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ABSTRACT 
 
This review is intended to update the current advances in the fields of coordination chemistry of 
transition metals with the Schiff base ligands including the macrocyclic systems. Different methods 
were involved to synthesize different Schiff base ligands and were reported along with their 
biological activities. A number of transition metal coordination complexes containing diverse ligands 
are reported in this review along with a discussion on their structural features and field of potential 
applications. 
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1. INTRODUCTION  
 
Schiff bases and their metal complexes emerge 
as a diverse field of chemistry and play an 
important role in the development and progress 
of coordination chemistry [1]. There is an 
increasing effort to analyze the designing and 
preparation of materials and to study their 
chemical functionality, coordination pattern 
catenation catalysis and separation [2]. The 
literature clearly shows that the study of this 
diverse ligand system is linked with many of the 
key advances made in inorganic chemistry [3,4]. 
Non-covalent interaction such as dispersion 
forces [5], hydrogen bonding [6], coordination 
bonds [7], and aromatic interactions [8] routinely 
drive self- assembly processes on surfaces. The 
intense escalation in the research area of 
macromolecular metal complexes is due to the 
astonishing chemical and electronic properties of 
these materials like conductance, sensors, 
luminescence, and catalysis of reactions. There 
are various well described methods (template 
method) for the synthesis of such materials and 
the appropriate modifications and in the 
reactants, provides an alternative for the 
production of these macromolecular metal 
containing complexes. The incorporation of metal 
ions into the macromolecules can be done either 
by the formation of coordinate bond or by the 
organometallic bond of the metal ion to the 
heteroatoms present in the system. The variation 
in the properties of the metallated 
macromolecular systems are due to the variation 
in various aspects like oxidation state of metal, 
geometry of the complex formed and all these 
factors can be controlled during the synthesis of 
the macromolecular system. 
 
Lehn et al has studied the host-guest chemistry 
and received the noble prize for the same which 
has opened the minds of scientists in this field. 
[9,10] and since then supramolecular chemistry 
has progressive as a renowned field of modern 
chemical research. Modern supramolecular 
chemistry has concerned the self-assembly [11] 
of those synthetic compounds which are related 
to natural systems [12]. There was an 
amalgamation of macromolecular systems and 
traditional polymer chemistry. The synthesis of 
supramolecular materials having higher ratios of 
polymer ratio, it was observed to produce 
materials having attention-grabbing 
characteristics and assemblies with distinguished 
polymeric properties. By varying the polymer 
ratio, the macroscopic characteristics can be 

changed greatly. Meijers research group [13] has 
studied the formation of polymers which are 
stable and are prepared from low molecular 
weight materials like poly(ethylene/butylene)       
with telechelic-2-ureido-4[1H]-pyrimidinone end 
groups. The high molecular weight polymers are 
obtained by the interaction of end group through 
the hydrogen bonding. 
 
2. METAL-LIGAND CHEMISTRY 
 
Supramolecular chemistry is a field of study 
concerning the association of individual 
molecules into large-scale structures by 
interactions other than covalent bonds [14]. 
These supramolecular structures may be 
designed through a variety of interactions which 
comprise hydrogen bonding, electrostatic 
interactions, π-π interactions, hydrophobic 
interactions and other host-guest effects, and 
metal-ligand interactions. Of these interactions, 
metal-ligand complexes are among the most 
well-studied, having first been brought to the 
consideration of the broader scientific community 
with Pedersen’s work on the ability of cyclic 
polyether’s to complex metal salts in the late 
1960’s [15,16]. 
 
In common terms, metal-ligand coordination 
orbits around the donation of electron density by 
the electron-rich ligand to the electron-poor metal 
center. The electron donation of the ligands may 
arise through a number of modes, such as a 
negative charge on the ligand, electron density in 
the π-electron cloud of sp and sp2-hybridized 
bonds, and the electrons of lone pairs on an 
organic molecule. The interaction of electron 
lone-pairs with metal d-orbitals is witnessed in σ-
donating ligands such as amines and 
phosphines. One particular example is 
Co(NH3)6Cl3, a compound whose structure was 
first interpreted by Werner, laying the basis of the 
study of coordination chemistry. Upon 
coordination of the ligand with the metal, 
hybridized metal orbitals of the type dxspy form 
accept electron density from the ligand, with the 
integers x and y depending on the extent of d-
orbital filling, ligand properties, and other factors 
[17]. Often the partial hybridization of the d-
subshell of the metal gives rise to a splitting of 
the orbital energies, resulting in higher energy 
antibonding hybridized orbitals, and lower energy 
bonding orbitals. This can overcome the pairing 
energy of the electrons in the orbital, resulting in 
paired electrons occupying lower energy orbitals 
[18].  
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3. SCHIFF BASE CHEMISTRY 
 
Schiff bases have occupied an important position 
in coordination chemistry since they have been 
discovered [19-21]. Due to the ease of formation, 
stability and different oxidation states, they have 
played a great role in the chelation of transition 
metal and main metal coordination chemistry [22-
24]. Inorganic chemistry has advanced greatly 
due to the presence of these diverse ligand 
systems. These schiff bases have also played a 
pronounced part in the construction of inorganic 
biochemistry, catalysis, medicine, optical 
properties etc. Transition metal coordination with 
these diverse ligand systems are also of great 
importance in the field of chemistry [25]. The 
constructions and properties of these Schiff base 
metal complexes can be improved by attaching 
different substituents to the ligand backbone [26]. 
Their influential role in the biological sciences 
has increased the interests of scientists and are 
greatly used as antibacterial, antifungal and 
antitumor [27-29]. 
 
Schiff bases are designed and synthesized by 
the reaction of amines with aldehydes and 
ketones under specific conditions discovered by 
Hugo Schiff [30]. Schiff base is a nitrogen 
containing compound also known as imine or 
azomethine. The functional group present in the 
Schiff base ligand is R1HC=N‒R2 where R1 and 
R2 are aryl, alkyl, cycloalkyl or heterocyclic group 
(Fig. 1). 
 
The presence of lone pair of electron on nitrogen 
atom of the C=N group imparts excellent 
chelating ability to these compounds as are 
shown in the example given in Fig. 2. The 
chelating capability of the schiff baes makes it an 

interesting ligand system in coordination 
chemistry particularly due to its flexibility and 
ease of formation. 
 
Schiff bases can be synthesized in various ways 
by adopting different methods [31-33], while as 
an acid catalysed condensation of amines and 
aldehydes and ketones is the most common one. 
This is a two-step reaction in which the 
nucleophilic attack by nitrogen atom on carbonyl 
carbon is the first one resulting in the 
carbinolamine intermediate which is unstable. In 
the second step, the intermediate undergoes 
dehydration to form a carbon double bond which 
is known as a Schiff base [34,35]. (Scheme 1) All 
steps involved in this reaction sequence are 
reversible. Therefore, Schiff base condensation 
can be used for generating diverse materials if 
different starting materials are used [36]. 
 
There are various factors which disturb the 
condensation reaction, but the pH solution plays 
a vital role. Since the basic amine is protonated 
in acidic medium and cannot act as a nucleophile 
hence stops the reaction. Moreover, in basic 
medium sufficient number of protons are not 
available to eliminate the hydroxyl group from the 
unstable intermediate, hence makes it difficult to 
continue the reaction [37]. 
 
Schiff base metal complexes are commonly 
synthesized by reacting metal salts with Schiff 
base ligands under specific reaction conditions. 
Nevertheless, for the purpose of catalysis, some 
of the metal complexes are also synthesized 
during the reaction process in the system. Five 
synthetic routes have been described for the 
Schiff base metal complex synthesis and are 
given as follows in Scheme 2 [38]. 
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Fig. 1.  Synthesis of  
Schiff base ligand 

Fig. 2.  Synthesis of chelating  Schiff base  
ligand  
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Scheme 1. Synthesis of Schiff base 
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Scheme 2. Synthetic routes for metal complexe synth esis 
 
Route 1 uses the metal alkoxides [M(OR)n] which 
are easily available to use particularly of 
transition metals. In Route 2 Metal amides, are 
used as the precursors in the synthesis of metal 
complexes based on schiff bases. Various other 
routes utilised as synthetic routes consists of 
direct reaction of Schiff base and the metal ion. 
(Route 3) or reaction of the Schiff bases with the 
corresponding metal acetates with refluxing 
(Route 4). The scheme described in Route 5 
which is somewhat effective in synthesizing 
salen-type metal complexes comprises of a two-

step reaction, the deprotonation of the Schiff 
bases and the reaction with metal salts. The 
Phenolic hydrogens can be deprotonated 
effectively by using sodium hydride or potassium 
hydride in coordinating solvents and the surplus 
NaH or KH can be removed by filtration. 
 
The word salen was used only to designate the 
tetradentate Schiff bases obtained from 
salicylaldehyde and ethylenediamine, and is 
reported in the literature to represent the class of 
(O, N, N, O) tetradentate ligands (Fig. 3). As 
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numerous achiral and chiral Schiff base ligands 
and by-products are synthetically obtainable, a 
widespread diversity of metal-tetradentate Schiff 
base complexes bearing N2O2 has been 
produced as well. Schiff base metal complexes 
frequently assume octahedral configuration, even 
though with a limited exception and they normally 
carry two ancillary ligands [39,40].  
 
The chemistry of multimetallic complexes is 
presently an extensive and interdisciplinary 
research area. Dinucleating metal complexes 
have been attention-grabbing field of research 
because of their importance because they act as 
catalysts in the process of oxygenation [41]. 
Innovations of dinuclear cores at the prominent 
sites of some metalloproteins have awakened 
attentiveness in the investigation of multimetallic 
systems [42]. Many mono and dialdehyde / 
ketones have been engaged to condense with 
amines or amino acid to determine multidentate 
binucleating Schiff bases to synthesize a 
diversity of binuclear transition metal complexes 

[43]. Trinuclear metal complexes can be 
synthesized from the ligands having azomethine 
nitrogen and phenolic oxygen. The cavity present 
in the tetradentate ligands presents a suitable 
place for complexation for divalent metal ions. 
Schiff bases complexes also form homo or 
hetero trinuclear complexes by acting as 
bidentate ligands [44]. The proficiency of these 
complexes to coordinate via cis oxygen atoms 
leads to the development of trinuclear metal 
complexes [45]. 
 
There are number of uses of Schiff base 
complexes which are discussed briefly. The 
development of the distinguished Schiff base 
complex, N, N’- bis (3, 5-di-tertbutylsalicylidene) - 
1, 2-cyclohexanediaminomanganese (III) chloride 
is presented in Scheme 3 [46,47]. This metal 
complex of manganese is called as Jacobsen’s 
catalyst which is prepared efficiently by the 
reaction of trans- 1,2-diaminocyclohexane and 
3,5-di-tert-butyl-2-hydroxybenzaldehyde and 
manganese metal followed by the oxidation. 

 

N N

OH HO

N N

OH HO

N N

OH HO

 N, N’-bis(Salicylidene-1,1’-binaphthyl-2,2’)-diamine 

 N, N’-bis(Salicylidene)-ethylenediamine  N, N’-bis(Salicylidene)-orthophenlenediamine 

 
 

Fig. 3. Synthesis of achiral and chiral Schiff base  ligands 
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Scheme 3. Synthesis of Jacobsen’s catalyst 

 
Bhunia et al. prepared a catalyst by the 
hybridization of a Ni(II) complex with the 
mesoporous silica, MCM-41 by modification. The 
ligand has been obtained from the condensation 
of salicyldehyde and 3-
aminopropyltriethoxysilane which was then 
attached with the MCM-41 chemically via silicon 
alkoxide pathway. The properties of this 
synthesized catalyst has been checked in the 
epoxidation of alkenes using tert-
butylhydroperoxide as an oxidant and the 
catalyst can be recycled several times without 
any activity loss [48].  
 
Li and co-workers have designed a new zinc 
containing chemosensor namely 2-((2-
hydroxynaphthalen- 1-yl) methyleneamino)-3-
(1H-indol-3-yl) propanoic acid (Fig. 4), which has 
the easy procedure for synthesis and have high 
selectivity to Zn ions with complete solubility in 
aqueous solvent. In addition to this sensor, they 
also incorporated the inexpensive and water-
soluble tryptophan with 2-hydroxy-1-
naphthaldehyde to make available the chelation 
sites for the metal ions and the assembly was 
interpreted spectroscopically [49]. 
 
Schiff bases base on the fluorescence used for 
the finding of Zn(II) has been synthesized by Liu 

et al. (Fig. 5). This confident ligand system is 
employed for the progress of new fluorescent 
probe for the discovery of Zn(II) cation [50]. 
 

OH

N

O

OH

 
 

Fig. 4. Synthesis of chemosensor ligands 
 

Luminescent metal complexes have received 
noble consideration in the current era owing to 
their budding applications in the fields of 
optoelectronic devices and sensors [51,52]. The 
most central concern in organic LED is the 
synthesis of molecules having extraordinary 
emission efficiency and selection of metal ions 
via the modification [53,54]. Organic boron 
compounds have worthy luminescent properties 
and electron-transporting properties (Fig. 6) [55]. 
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Fig. 5. Synthesis of Schiff bases base on fluoresce nce 
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Fig. 6. Synthesis of luminescent metal 
complexes 

 

Bhattacharjee et al. [56] synthesized a series of 
novel photo luminescent hemi disc like distorted 

square planar Zn(II) Schiff base complexes 
having 4-substituted alkoxy chains on the side 
aromatic ring (Fig. 7). 
 
The applications of organic chromophore as 
nonlinear optical materials in the fields of optical 
signal processing, optical data acquisition, optical 
computing and optical communications have 
increased the interest of scientists in designing 
and synthesizing of such materials [57]. 
Azomethines having imine group demonstration 
wide applications such as nonlinear optical 
materials, corrosion inhibitors, catalyst 
transporters, heat resistant materials and in 
biological systems [58-60]. 
 
Tanga and co-workers [61] has synthesized 
cyanide based salen type Schiff base electronic 
acceptors with a series of asymmetric donor 
acceptor substituents (Fig. 8). 

 

N N
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H3CO OCH3
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Fig. 7. Synthesis of novel photo luminescent Zn(II)  Schiff base complexes 
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Fig. 8. Synthesis of salen type Schiff base electro nic acceptors 
 

Schiff bases are also known to exhibit biological 
properties and are mostly used as drugs in 
medicinal [62,63]. Experimental studies have 
shown that the incorporation of metal ion 
increases the biological activity of Schiff bases 
upon chelation [64,65]. 
 
S. Hasnain et al. [66] synthesized Schiff base N, 
N’ bis(Salicylidene) thiosemicarbazide obtained 
from thiosemicarbazide and salicylaldehyde and 
its Cu(II), Ni(II), Mn(II) and Co(II) complexes 
which displayed effective antimicrobial activities 
against Escherichia coli, Staphylococcus aureus, 
Bacillus subtilis and against Aspergillus niger, 
Candida albicans, and Aspergillus flavus (yeast) 
respectively. Schiff base obtained from 2’-
methyleacetoacetanilide and 2-amino-3-
hydroxypyridine and its Zn(II), Cu(II), Ni(II) and 
Co(II) complexes have been tested for their 
antimicrobial activities against various strains of 
bacteria and fungi and the statistics shows that 
the complexes have greater activity than the 
ligand [67].  
 
Various biological investigations have proved 
that DNA is the main target of anticancer drugs 
as the drugs interact with the DNA of the cancer 
cells and damage it, hence blocking the cell 
division which leads to the death of cells [68,69]. 
The transition metal complexes have emerged as 
great probes for the DNA studies and potential 
therapeutic agents [70-72]. To specifically target 
DNA sites will create novel chemotherapeutics 
and also magnify capability for scientists to probe 
DNA and to synthesize exceedingly profound 
diagnostic agents [73]. 

DNA binding of metal complexes is an important 
issue and it is compulsory to comprehend over 
the various binding modes while synthesizing the 
antitumor drugs. Mostly, the metal complexes 
interact either in covalent way or in non-covalent 
way with the DNA, whereas the non-covalent 
interaction has three binding modes that is 
intercalation, groove binding and external static 
electronic effects. Amongst these binding modes, 
intercalation is of great importance as it 
increases the planarity of the ligands [74,75]. 
Furthermore, the complex geometry, type of 
metal ion, valency of the metal ion and type of 
donor atoms present play an essential part in 
determining the binding magnitude of metal 
complexes to DNA [76-78]. 
 
The anticancer activity of Schiff base ligands and 
its metal complexes have been investigated 
broadly and the complexation of the metal ions 
increases the activity of the Schiff bases [79,80]. 
Nickel complexes of 1, 2-bis (salicylideneamino) 
ethane in presence of monoperoxyphthalic acid 
show the cleavage of plasmid DNA [81]. Griffin et 
al. [82] have observed DNA binding of twenty-six 
(26) salen complexes of Mn(III) and observed 
that the structure and the stereochemistry of the 
substituents are mainly responsible for the 
changing DNA cleavage. 
 
The interaction of chromium(III) Schiff base 
complexes, [Cr(salen)(H2O)2]

+ where salen = 
N,N’ ethylene bis (salicylideneimine) and 
[Cr(salprn)(H2O)2]

+ where salprn = N,N’ 
propylene bis (salicylideneimine) (Fig. 9) with calf 
thymus DNA (CT-DNA) has  been reported 
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[83,84]. Binuclear Cu(II) complexes of N, N’ 
bis(3,5-tert-butylsalicylidene-2- hydroxy)-1,3-
propanediamine, are effective in cleaving DNA of 
the plasmid in the presence of H2O2 at pH = 7.2 
and 37°C [85]. 
 
Wu and co-workers synthesized a binuclear 
complex, [(phen)Cu(lbipp) Cu(phen)](ClO4)4 (Fig. 
10) (phen = 1, 10- phenanthroline and bipp = 2,9 
– bis(2-imadazo [4,5-f] [1,10] phenanthroline) – 
1, 10-phenanthroline). Photophysical and 
viscometry have shown that binuclear copper (II) 
complex binds strongly to CT-DNA by 
intercalation of the two phenanthroline copper (II) 
terminals [86]. 
 
Raman et al. have reported the DNA binding 
properties of the Cu(II) and VO(IV) complexes 
derived from Schiff base ligand 4-
(3’,4’dimethoxybenzaldehydene) 2-3-dimethyl-1-
phenyl-3-pyrazolin-5-one with polypyridyl 
ligand(s) as co-ligand(s) binding to CT-DNA by 
partial intercalation into the base pairs of DNA 

and stimulate the photo cleavage of plasmid 
DNA pBR322 under irradiation at 365 nm [87].  
 

Schiff base metal complexes [88] derived from 
amino acids have properties which are essential 
for the understanding several biochemical 
reactions in vivo [89]. Amino acids establish the 
construction of proteins and are vital for carrying 
out vast quantity of biological roles as 
demonstrated by the part played by enzymes 
[90-93]. O-phthalaldehyde plays essential role in 
amino acid assay as the residues in numerous 
enzymes and biological fluids have been 
determined by using O-phthalaldehyde [94]. It is 
used at the clinical level as a best disinfectant 
[95]. Currently, great attention is paid for the 
development of copper Schiff base complexes 
because as they act as models for copper 
proteins, where a diverse set of donor atoms is 
present [96]. Zinc containing carboxylate-bridged 
complexes [97] are used in bio systems as 
phosphatases and amino peptidases and cobalt 
complexes to mimic cobalamine (B12) coenzymes 
[98]. 
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Fig. 9. Synthesis of chromium(III) Schiff base comp lex  
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Fig. 10. Synthesis of a binuclear copper complex 
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Sakiyan et al. [99] have synthesized the Schiff 
base Mn(III) complexes (Fig. 11) obtained from 
amino acids and 2-hydroxy-1-naphthaldehyde. 
The coordinating behavior has shown that Schiff 
base binds through the ONO donor set derived 
from the carboxyl, imino and phenoxy groups of 
the ligands. 
 
Boghaei et al. [100] synthesized a sequence of 
new ternary zinc (II) complexes [Zn (L) (phen)] 
(Fig. 12) where phen = 1, 10-phenanthroline and 
L = ligands obtained from the amino acids and 
sodium salicylaldehyde-5-sulfonate and sodium 
3-methoxy-salicylaldehyde-5-sulfonate. The 
Schiff base ligand act as tridentate ONO moiety, 
coordinating to the metal through oxygen, 
nitrogen, carboxyl oxygen and nitrogen’s of 1, 
10-phenanthroline. 
 
Dong and co-workers have designed and 
synthesized a ternary Cu(II) complex with Schiff 
base obtained from salicylaldehyde and L-valine 
and 1, 10-phenanthroline. The DNA-binding 
properties of the complex have been studied by 
UV–visible, fluorescence, circular dichroism 
spectroscopies and thermal denaturation 
measurements [101]. 

Sharma et al. [102] reported silicon metal 
complexes of amino acid based ligands (Fig. 13) 
obtained from the condensation of furfuraldehyde 
and indole-3- carbaldehyde with alanine, glycine, 
valine, isoleucine and tryptophan and the 
synthesized compounds were characterised and 
tested for antifungal activities. 
 
Abdallah et al. [103] reported a new Schiff base 
ligand (Fig. 14) by the reaction of o-phthaldehyde 
and 2-aminophenol and its complexes with 
various metal ions and were screened for 
antimicrobial activities. The synthesized 
compounds inhibited the growth of the tested 
fungi at different rates. However, the metal 
complexes of Mn (II) and Fe (II) were tested for 
antibacterial activity and exhibited weak growth 
of inhibition against Esherichia coli and 
Staphylococcus aureus. 
 
Sinha et al. [104] have reported heterocyclic 
Schiff base ligands from the condensation 
reactions of indole-3-carboxaldehyde with 
different L-amino acids and have studied their 
radio imaging, radiolabeling and antimicrobial 
activity. 

 

N O
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R = H, CH3

N

N

H

N
H

 
 

Fig. 11. Synthesis of the Schiff base Mn(III) compl ex 
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 R1= H, CH2Ph, CH(CH3)2, CH3, CH2CH(CH3)2 

R2 = H, OCH3 
 

 
Fig. 12. Synthesis of a sequence of ternary zinc (II ) complexes 
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Fig. 13. Monomeric complexes of amino acid Schiff b ase ligands 
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Fig. 14. Synthesis of antimicrobial Schiff base 
ligand 

 
4. MACROCYCLIC CHEMISTRY 
 
The study of macrocycle synthesis has gone 
through wonderful development and their 
complexation with variety of metal ions has been 
systematically studied [105]. Macrocyclic ligands 
are polydentate ligands having their donor atoms 
either incorporated in or attached to a cyclic 
backbone. Macrocyclic compounds have 
attracted interest because of their unlimited 
applications in various fields of research. 
Macrocyclic compounds are stable and form 
different compounds of both organic and 
inorganic nature and by reaction with some 
anionic and neutral organic and biological 
substrates give supramolecular compounds with 
particular properties and applications [106]. A 
great number of synthetic, as well as many 
natural macrocycles have now been investigated. 

The involvement of macrocyclic ligands and their 
metal complexes in a number of essential 
biological processes has long been documented. 
They have shown vital day-to-day functions like 
photosynthesis, transportation of oxygen and 
motivated the scientists in deep study of metal 
ion chemistry of macrocyclic systems [107]. 
Macrocyclic ligands have been used as selective 
hosts for wide-ranging guest molecules and ions 
due to their central cavity, therefore these are 
engaged as selective extractants for transition 
and post-transition metal ions in a range of 
solvent extraction and bulk membrane transport 
studies [108]. Macrocyclic complexes have the 
applications in the biomedical field as contrast 
enhancing agents in magnetic resonance 
imaging, NMR shift reagents and catalysts for the 
cleavage of RNA [109-111]. Macrocyclic ligands 
have mixed soft-hard donor character, 
multipurpose coordination behavior and 
pharmacological properties due to which they 
have received special attraction in the chemical 
research [112-116]. The macrocyclic chemistry 
shows applications in other areas such as metal 
ion catalysis, organic synthesis, metal ion 
discrimination and in supramolecular chemistry 
[117]. 
 
Baeyer synthesized the first documented 
macrocycle possessing a pyrrole heterocyclic 
ring [118] (Fig. 15), similar to the porphyrin, via 
an acid catalyzed condensation between pyrrole 
and acetone. The first macrocyclic compound 
synthesized from a diacid was dimeric ethylene 
succinate reported [119] by Vorlander in 1894 
(Fig. 16). 

 

 
 

Fig. 15. Synthesis of the pyrrole  based 
macrocycle  

Fig. 16. Synthesis of dimeric ethylene 
succinate  
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Macrocyclic ligands have two matchless 
properties: (a) their capability to differentiate 
between two metal ions based their ion radii; (b) 
the important improvement in complex stability 
constant which is usually shown by macrocyclic 
ligands relative to their open-chain analogues 
(macrocyclic effect) [120]. Synthesis of 
macrocyclic complexes is influenced by the size 
of the internal cavity, by the rigidity of 
macrocycles, nature of its donor atoms and by 
the complexing properties of the anion involved 
in the coordination [121]. The applications shown 
by such compounds ranging from modeling the 
active sites of many metalloenzymes [122], to 
hosting and carrying small molecules [123] or 
catalysis [124] has raised the interest in this field 
of study. Presently the examination of selective 
coordination properties in novel systems is the 
need of an hour [125]. 
 
One of the best and effective methods for the 
development of macrocyclic complexes consists 
of an in-situ methodology where the metal ion in 
the cyclization reaction increases the yield of the 
cyclic product greatly. The metal ion plays an 
important part role in the completion of the 
reaction and this effect is known as “metal 
template effect” [126]. The metal ion directs the 
condensation favorably to cyclic rather than the 

polymeric products. The metal ion and the anion 
are important because the equilibrium among the 
size of the cation and anion will control the 
dissociation of the metal salt in the reaction 
medium [127]. Multidentate macrocyclic ligand 
synthesis by the metal template effect has been 
documented as offering higher-yields [128,129]. 
The first instance of the development of a 
macrocycle using this technique was described 
[130] by Thompson and Busch (Scheme 4). 
 
Nowadays designing of macrocyclic complexes 
which are highly selective and sensitive to metal 
ions has becoming an important branch of 
research [131]. Although various strategies were 
employed for the development of macrocyclic 
complexes, but template method has gained the 
importance among all which offers selective 
pathways to the products that are not available 
without the metal ion [132]. The ability of metal 
ions to synthesis of macrocyclic ligands by the 
template method depends both on the ligand and 
metal characteristics [133,134]. Metal ions bind 
with the molecules i.e. ligand systems having 
donor group of atoms and place them around 
themselves to form a particular geometry. The 
metal ions act as a template and direct the ligand 
system to take appropriate geometry through a 
proper pathway [136]. 
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Scheme 4. Synthesis of a macrocycle using template effect 
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In addition to template method of synthesis 
significant struggle have been made to develop 
macrocycles without metal ions starting from 
various dicarbonyl compounds and diamines 
[135,136]. The macrocycles derived by the 
reaction of one molecule each of the dicarbonyl 
and diamine compounds have been designated 
as [1+1] macrocycles and the macrocycles 
achieved by the reaction of two molecules of the 
dicarbonyl compounds with the two molecules of 
the diamine moiety have been designated as 
[2+2] macrocycles as a result of the number of 
head and lateral units present [137,138]. 
 
The inclination for the development of “1+1” and 
“2+2” macrocycles in metal template 
condensation also depends upon the following 
factors: 
 

• A “1+1” macrocycle cannot be formed, 
when the diamine has not enough chain 
length between the two carbonyl groups 
[139]. 

• A “2+2” condensation prefers over “1+1” 
condensation, if the metal ion has large 
ionic radii [140]. 

• Nature of metal ion such as charge, 
polarizability and geometry of the complex. 

• Conformation of “1+1” acyclic chelate. 
 
H. Khan mohammadi and co-workers have the 
developed of asymmetric heptaaza Schiff base 
macrocyclic complex of Mn(II) ion by templated 
[1 + 1] cyclocondensation of N,N,N′,N′-tetrakis(2-
aminoethyl)propane-1,2-diamine with 2,6-
diacetylpyridine [141] (Scheme 5). 
 
Due to the increasing applicability of aza-
macrocyclic compounds in biomimetic, catalytic, 
biology and medicine, these compounds have 
gained much consideration. They have found 
great significance in the arenas where metal 
complexes with exciting kinetic and 

thermodynamic stabilities toward metal release 
are necessary such as techniques like magnetic 
resonance imaging, imaging with radioisotopes 
and radiotherapy [142]. Aza-macrocyclic ligands 
are also dynamically used as antimicrobial 
agents and other biological properties [143-146].   
 
The tetraaza macrocyclic ligands and their metal 
complexes have been largely studied and 
fascinated coordination chemists [147]. The 
significance of tetraaza macrocycles [14] ane N4 

(Fig. 17) and [12] ane N4 (Fig. 18) have been 
acknowledged for several years and their 
complexation chemistry with a large variety of 
metal ions has been investigated 
comprehensively [148-151]. Sulekh Chandra et 
al. have reported the synthesis and 
characterization of a large number of 
tetraazamacrocyclic complexes. The applications 
of the tetraaza macrocyclic ligands and their 
metal complexes range from the elimination of 
toxic metals from unwanted streams, 
radiotherapy to contrast agents for magnetic 
resonance imaging [152-154]. 
 
The hexaazamacrocycles are motivating and 
multipurpose compounds having capability to 
bind one or two metal ions and can also 
encapsulate anionic guests through electrostatic 
interactions [155]. (Figs. 19, 20 and 21) 
Rothermel and co-workers have [156] 
synthesized hexaazamacrocycles (Fig. 20) 
showing the role of metal ion in describing the 
conformation of macrocycle [157]. 
Hexaazamacrocycles as reported by Martell et 
al. [158] have the capacity to bind a wide variety 
of anions together with halides, nitrate and 
phosphate, and even in chelating the biological 
anions like carboxylates and nucleotides [159]. 
M. del C. Fernandez and co-workers have 
synthesized the Ni(II) nitrate and perchlorate 
complexes with two stereo-isomeric 
hexaazamacrocyclic ligands [160] (Fig. 22). 

 

 
 

Scheme 5. Developed of asymmetric Schiff base macro cyclic complex of Mn(II) 
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Fig. 17. Synthesis of tetraaza 
macrocyclic ligand  

Fig. 18. Synthesis of tetraaza 
macrocyclic ligand  

 

 
 

Fig. 19. Synthesis of hexaaza 
macrocyclic ligand  

Fig.  20. Synthesis of 
hexaaza macrocyclic 

ligand  

Fig.  21. Synthesis of 
hexaaza macrocyclic 

ligand  
 

 
 

Fig. 22. Synthesis of the stereo-isomeric 
hexaazamacrocyclic ligand  

 
Octaazamacrocycles having the huge cavity size 
formed by the macrocycle backbone form the 
mono and di-nuclear metal complexes and also 
display fascinating co-ordination properties. They 

are capable to stabilize many anions in their 
hexaprotonated form [161].  
 
Polyazamacrocycles display exceptional 
features, particularly the highly systematized 
binding position for complex formation with both 
cations and host molecules [162]. 
Polyazamacrocycle–metal complexes as MRI 
contrast agents in medicinal chemistry, 
metalloenzyme mimics, and catalysts as well as 
fluorescence probes in chemical biology are well 
documented [163,164]. The large 
polyazamacrocyclic molecules form stable metal 
complexes, with various metal ions, owing to 
their number of donationg nitrogen atoms [165]. 
The chelation abilities of polyaza macrocycles 
are usually due to the ring size of the molecule 
[166]. The effect of functional groups on the 
geometry and chemical properties of polyaza 
macrocycles have been investigated by 
incorporating the functional groups in the 
macrocycles [167]. 
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The chemistry of binucleating macrocycles has 
emerged as an interesting field for the chemists 
of present era because of the capabilty of 
keeping two transition metal ions in close vicinity. 
Such compounds were also designed early 
because of their wide range of applications 
ranging from bioinorganic chemistry [168,169], 
magneto chemistry [170], coordination chemistry 
[171,172] to homogeneous catalysis [173]. 
Macrocycles accommodating two metal ions 
because of their large cavity size can be utilised 
to bind the metal centre at fixed distances having 
an extra internal or external bridging group, 
which gives the macrocyclic system rigidity and 
also completes the structure of the binuclear 
species thus gives structurally well-defined 
compounds [174]. A lot of metalloenzymes 
contains two copper ions in their active site that 
operate cooperatively [175]. These binuclear 
copper complexes have extraordinary 
prominence as novel inorganic resources 
bestowing innumerable magnetic characteristics 
with anti-ferromagnetic coupling depending upon 
the bridge angle and degree of distortion [176]. 
Di-copper containing proteins are of biological 
importance performing various important 
functions like dioxygen transport, electron 
transfer, reduction of nitrogen oxides and 
hydrolytic chemistry [177]. Binucleating 
macrocyclic complexes can be used as models 
to recognise the reactivity changes caused by 
the proximity of both metal centres. Binuclear 
macrocyclic complexes having similar and 
dissimilar coordination sites are of great 
importance since these are thermodynamically 
stabilized and kinetically retarded with respect to 
metal dissociation [178,179]. The three main 
synthetic approaches have been followed while 
designing binuclear macrocyclic complexes, (i) 
synthesis of large macrocycles or macro bicycles 
capable to fit in two metal ions [180], (ii) 
synthesis of bis macrocycles [181] and (iii) use of 
chelating agents bridging two macrocyclic units 
[182]. Metal ions can co-operate directly through 
electrostatic forces or indirectly via electron 

through the macrocyclic background. A wide 
range of binuclear macrocyclic ligands with two 
similar and dissimilar metal centers have been 
stated [183] (Figs. 23 and 24). 
 
The macrocyclic polyamine ligands having 
pendant arms with functional groups and their 
metal complexes has been an emerging area of 
research [184-186]. Due to the presence these 
pendant arm groups, the attached groups offer 
additional donating groups which bring about the 
change in the structure of the macrocycle like 
stability, selectivity, stereochemistry and 
thermodynamic factors [187]. Thus, the chemical 
properties of such complexes are intensely 
altered by the nature and number of functional 
groups [188]. The ligating groups and the 
pendant arms control the metal binding capability 
of the macrocycle, thus other structures can also 
be designed by substituting the groups at the 
carbon and nitrogen atoms of the ring [189]. The 
compounds obtained by the substitution at 
carbon atom do not change the nature of the 
heteroatomic donor groups while as the groups 
attached to the nitrogen atom produce five or six 
numbered chelate rings, but both the 
functionalization’s offer advantages and perform 
various functions at the same time. A group of 
researchers [190] have investigate the design 
and synthesis of a pendant arm 
hexaazamacrocyclic ligand (Fig. 25) L bearing 
four ethyldioxolane pendant groups and its metal 
complexes with various transition, post transition 
and lanthanide metal ions. 
 
Farha and co-workers have reported the 
synthesis of a hexaazamacrocyclic ligand and its 
metal complexes [191] having pendant arm by 
reaction of 1, 2-phenylenediamine and 1, 4-
phenylenediamine and formaldehyde (Fig. 26). 
Also Hassan Keypour et al. [192] have the 
synthesized of three Mn2+ macrocycles with two 
2-pyridylmethyl pendant arms by the 
condensation of 2, 6- diacetylpyridine with three 
hexadentate amines with altered branches. 
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Fig. 23.  Synthesis of the binuclear 
macrocyclic ligand 

Fig. 24.  Synthesis of the binuclear 
macrocyclic ligand 
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Fig . 25. Synthesis of a pendant arm hexaazamacrocyclic ligand  
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Metal = Co (II), Ni (II), Cu (II) and Zn (II),  X = Cl or NO3 
 

Fig . 26. Synthesis of a pendant arm hexaazamacrocyclic ligand  and its metal complexes 
 

Macrocycles containing aromatic moieties form 
charge transfer complexes with various guest 
molecules and are used to investigate the 
complexation of host guest molecules to deliver 
new considerations into non-covalent binding 
interaction, chiefly cation π-interaction which 
include the stabilization of a positive charge by 

the face of an aromatic ring [193]. There are 
abundant macrocycles having aromatic moieties 
[194,195] with 1, 8 diaminonaphthalene (Fig. 27) 
and benzil (Fig. 28) subunits as the central part 
of the structural backbone of the macrocyclic 
structure.
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M = Co(II), Ni(II),Cu(II)and Zn(II) X = Cl or NO3 

 
Where M = Co(II), Ni(II), Cu(II), Zn(II) X = Cl, 

NO3, CH3COO 
 

Fig. 27.  Synthesis of macrocycles having 
aromatic moieties 

Fig. 28. Synthesis  of macrocycles having 
aromatic moieties  
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5. CONCLUSION 
 
In this attempt the discovery, progress and the 
applications of the diverse Schiff bases, 
macrocyclic systems and their transition metal 
complexes have been widely sightseen. 
However, the biological activity of these class of 
compounds needs advance exploration. Schiff 
base transition metal complexes have emerged 
as one of the promising moieties for the design of 
antibacterial and antifungal agents. Further 
investigations in this field will address the 
structure –activity relation of the compounds and 
the mode of mechanism of action of these 
compounds.  
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