-normal
form of variance σs yields the simplified condition
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where σs is given in terms of the rms Mach number  and
forcing parameter b as (e.g., Federrath et al. 2008)
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Then, approximating ( · ) u G
2 within an order-of-magnitude

estimate as
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where ( ) ( ) ( )r r r rD = - b2 2 2 and τturb is a typical
turbulent timescale, of the order of the crossing time τc=Lc/(2σv),
with σv the 3D velocity dispersion and Lc the diameter of the cloud,
Equation (22) reduces to
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where t p r= G1 4G,0 and ( ) ( ( ))a s p r=t GL t5 vvir
2

c
2 is the

virial parameter, equal to =2Ekin/Egrav for a homogeneous
spherical cloud.
This equation introduces a new characteristic timescale,

t p rº G1 4G,0 . This timescale characterizes the impact of
gravity upon turbulence in the PDF evolution of the cloud, as
formalized by Equations (13) and (25). It it is roughly half the

mean freefall time of the cloud, t º p
rGff,0

3

32
. Equation (25)

then allows a determination, within a factor of a few, of the
density above which gravity is expected to change the statistics
of turbulence significantly.
Furthermore, following Pan et al. (2019a) and using

Equation (11), we see that because Sgrav(s)<0 when s>0
and Sgrav(s)>0 when s<0, respectively, gravity tends to
broaden the PDF at both small and large densities, resulting in
a larger variance compared with the case with no gravity. This
can be understood by considering that gravity acts as an extra
compressive forcing. This is equivalent to increasing ( b ) in
compressible turbulent simulations (Equation (23)).
Therefore, according to the present analysis, we expect to

have typically two regions (in terms of density) with different
contributions governing the statistics of turbulence:

1. a first region, corresponding to s<sG, where sG is given
by Equation (25), where the statistics is similar to that of
gravitationless turbulence but with a (more or less)
increased variance due to gravity. The s-PDF in this
region is log-normal-like,

2. a second region, corresponding to densities s>sG,
where gravity has a dominant impact on the statistics of
turbulence, and the PDF will depart from (Gaussian) log-
normal statistics.

3
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The threshold density, sG, between the two regions evolves
with time on the same timescale t̄ as the global, average
properties of the cloud ( ( )r t , αvir(t), ( · ) ( ) u t2 ),3 according to
Equation (25). However, as will be shown in Section 3, at
densities s>sG, the PDF will start departing from a log-
normal form and develop a power law on shorter timescales, of
the order of a typical local freefall time, ( ) ¯t t<sff .

3. Evolution of the Density PDF in Star-forming Clouds

Observations of column density PDFs in MCs show that
regions where star formation has not yet occurred exhibit log-
normal PDFs whereas regions with numerous prestellar cores
exhibit power-law tails at high column densities (Kainulainen
et al. 2009; Schneider et al. 2013). Similarly, numerical
simulations of star formation in turbulent clouds show that
density PDFs develop power-law tails as the simulations evolve
(Klessen 2000; Federrath & Klessen 2013). This suggests that
the density PDF in star-forming clouds is not stationary but
evolves with time, implying · ∣á ñ ¹u s 0 (see Section 2.3).

3.1. Mathematical Derivation: Equivalence of the Velocity
Divergence and s-PDF Power-law Tail Exponents

Finding solutions of Equation (9) for any function
· ∣á ñu s t, is not straightforward. Assuming, as a simplifica-

tion, separability of the time and density variables
· ∣ ( ) ( )á ñ = ´u s t h t g s, yields, from the method of char-

acteristics, the solution

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟ò ò= F ¢ + ¢

-
f s t hdt

g
ds

e

g s
,

1
, 26

s

with Φ any differentiable function.
We prove now that a nonstationary s-PDF develops a power-

law tail of exponent αs=a+1, with a>0, if and only if the
conditional expectation of the velocity divergence · ∣á ñu s
scales at large s?1 as · ∣ ( )á ñ » ´u s t h t e, as. Indeed, if
for s�sc, for some sc, one has

· ∣ ( ) ( )á ñ = ´u s t h t e, , 27as

with a>0, then

( )( ) ( )( )ò= F ¢ - - - +f s t a hdt e e, , 28as a s1

for s>sc, from Equation (27). Hence, as a>0, the PDF is
expected to develop a power-law tail with an exponent
−(1+a) at a given time t at s>sc sufficiently large that

( ) ( )ò òF ¢ - » F ¢-a hdt e a hdtas . The proof of the reciprocal
of this result (Equations (27) and (28)) is given in Appendix B.
Thus, observed power-law tails, ( ) µ a-f s t e, ss , with expo-
nents αs=3/2 and 2 correspond to underlying expectations

· ∣á ñ µu s t e, s 2 and · ∣á ñ µu s t e, s, respectively.

3.2. Physical Interpretation: Transitory Regime and Short
Time Evolution

At any time in a cloud, we can compute the threshold value
sG above which gravity starts altering the statistics of fully
developed turbulence significantly. For diffuse, hot, and/or

turbulent clouds (αvir?1), however, this value can be so large
that the probability ( )> s sG of finding regions s>sG
becomes very small. In such cases, one can completely neglect
the effect of gravity. To be more quantitative, let us assume that
gravity can be neglected if ( )> - s s 10G

9. Assuming a log-
normal PDF, this yields s s-s 6 0.5s sG

2 (where σs is the
variance in Equation (23)). In hot and turbulent clouds, where
T∼8000 K, ( ) ~b 1 (e.g., Draco, Miville-Deschênes et al.
2017), this yields αvir5.5 from Equation (25). As the cloud
cools down and contracts, αvir decreases, resulting in a value of
sG small enough to observe significant departures from a log-
normal PDF. We can thus define a time t0 in the lifetime of the
cloud as the time at which the volume fraction of the cloud
corresponding to (dense) regions with s>sG, where the gas
PDF starts departing from the statistics of pure turbulence,

· ∣ á ñu s 0, under the growing influence of gravity,
becomes noticeable, i.e., statistically significant. This fixes
the “zero of time” in the lifetimes of star-forming clouds,
whatever the (undefinable) time since which they have been
formed. The time t0 thus corresponds to the time at which some
dense regions start to collapse and depart from the global
evolution (contraction or expansion) of the cloud, which is
described by the time variation of ( )r t . This time t0 then
enables us to determine a physically motivated value to fix the
indefinite integral in Equation (28), as the one being equal to 0
at t0.
For regions with s>sG, we expect from Equations (12) and

(13) at short times = +t t t0 coll after t0, i.e., in the linear
regime, to have · ∣á ñu s ; ( )p r- -G e t t4 s

0 = p r- G e t4 s
coll

(i.e., a=1 in Equation (28)), yielding for the PDF f

( ) ˜ ( )
⎛
⎝⎜

⎞
⎠⎟ tF +- - -f s t

t
e e,

2
. 29s s

G,0
2 coll

2
2

Therefore, for densities s>sG, we expect to see the
onset of a first power-law tail in the s-PDF, ( ) µ a-f s t e, ss ,
with a steep exponent αs;2 in a typical timescale τG(s)=
τG,0 e

− s/2. As seen from Equation (29), the onset of this
first power-law tail occurs, for a given time t, at a density

( ) ( ) ( ) r r t t=s t t t0.25t t coll G,0 coll
2

ff,0 coll
2, as found in

numerical calculations (Girichidis et al. 2014). At later time
(a few τff(s), see Section 3.3) for a given density, or at higher
densities for a given time, a second power law develops with
αs=3/2, a signature of regions in freefall collapse, as seen
in Section 3.3.

3.3. Asymptotic Case: Evolution in Regions of “Freefall”
Collapse

The densest regions in star-forming clouds are expected to
collapse under their own gravity on a timescale of the order of
the local freefall timeτff(ρ)∝(Gρ)−1/2. For these regions we
thus expect a scaling

( )∣ · ∣ ( )t r p r-á ñ µ á ñ = -- us s c G e4 , 30s
ff

1 2

where c is a constant of proportionality of order unity. This
yields, from Equation (28),

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟òp r= F ¢ ¢ + - -f s t

c
G t dt e e,

2
4 , 31

t

t
s s2

0

3
2

where = +t t t0 coll. Then, if the time after which a dense
region of the cloud started to collapse, tcoll, is short compared to
the characteristic time of variation of r, ¯ ttcoll , meaning that

3 The timescale t̄ of variation of r is not necessary equal to tff,0. If there is
enough turbulent support for example, it can be larger. It depends on what
drives the global evolution of the cloud.

4
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the global properties of the cloud did not have time to evolve
significantly, we can write

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠ p rF + - -f s t

c
G t t e e,

2
4 . 32s s

coll
2 3

2

Therefore, the PDF develops a power-law tail with a specific
exponent −3/2 for s�sG within a typical time ( )t s
≡ ( ) / /t t t- - - - -c e c e c s2 s s1

G,0
2 1

ff,0
2 1

ff .
This analysis thus shows that the onset of power-law tails,

( ) µ a-f s e ss , in the PDF reflects the growing impact of gravity
on the turbulent flow, with a first power-law exponent αs2,
which reaches the asymptotic value αs=3/2 in freefall
collapsing regions.

4. From Volume to Column Densities

Observations of dense MCs trace the density integrated
along the line of sight, and thus reveal the PDF of the column
density Σ or its logarithmic deviations ( )h = S Sln . Many
efforts have been made to link the observed η-PDF to
properties of the underlying s-PDF (Vazquez-Semadeni &
Garcia 2001; Brunt et al. 2010; Burkhart & Lazarian 2012;
Federrath & Klessen 2013). In the present study, we will use
the relation of Burkhart & Lazarian (2012) to illustrate our
findings. Furthermore, we will adopt the relation given by
Federrath & Klessen (2013) to link the exponents αη and αs of
the η-PDF and s-PDF, respectively:

( )a = -
-

h

a

2

1
. 33

3

s

Hence, for regions in freefall collapse we expect a power-law
tail in the η-PDF with an asymptotic exponent αη=2
(αs=3/2), with a transition domain with αη�4 (αs�2)
(see Section 3).

In order to make comparison between our theory and numerical
simulations or observations for the η-PDF, we have derived a way
to relate the volume density at which the s-PDF, f (s), develops
power laws to the column density at which the η-PDF, p(η),
develops a similar behavior. We use scrit and ηcrit to denote the
critical value corresponding to the beginning of a power-law tail
in the two respective PDFs. Assuming ergodicity and statistical
isotropy, we obtain (see Appendix C for details)

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟ò òh h

h

¥ ¥
p d f s ds . 34

s

2 3

crit crit

In the case where there are two power-law tails, starting at s1
and s2, Equation (34) remains a good approximation as long as
s2−s11, so that the upper bound in the integrals is not very
important. This procedure is tested against numerical simula-
tions in Section 5 and confronted with observations in
Section 6. More details on how one obtains Equation (34)
are given in Appendix C.

5. Comparison with Numerical Simulations

5.1. Numerical Setup

To understand how gravity affects the s- and η-PDFs in star-
forming clouds and compare with our theoretical formulation,
we use the numerical simulations of isothermal self-gravitating
turbulence on 3D periodic grids presented in Federrath &
Klessen (2012, 2013), kindly provided by the authors. These

simulations model isothermal self-gravitating magneto-hydro-
dynamic turbulence on 3D periodic grids with resolution

=N 128res
3 3–10243. Here, we will only consider simulations

with no magnetic field. In the simulations, turbulence is driven
with solenoidal or compressive forcing or with a mixture of the
two. Sink particles are used (see Federrath & Klessen 2012 or
our Appendix D for details).
After Equation (25), we expect gravity to make a dominant

contribution at densities s>sG, which yields here

∣ ∣ ( ) ( )a
s

s
- º ´ ´

+
e b

s
1 , 35s s

s

2
vir,0

G
1

2
2

2
G

where ( )a s r= GL5 6vvir,0
2

b
2

0 is the virial parameter suited for
a box of size Lb and 3D velocity dispersion σv, as in Federrath
& Klessen (2012, 2013).4 On the other hand, the maximum
density ρmax above which the simulations do not properly
resolve the collapse and describe the statistics of the cloud
reads (Truelove et al. 1997)

( )r r
p

= =
D

e
c

G x16
, 36s

max 0
s
2

min
2

max

with Δxmin the size of the most resolved cell. This condition
can be rewritten as

( ) ( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠a

p
= + +


s

N
ln 2 ln ln

6

80
. 37res

max vir,0

For s>smax, the lack of resolution will yield the develop-
ment of shallow power laws corresponding to the spurious
fragmentation of these regions (see Figure 1 below and
Federrath & Klessen 2013).

5.2. Evolution of the PDFs

Figure 1 compares our analytical calculations of the s- and η-
PDFs with the solenoidal simulations for  3, Nres=512 and

= 5, Nres=256 at initial time t=0 (orange), and at star
formation efficiencies SFE=0% (red) and SFE=20% (dark
red). A major result of Section 2.4 (Equations (25) and (35)) is the
determination of a density threshold, sG (resp. ηG), above which
the s-PDF (resp. η-PDF) is expected to develop power-law tails.
Similarly, spurious shallow power laws will develop above smax
(resp. ηmax). In both cases ηG and ηmax can be obtained from the
determination of the corresponding values on the s-PDF with
Equation (34). We note the excellent agreement between the
theoretical and numerical curves over the whole range of
densities. Notably, the theoretical determinations of sG from
Equation (35), the threshold of the gravity-impacted domain,
agree very well with the onset of a power law in the simulations. It
is worth stressing that for the ~ 3 simulation, sG∼0.1 and
αvir=1, and thus we do not expect the power-law tail with
exponent αs=3/2 to develop up to sG in a time ˜ t 1 (since this
requires typically a few tff,0). However, departures from a log-
normal behavior are indeed seen to start at about s∼0.1.
Figure 2 compares h h hº ,mes G maxmes mes

, directly measured
on various simulations, to h hºth Gth

, hmaxth
derived from

Equation (34) and the values of sG and smax. As seen in the
figure, the agreement between the theoretical value ηth and the
measured one ηmes is remarkable.

4 Note that this differs from αvir,0 defined in Section 2.4 by a factor π/6;1/
2, if the cloud size Lc is taken to be the box size Lb.
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6. Comparison with Observations

In this section, we confront our theory with observations of
column density PDFs in various MCs. We use a simple model
with one or two power-law tails, characterized by one or two
transition densities, s1 and s2, between log-normal and power

laws, as described in AppendixE. From the determination of
the variance σs,η in the log-normal parts of the PDF, we get
an estimate of the product ( )b (Equation (23)), while from
the determinations of s1 and s2 we get an estimate of

( )a s p r= GL5 vvir
2

c
2 , and of the time since the first regions

started to collapse, in units of mean freefall time ˜ t=t tcoll coll ff,0
(Equations (25), (32), (29)). The values are given in Table 1.
We apply our method to two different clouds: Orion B

(Schneider et al. 2013; Orkisz et al. 2017) and Polaris (André
et al. 2010; Miville-Deschênes et al. 2010; Schneider et al.
2013). The data were kindly provided by Nicola Schneider.
For Orion B, the average column density is ( ) =N H2

´ -2.06 10 cm21 2 and the cloud’s total mass and area
above an extinction Av�1 are = ´M M29.69 10c A, 1

3
v

and =A 651c A, 1v pc2. For Polaris this yields ( ( ) N MH , ,c A2 , 1v

)Ac A, 1v = ( ´ -1.73 10 cm21 2, ´ M1.21 103 , )3.9 pc2 .
The first one, Orion B, contains numerous prestellar cores. Its

η-PDF displays a log-normal part at low column densities and a
power-law tail at high densities with exponent αη;2, corresp-
onding to an underlying s-PDF with exponent αs=3/2, a
signature of collapsed regions, as seen in Figure 3 (left). The
power-law tail develops for > = -

+s s 1.731 0.23
0.25. We can thus

estimate that in this cloud (statistically significant, see Section 3)
collapse of the densest regions has occurred since
˜ ( – )» ´ - t e2 5 1s
coll

21 (see Section 3.3). Note here that tff,0
corresponds to the region under study in the cloud, not to the
global cloud itself. Estimation of ( )b from the determination of
σs combined with estimation of s1 yield αvir∼1. The estimated

Figure 1. Evolution of the s-PDF (top row) and η-PDF (bottom row) for solenoidal simulations with  3, Nres=512 (left) and = 5, Nres=256 (right) at
t=0 (orange circles), SFE=0% (red stars), and SFE=20% (dark red squares). Horizontal error bars represent bin spacing and vertical error bars indicate the
uncertainty in the η-PDFs corresponding to three different projection directions of the simulation box. Log-normal fits of the low-density parts of PDFs at t=0 and
SFE=20% are shown by dotted lines. The vertical dotted red lines correspond to the value of sG calculated from Equation (35) with values of ( )b and σs calculated
at time ˜ t=t t ff,0. For s>sG, the s-PDFs and η-PDFs first develop power-law tails with exponents αs=2, αη=4 (black dashed lines) and then αs=3/2, αη=2
(green dotted–dashed lines) at higher density. The vertical dotted gray lines at s>6 correspond to smax from Equation (37).

Figure 2. ηth, calculated from Equation (34) and the s-PDF, vs. ηmes, directly
measured on the η-PDFs, for runs with = 3, 5, 10 (light to dark red). Runs
with ~ 3 and = 10 have two values of ηmax, one for each resolution
Nres=256 and Nres=512. We note the excellent agreement between ηmes and ηth.
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( )b is compatible with mean Mach numbers = -
+ 5.4 0.8

0.8 for
b=1/3 and = -

+ 3.6 0.5
0.5 for b=1/2, in agreement with

Orkisz et al. (2017).
The second cloud, Polaris, where detectable star formation does

not seem to have occurred yet, exhibits an extended power-law
tail with a steep exponent, αη;4, corresponding to an s-PDF
power-law tail of exponent αs=2 for s>s1, before reaching the
asymptotic values αη;2, i.e., αs=3/2 at high density, s>s2,
as seen in Figure 3 (right). Carrying out the same analysis as for
Orion B, we get ( ) ( )= -

+
-
+s s, 1.68 , 6.31 2 0.34

0.38
0.15
0.1 . The value of s1

yields here ˜ » =-
-
+t e0.5 0.22s

coll
2

0.04
0.031 for this cloud. The

determination of the density s2, which corresponds to collapsing
regions, yields t̃coll≈(2–5)× –»-e 0.09 0.21s 22 , consistent
with the above estimate of t̃coll, which we finally estimate as
˜ = t 0.2 0.1coll . The theory thus suggests that gravity has started
dominating dense regions, corresponding to the onset of the first
power law at s=s1, only recently, i.e., for a short time t̃coll.
According to these determinations, the quiescent Polaris region is
quite young and has not even reached half its mean freefall time
yet. Eventually, we expect it to start forming detectable prestellar
cores on a timescale of the order of its mean freefall time, most
likely in the “Saxophone” region, which entails most of the
power-law part of its PDF (Schneider et al. 2013). Taking s1=sG
yields an upper limit αvir1.2. The estimated ( )b for Polaris
yields mean Mach numbers = -

+ 3.8 0.4
0.4 and = -

+ 2.5 0.3
0.3 for

b=1/3 and b=1/2, respectively, consistent with the estimation
of Schneider et al. (2013).

7. Conclusion

In this Letter, we have derived an analytical theory of the
PDF of density fluctuations in supersonic turbulence in the
presence of a gravity field in star-forming molecular clouds.
The theory is based on a derivation of a combination of the
coupled Navier–Stokes equations for the fluid motions and the
Poisson equation for the gravity. The theory extends previous
approaches (Pope 1981, 1985; Pan et al. 2018, 2019a, 2019b),
first by including gravity and second by considering the PDF as
a dynamical system, not a stationary one. We derive rigorously
the transport equations of the PDF, characterize its evolution,
and determine the density threshold above which gravity
strongly affects and eventually dominates the dynamics of the
turbulence. The theoretical results and diagnostics reproduce
very well numerical simulations of gravoturbulent collapsing
clouds (Section 5) and various available observations
(Section 6).
A major result of the theory is the characterization of two

density regions in the PDF (see Section 2.4). A low density
region where gravity does not affect the dynamics of turbulence
significantly, so the PDF is that of pure gravitationless
turbulence, which resembles a log-normal form for isothermal,
dominantly solenoidal turbulence. Then, above a density

Table 1
Properties of the Clouds

Name Func. form σs ( )b μ α1 α2 s1 s2 αvir t̃coll
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Orion B Ln+1Pl -
+1.2 0.1

0.09
-
+1.8 0.26

0.26 - -
+0.92 0.11

0.13 2 L -
+1.73 0.23

0.25 L -
+0.88 0.23

0.26 1

Polaris Ln+2Pl -
+0.98 0.08

0.07
-
+1.27 0.15

0.16 - -
+0.55 0.07

0.08 4 2 -
+1.68 0.34

0.38
-
+6.3 0.15

0.1 1.2 0.2±0.1

Note. Columns: (1) cloud’s name; (2) functional form: Ln+1Pl, Ln+2Pl (log-normal and 1 or 2 power laws); (3) standard deviation of the log-normal part σs; (4)
( )b associated with σs; (5) most probable s-value μ; (6) exponent of the first power law α1; (7) exponent of the second power law α2; (8) transition between the log-
normal part and the first power law s1; (9) transition between the two power laws s2; (10) virial parameter αvir associated with s1; (11) time since the first region started
to collapse in units of mean freefall time, t̃coll.

Figure 3. Left: observed η-PDF of the cloud Orion B. Dashed–dotted black line: log-normal fit of the low-η part of the PDF. Dashed red and green lines: power law
with exponent αη=2, corresponding to an underlying s-PDF with a power-law exponent αs=3/2, a signature of collapsed regions. Right: observed η-PDF of the
cloud Polaris. Dashed–dotted black line: log-normal fit of the low-η part of the PDF. Dashed red and green lines: power laws respectively with exponents αη=4 and
2, corresponding to an underlying s-PDF transiting from log-normal to power laws with exponents αs=2 and 3/2, respectively.
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threshold, sG, given by Equations (25) and (35), gravity starts
affecting the turbulence significantly, essentially by increasing
the velocity dispersion (thus the variance). Above this thresh-
old, s>sG, power-law tails develop over time in the s-PDF,

( ) µ a-f s t e, ss , i.e., ( )h µ a h- hp t e, for the η-PDF of the
surface density, as a direct consequence of the rising impact of
gravity upon turbulence (see Section 3). Within a typical
timescale ( )t t~ = -s e s

G G,0
2, with t p rº G1 4G,0 , this

yields the onset of a first power-law tail with αs�2, i.e.,
αη�4. Later on, after a few τff(s) for a given density s, and/or
at higher density, i.e., smaller scales, a second power law
develops, with αs=3/2, i.e., αη=2. This is the signature of
regions in freefall collapse.

Another important result of this study is to provide a
procedure to relate the observed thresholds in column density,
corresponding to the onset of the two power-law tails in the η-
PDF, to the corresponding ones in volume density in the s-PDF
(see Section 4 and Appendix A). Combined with the results of
Sections 2.4 and 3, this allows us to infer, from the observation
of column densities, various physical parameters characterizing
molecular clouds (or regions of them), notably the virial
parameter αvir. Moreover, the theory offers the possibility to
date the clouds in units of t̃coll, i.e., the time since a statistically
significant fraction of dense regions of the cloud started to
collapse, normalized to the cloud’s mean freefall time. This
explains why clouds exhibiting η-PDF with steep power laws
(αη�3) or extended log-normal parts are quiescent, since they
have a short “age” t̃coll. This applies to Polaris (André et al.
2010; Miville-Deschênes et al. 2010; Schneider et al. 2013)
(Section 6) but could also explain the quiescence of
Chamaeleon III (De Oliveira et al. 2014).

The theory derived in this study allows the determination of
the aforementioned volume density and column density
thresholds, sG, ηG, and the characteristic timescales ( ) ˜t s t,G coll
(Equations (25), (32), (29), (34), (35)). This yields quantitative,
predictive diagnostics, from either simulations or observations,
to determine precisely the relative impact of gravity upon
turbulence within star-forming clouds/clumps and their evolu-
tionary status. The theory thus provides a precise scale and
clock to numericists and observers exploring star formation in
MCs. It provides a sound theoretical foundation and quantita-
tive diagnostics to analyze observations or numerical simula-
tions of star-forming regions and to characterize the evolution
of the density PDF in various regions of MCs. This theoretical
framework provides a new vision on how gravitational collapse
initiates and evolves within turbulent dense star-forming
regions.

The authors are grateful to Christoph Federrath for sending
us the PDFs of his simulations and to Nicola Schneider for the
observational column densities presented in this article. We
thank the anonymous referee for his/her insightful remarks that
helped to improve the manuscript. We are also thankful to
Benoit Commerçon, Jéremy Fensch, Guillaume Laibe, and
Quentin Vigneron for helpful conversations.

Appendix A
Derivation of the Expression of the Source Terms,

Equations (14)–(16)

To obtain the source terms, Equations (14)–(16), that appear
in Equation (12), we start by taking the divergence of

Equation (2):

( · ) · ({ · } )
· ({ · } ) · ({ } )

· ( )
⎛
⎝⎜

⎞
⎠⎟p r

r

  
   

 

¶ +
+ +

= - -

  
v v u

u

G P4
1

. A1

t

We then take the average of Equation (A2) to obtain

( · ) · ({ · } ) ( )   p r¶ + = -V V V G4 , A2t

where ( · )¶ ut = · ({ · } ) v u = · ({ · } ) u V =

( )·  =
r

P 01 , because the turbulent fields ρ and u are

statistically homogeneous and because of the barotropic
equation of state P=P(ρ). Then, by subtraction, we obtain

( · ) · ({ · } ) · ({ · } )

( ) · ( )
⎛
⎝⎜

⎞
⎠⎟

    

 p r
r

¶ + +

= - - -

u v u u V

G e P4 1
1

. A3

t

s

We then note that · ({ · } ) u V = · ( · )  +u V
( )( )¶ ¶u Vi j j i = ( )( )¶ ¶u Vi j j i =  V u: , because ρ is homo-
geneous, and by expanding · ({ · } ) v u we finally obtain

· ( )

·

( )

⎛
⎝⎜

⎞
⎠⎟

    

 

p r

r

= - - - -

-

u
u u V u

D

Dt
G e

P

: 2 : 4 1

1
,

A4

s

giving the expression of the source terms, Equations (14)–(16).

Appendix B
Reciprocal of Equations (27) and (28)

In Section 3 we have shown that a conditional expectation
· ∣ ( )á ñ = ´u s t h t e, as, with a>0, would produce an

s-PDF with a power-law tail with exponent αs=a+1, i.e
( ) ( )µ - +f s e a s1 (Equations (27)and (28)). We show here the

reciprocal.
Let us assume that the s-PDF, f, is nonstatic and has a power-

law tail with exponent αs=a+1 with a>0. More precisely,
let us assume that

( ) ( ) ( )( )= - +f s t A s t e, , , B1a s1

with a function A(s, t) such as A(s, t)≈B(t) for s�sc, for
some sc, where B(t) is a 1 function of the time variable only,
with a bounded derivative. Rewriting Equation (9) as

{ } · ∣ ( )¶
¶

+
¶
¶

- á ñ =
¶
¶

u
s

A

s
a s t

A

t

ln
,

ln
, B2

one obtains

· ∣ ( ) ( ) ( )

( ) ( )ò
á ñ = ´ ´ +

´
¶
¶

¢ ¢

- -

- ¢

u s t C t A s t e A s t e

e
A

t
s t ds

, , ,

, , B3

a s as

s

s
as

1 1

i

with C(t) a function of the time variable only and si some fixed
density. As f is not stationary, · ∣á ñu s t, is not zero
everywhere but, at any time t, there exists s0(t) such that

· ∣ ( )á ñ =u s t t, 00 to ensure · =u 0. Then we can fix the
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function C(t) to write without any loss of generality

· ∣ ( ) ( ) ( )
( )òá ñ =

¶
¶

¢ ¢- - ¢u s t A s t e e
A

t
s t ds, , , . B4as

s t

s
as1

0

Then, because a>0 and ∂tB(t) is bounded, the integral on the
rhs of Equation (B4) is bounded and converges rapidly toward

( ) ( )
( )ò ¶ ¢ ¢ =
+¥ - ¢e A s t ds I t,

s t
as

t
0

. The asymptotic behavior of

· ∣á ñu s t, for large s�sc is thus

· ∣ ( ) ( ) ( ) ( )á ñ » ´ ´ = ´-u s t I t B t e h t e, . B5a s a s1

This shows that to a nonstationary s-PDF with a power-law
tail of exponent αs=a+1 there corresponds a conditional
expectation · ∣ ( )á ñ » ´u s t h t e, as for s?1.

Appendix C
Transitions to Power-law Tails

In Section 4 we derived a way to relate the volume density at
which the s-PDF, f (s), develops power laws to the column
density at which the η-PDF, p(η), develops a similar behavior.
We call scrit the critical value corresponding to the beginning of
a power-law tail in the s-PDF (Equation (34)).

Assuming ergodicity, we relate the volume fraction of
regions with densities exceeding scrit to the probability of
finding a density exceeding scrit:

( )
( )

( ) ( )ò=
¥V s s

V
f s ds

cloud
. C1

s

crit

crit

We now want to evaluate the area of this volume projected onto
the plane perpendicular to the line of sight S(s�scrit).
Assuming statistical isotropy, we get

( )
( )

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟ S s s

S

V s s

Vcloud cloud
. C2crit crit

2 3

We then identify regions in the observed area of the cloud
contributing to the power law in the η-PDF with regions
included in the projected area S(s�scrit). This yields for the
critical surface density ηcrit at which the η-PDF transits to a
power law

( ) ( )
( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟ò òh h =

h

¥ ¥
p d

S s s

S
f s ds

cloud
, C3

s

crit
2 3

crit crit

which is Equation (34).

Appendix D
Numerical Models

In each simulation, gravity is switched on and sink particles
are allowed to form after a state of fully developed turbulence
has been reached, which determines the initial conditions at
t=t0=0 in the simulation. The associated transport
equations for these simulations are

( )=V 0, D1

( )r r= , D20

( ) ( )r r=s ln , D30

· ( ) ( )

· ( )

  

 

p r=- - - Q

- +

u
u u

F

D

Dt
G e t

c s

: 4 1

, D4

s
0

s
2 2

stir

{ }[ ( · ) ∣ ] [ ( · ) ∣ ]

( · ) ∣ ( )

 



¶
¶

á ñ = +
¶
¶

á ñ

+

+u u

u
t

s f
s

s f

f
D

Dt
s

1

, D5

n n

n

1

where ρ0 is constant, cs=0.2 km s−1 is the sound speed,
· Fstir is the divergence of the turbulent forcing, which is 0

for a solenoidal driving, and Θ(t) is the Heaviside step function
ensuring that gravity is plugged in at t=0. In all models the
Mach number  slightly increases with time because of
collapsing regions. For most models, this only amounts to a
few per cent, except for the  3 simulations, which start at

 2 and end up at – 3 4 because the virial parameter
( )a s r= GL5 6vvir,0

2
b
2

0 is very small (see Table 1 in Federrath
& Klessen 2012 or 2013). We note that the aforementioned
definition of αvir,0 taken from Federrath & Klessen
(2012, 2013) differs from the one we have introduced in
Section 2.4 by a factor π/6;1/2, if the cloud size Lc is taken
to be the box size Lb. As there is no unique way of translating
the dimension of a cubic box into that of a spherical cloud, and
in order to simplify the comparison between the simulations
and our calculations, we keep their notation and definition.
Finally, to be consistent with the authors we describe the

time evolution of the simulations by means of the reduced time
˜ t=t t ff,0, which is the time in units of mean freefall time

t º p
rGff,0

3

32 0
, and by means of the star formation efficiency

(SFE), which is set at 0% at the formation of the first sink
particle. The authors only extracted the PDFs up to
SFE=20%, which we will thus refer to as the “long time”
of the runs.

Appendix E
Model with One or Two Power-law Tails

In this appendix, we develop a simple model that allows us
to infer the global s-PDF of molecular clouds from the
observations of η-PDFs. We assume that the PDFs are simply
continuous and have only one power law at high densities and a
log-normal cutoff at low densities:

( )
( )( )

( )

=
= a

-

- -

m

s

-




f s A e s s

A e s s

,

, . E1s s

1 crit

2 crit

s

s

s

2

2 2

crit

Enforcing the continuity and normalization of f as well as the
necessary condition =e 1s (from our definition of s in
Equation (6)), we obtain

( )
( )

=
m

s

-

A A e E21 2

s

s

crit
2

2 2

( )
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ps

m
s a

= +
-

+A
s A

1
1

2
2 1 erf

2
E3s

s s
1

2 crit 2
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( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

p
s

m s
s

a
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+
-
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A e

1
2
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2

1
. E4

s
s

s

s

s

1
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2

2

s
2

2

crit

We now assume that the variance σs in the log-normal part and
the exponent αs of the power-law tail are inferred from the
observations of the η-PDF following Section 4. More precisely,
to obtain the variance σs, we use the formula of Burkhart &
Lazarian (2012), s s= ´h hA s s

2 2, where Aηs may depend on the
forcing parameter b. For simulations of compressible turbu-
lence without gravity and with solenoidal driving (b=1/3)
they found from their best fit Aηs;0.11, while observations of
molecular clouds yield a value Aηs;0.12–0.16 for a forcing
parameter b=0.5, corresponding to a mixture of solenoidal
and compressive driving. From Section 4, A2/αs and thus A2

are obtained from the observations. We are now left with a
system of three equations for three unknown quantities, namely
scrit, μ, and A1. We note that, in this model, the parameter μ,
which determines the peak of the log-normal part, is shifted to
lower densities to ensure =e 1s . Injecting Equation (E2) into
(E3) yields a closed equation for the variable = m

s
-x s

2 s

crit :

( ) ( )ps
a

= F +A e x
A

1 2 , E5x
s

s
2

2 22

with ( ) [ ( )]F = +x x1 erf1

2
the cumulative distribution function

for the normal distribution. Equation (E4) is then used to obtain
μ and then scrit.

In case where the η-PDF exhibits two power-law tails with
exponents αη=4 and αη=2 we simply assume the following
functional form:
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with α1=2 and α2=3/2, and change the procedure as
follows. First, we build the s-PDF as if there were only one
power-law with exponent αη=4 in the η-PDF with the
aforementioned procedure to obtain A1, A2, μ, and s1. We then
use Equation (34) to obtain s2:

( ) ( )
( ) ⎛

⎝⎜
⎞
⎠⎟òa

h h=
a

h

- - ¥A e
p d , E7

s s
2

2

3 2
1 2 1

2

where η2 is the column density at the beginning of the second
power law with exponent αη=2. This modified procedure,
while simple to implement, is sufficiently accurate because s2 is

large and thus regions with s>s2 only represent a particularly
small fraction of the total volume (10−5).
We confront this procedure with observations in Section 6.

Errors arising from the determination of ηcrit and σs from the
observations yield an error Δscrit=±0.3 on scrit, which is
reasonable.
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