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ABSTRACT

Expressions of a conserved 4-current and its density are examined in cases of electrically charged
quantum particles. It is proven that the Noether theorem cannot be regarded as a sufficient
condition that yields a consistent expression of a conserved 4-current, because electromagnetic
interactions pose further constraints. A mathematical analysis shows that the Dirac linear equation
yields a consistent expression for a 4-current. In contrast, second order quantum equations,
such as the Klein-Gordon equation of an electrically charged scalar particle and the electroweak
equation of the W± vector particles do not provide a consistent expression for a conserved
4-current that adequately describes electromagnetic interactions.
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1 INTRODUCTION

This paper aims to prove the existence of new
constraints on the acceptability of an expression
for density of an elementary massive quantum
particle that carries an electric charge.

The notion of density is known for quite a
long time. Charge density is used in the
Maxwell equation ∇ ·E = 4πρ. Furthermore,
the development of quantum mechanics proves
that the Schroedinger equation yields an
expression for the particle density ρ = ψ∗ψ. The
present work examines quantum theories of an
electrically charged elementary pointlike particle.
In this case charge density is proportional to
particle density. It is shown in this work that
the laws of Maxwellian electrodynamics add
new theoretical requirements to the notion of
density in quantum theories. This work uses
the well known laws of quantum theories and
of Maxwellian electrodynamics and provides a
comparison between these aspects of density.
This point expresses the novelty of this work.

Classical electrodynamics shows that charge
density and current density are included in the
continuity equation

∇ · j+ ∂ρ/∂t = 0. (1.1)

This equation is an important element of the
discussion presented in this work. Maxwellian
electrodynamics can be written in a relativistic
form [1]. In particular, the charge density and the
electric current of (1.1) are components of the
4-vector (ρ, j).

Electrodynamics, quantum mechanics and
special relativity are very important physical
theories and modern technology relies on them.
These issues indicate that the notion of density
is a significant element of the study of theoretical
physics.

Fundamental physical principles that are used
as a basis for the main analysis are mentioned
briefly in the second section. The third
section describes the crucial role of density in
quantum theories. The fourth section compares
density expressions derived from the first order
Dirac equation with corresponding expressions
of second order quantum equations of an

electrically charged particle, like the Klein-
Gordon (KG) equation and the electroweak
W± equation. Problems of these issues are
discussed in the fifth section. The last section
contains concluding remarks.

2 THEORETICAL BACK-
GROUND

Several theoretical elements that are used in the
analysis presented in this work are briefly pointed
out below. Units where ~ = c = 1 are used.
Greek indices run from 0 to 3. The metric is diag.
(1,-1,-1,-1). Relativistic expressions are written in
the standard notation. Square brackets [ ] denote
the dimension of the enclosed expression. In a
system of units where ~ = c = 1 there is just one
dimension, and the dimension of length, denoted
by [L], is used.

• Accelerators provide abundant data where
colliding particles move at a speed which
is very close to the speed of light. The
design of these machines and the analysis
of their data are based on special relativity.
Hence, the operation of these accelerators
and their data provide a solid experimental
basis for the validity of special relativity.
For this reason, the analysis carried out
below takes a relativistic covariant form.
Relativistic expressions are written in the
standard notation.

• The correspondence principle states that
an appropriate limit of a higher rank
theory fits properties of its lower rank
theory. For example, the Ehrenfest
theorem proves that the classical limit of
Quantum Mechanics (QM) fits the laws of
classical physics (see e.g. [2], pp. 25-27,
137, 138). In particular, the single particle
limit of Quantum Field Theory (QFT) fits
Relativistic Quantum Mechanics (RQM)
and the nonrelativistic limit of the latter fits
QM. The following quotation indicates that
this relationship between these quantum
theories is already recognized in the
literature. ”First, some good news:
quantum field theory is based on the same
quantum mechanics that was invented by
Schroedinger, Heisenberg, Pauli, Born,
and others in 1925-26, and has been
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used ever since in atomic, molecular,
nuclear and condensed matter physics”
(see [3], p. 49). In this work, these
constraints on QFT are called Weinberg
correspondence principle. A general
discussion of correspondence between
physical theories can be found in the
literature (see [4], pp. 1-6).

• The de Broglie principle defines the
relations between dynamical properties of
a massive quantum particle and its phase
Φ. It means that every quantum theory of
such a particle must provide a consistent
expression for the particle’s phase. This
phase is an argument of an exponential
function

exp(iΦ) = 1 + iΦ+ ... (2.1)

Dimensional balance of the two terms
that stand on the right hand side of
(2.1) and relativistic covariance of these
terms mean that the phase Φ must be
a dimensionless Lorentz scalar. In the
classical limit, the phase of the wave
function is written in terms of the action S
(see [5], p. 20)

ψ = aeiS . (2.2)

It follows that in a relativistic theory the
action must be a dimensionless Lorentz
scalar.

• The electromagnetic interaction term of
the Lagrangian density is

Lint = −jµAµ. (2.3)

Here jµ is the 4-current of the charged
particle and Aµ is the electromagnetic
4-potential. As stated after (1.1),
charge density is the 0-component of
jµ. Expression (2.3) is a Lorentz scalar
whose dimension is [L−4]. It is used in
calculations of the action S in classical
physics and in quantum theories (see [1],
p. 75; [3], p. 349).

(2.4)
Here the last term is the integral of the
electromagnetic fields Lagrangian density.

It follows that like the electromagnetic
fields Lagrangian density, quantum
theories of an electrically charged particle
should use a Lagrangian density which
is a Lorentz scalar whose dimension is
[L−4].

• The quantum function which is used
in expressions for the Lagrangian
density takes the form ψ(xµ), where
xµ denotes a single set of four space-
time coordinates. For this reason, the
quantum function ψ(xµ) describes an
elementary pointlike particle. Indeed,
a function that describes a composite
particle needs a larger number of
independent variables, because it needs
four independent variables in order to
describe the probability of the existence of
the particle at xµ and other variables that
describe the structure of the composite
particle. It turns out that standard
textbooks use the form ψ(xµ) for quantum
theories of elementary particles (see e.g.
[3, 6, 7, 8]). This approach is also used in
the present work.

3 THE ROLE OF DENSITY IN
QUANTUM THEORIES

Relying on the Weinberg correspondence
principle, one concludes that the Hilbert space
is a fundamental element of quantum theories
(see e.g. [3], p. 49; [9], pp. 164-166). A
well-defined scalar product of two functions is
a requirement needed for a Hilbert space of a
quantum theory. The form of the scalar product
of any two quantum functions of a single particle
is

< a, b >=

∫
ψ†

aψb d
3r. (3.1)

A Hilbert space has a basis and each of its
functions can be written as a linear combination
of functions of this basis. A convenient basis
of the Hilbert space is made of orthonormal
functions. If ψa, ψb belong to such a basis then

< a, b >=

∫
ψ†

aψb d
3r = δab, (3.2)

where δab is the Kronecker symbol which equals
unity if a = b and is zero otherwise.
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The meaning of (3.2) is that the product ψ†
aψa

defines the density of the quantum particle
represented by ψa. These arguments together
with the Weinberg correspondence principle
prove that any quantum theory should provide a
consistent expression for density.

Another reason for the need of a consistent
expression for density applies to theories of
an electrically charged quantum particle. The
electromagnetic interaction term of a Lagrangian
density (2.3) holds in QFT as well as in classical
electrodynamics. The 0-component of the 4-
current of a particle is its density (see [1], p. 75).
Hence, an electrically charged quantum particle
should have a consistent expression for density.

The need for density is an example showing
powerful properties of the variational principle
and of its Lagrangian density. Here the Noether
theorem says that if the Lagrangian density is
invariant under a given transformation then a
corresponding conservation law exists. The
Noether theorem has quite a few applications.
For the purpose of this work, the following
invariance of the Lagrangian density under a
global phase transformation

ψ(xµ) → exp(iα)ψ(xµ) (3.3)

is examined (see [10], p. 314). In this case
one obtains the following form of a conserved 4-
current

jµ =
∂L

∂(∂µψ)
ψ. (3.4)

Hereafter, this expression is called the Noether
theorem for the 4-current.

This work examines expressions for the 4-
current that are obtained from an application of
the Noether theorem (3.4) to specific quantum
theories of electrically charged particles.
Evidently, the Noether theorem for the 4-current
(3.4) depends on the quantum function ψ and
on its derivatives ∂µψ but it is independent of
the electric charge. The main objective of the
present work is to examine how (3.4) fits the
requirements of Maxwellian electrodynamics in
cases of quantum theories of an electrically
charged particle. As stated above, in the case
of an elementary pointlike particle the electric 4-
current is proportional to the particle’s 4-current.
Therefore, a transition between expressions of
these quantities is quite clear.

4 THE LAGRANGIAN DENSITY
OF CHARGED QUANTUM
PARTICLES

The Lagrangian density of electrically charged
quantum particles and the associated 4-current
jµ are examined below. The Noether theorem
(3.4) is used for a derivation of this 4-current. The
analysis applies to cases of first order quantum
equation (namely, the Dirac equation) and of
second order quantum equations, like the KG
equation and the electroweak equation of the
W±. The dimension of physical quantities used
in a Lagrangian density plays an important role in
this analysis.

The Lagrangian density of a Dirac particle and its
interaction with electromagnetic fields is (see [6],
p. 84, [7], p. 78)

LD = ψ̄[γµ(i∂µ)−m]ψ − eAµψ̄γ
µψ

= ψ̄[γµ(i∂µ − eAµ)−m]ψ. (4.1)

Here γµ denote the four Dirac γ matrices and
ψ̄ ≡ ψ†γ0. An application of the Noether theorem
of the 4-current (3.4) to the Dirac Lagrangian
density (4.1) yields the following expression for
the electric 4-current

jµDirac = −eψ̄γµψ (4.2)

(see [6], p. 84, [10], p. 315). This expression
for the Dirac 4-current proves that the last term
of the first line of (4.1) is consistent with the
form of the electromagnetic interaction (2.3). The
substitution

i∂µ → i∂µ − eAµ (4.3)

used in the second line of (4.1) is called the
minimal interaction or the minimal substitution
(see [3], p. 9; [6], p. 84; [11], p. 198). The
minimal interaction (4.3) shows how expressions
of a free electrically charged quantum particle
transform to expressions that hold for this particle
in Maxwellian fields. The equivalence of the
two lines of (4.1) means that in the case of
Dirac equation, the minimal interaction (4.3)
is consistent with the standard form of the
electromagnetic interaction (2.3).
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An important property of the Dirac equation is
that the dimension of each variable enclosed in
the square brackets of (4.1) is [L−1]. Therefore,
the [L−4] dimension of the Lagrangian density
means that the dimension of a product of two
Dirac function ψ̄ψ is [L−3], which is the dimension
of density. This is consistent with the form (4.2)
of the Dirac 4-current.

Let us turn to second order quantum equations
of electrically charged particles, like that of
a charged KG particle and the electroweak
equation for the W±. The Lagrangian density of
the KG equation of a free particle is

LKG = gµνϕ∗
,µϕ,ν −m2ϕ∗ϕ (4.4)

(see [3], p. 21; [6], p. 38; [11], p. 191). The
[L−4] dimension of the Lagrangian density proves
that the dimension of the KG function ϕ of (4.4)
is [L−1]. Hence, the dimension of the product
of two KG functions ϕ∗ϕ is [L−2]. The [L−3]
dimension of density proves that, unlike the case
of a Dirac particle, a KG expression for density
must depend on a derivative of its function ϕ with
respect to xµ. Hence, the general form of the
4-current of a KG particle is a function of the
following variables

jµ = f(ϕ∗, ϕ, ϕ∗
,µ, ϕ,µ). (4.5)

Simple dimensional arguments prove that this
form applies also to the electroweak 4-current
of the W±. The electromagnetic interaction
term −ejµAµ of (2.3) means that in the case of
second order quantum equations, the form (4.5)
adds derivatives of the quantum function ϕ to
the Lagrangian density and alters the 4-current
jµ which is obtained from the Noether theorem
for the 4-current (3.4). Consequences of this
problematic point are discussed in the rest of this
work.

In the KG case, an application of the Noether
theorem for the 4-current (3.4) to the KG
Lagrangian density (4.4) yields the following
expression

jµ = i(ϕ∗ϕ,µ − ϕ∗
,µϕ) (4.6)

(see [6], p. 40; [11], p. 193). If electromagnetic
fields exist at the KG particle’s location then one
finds that the minimal interaction (4.3) casts the

KG Lagrangian density (4.4) into the following
form

LKG = gµν(ϕ∗
,µ + eAµ)(ϕ,ν − eAµ)−m2ϕ∗ϕ

(4.7)
(see [11], p. 198). This form is unacceptable
because Maxwell equations are derived from a
Lagrangian density that depends linearly on the
4-potential Aµ (see [1], pp. 78-80).

Realizing this discrepancy, let us see what
comes out if the minimal interaction (4.3) is
ignored. In order to be consistent with Maxwellian
electrodynamics, one examines the following
expression where the 4-current (4.6) of a free KG
particle interacts linearly with an electromagnetic
4-potential

LKG LIN = ie(ϕ∗ϕ,µ − ϕ∗
,µϕ)A

µ. (4.8)

This attempt fails because it has already
been proved that this kind of interaction yields
contradictory results (see [12], pp. 6-8 or the
Appendix of this work).

It turns out that the Lagrangian density of
the electroweak W± contains a product of
derivatives of the W function which is analogous
to the KG form of (4.4). Unlike the KG function
ϕ which is a Lorentz scalar, the electroweak
W± is a 4-vector which is analogous to the
electromagnetic 4-potential Aµ. The relevant
term of the W+ Lagrangian density is

LW = −1

2
|D̄µW

+
ν − D̄νW

+
µ |2 + ..., (4.9)

where Dµ is the electroweak extension of the
electromagnetic minimal interaction (4.3) (see [8],
p. 518). ThisDµ is a sum of three terms: a partial
derivative with respect to xµ, an electromagnetic
4-potential term which is analogous to that of
the minimal interaction (4.3) and an electroweak
term.

The foregoing analysis proves that unlike the
case of the Dirac equation, the Lagrangian
density of a second order quantum equation
contains a product of derivatives, like that of
(4.4). It follows that the minimal substitution
(4.3) yields a Lagrangian density that contains
quadratic terms of the 4-potential Aµ. This
property holds for the KG case (4.7) as well as
for the electroweak W case (4.9). As pointed
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out after (4.7), these terms are inconsistent
with Maxwellian electrodynamics, where Maxwell
equations are derived from a Lagrangian density
which depends linearly on the 4-potential Aµ

(see [1], pp. 78-80). This outcome means that
in the case of a second order quantum equation,
electromagnetic interactions are inconsistent with
the minimal interaction (4.3). Issues pertaining to
this dilemma are discussed in the next section.

5 DISCUSSION

The electromagnetic interaction (2.3) couples two
kinds of physical objects, an electric charge and
an electromagnetic 4-potential. This interaction
depends linearly on both the electric charge e
and on the 4-potential Aµ. For this reason, the
dimension of Aµ must take an integral number.
In electromagnetic interactions the dimension of
the 4-potential Aµ is [L−1]. On the other hand,
in quantum theories density (and charge density)
depends quadratically on the wave function of an
electrically charged quantum particle.

These physical properties explain the
fundamental difference between the first order
Dirac equation of a spin-1/2 particle on the one
hand and the second order KG and the W±

equations on the other hand. Some of these
differences are quite well known. For example,
a Dirac particle has spin-1/2 and several Dirac
particles of the same species must be in an
antisymmetric state which abides by the Pauli
exclusion principle. By contrast, particles that are
described by second order quantum equations
have an integral spin and several such particles
of the same species must be in a symmetric
state. The difference between these kinds of
particles has a far reaching effect on the world
as we know it. For example, the number of
electrons of a neutral atom grows together with
the number of protons in the atomic nucleus. Due
to the Pauli exclusion principle, atomic electrons
fill higher and higher energy states. This is the
theoretical explanation of the Mendeleev periodic
table which is a fundamental element of the
richness of chemical states (see e.g. [2], pp. 278-
281). By contrast, in a hypothetical world where
electrons are replaced by a negatively charged
KG particle, atomic states should be symmetric.
Therefore, all negatively charged KG particles
of such an atom would be in the same lowest

energy state (called s-wave), and all chemical
elements would behave like a noble gas.

The following discussion addresses some new
inherent differences between these kinds of
particles which are relevant to this work.

Let us compare the theoretical role of a Dirac
function ψ with that of the KG function ϕ and
the electroweak W± functions. Concerning
interaction terms, a quantum function of an
electrically charged Dirac particle plays one role
– it provides a consistent expression for the
electric 4-current (4.2). The case of quantum
functions of the KG and the W± particles is
different. Here the quantum function plays two
distinct roles. A KG function ϕ has an integral
spin because it carries a Yukawa-like interaction
whose form is gψ̄ψϕ (see [7], pp. 79, 80). Here
ψ is a function of a fermion and the dimension of
ψ̄ψ is [L−3]. Similarly, the electroweak theory
states that the W± particles carry the weak
interaction, and their form is analogous to that
of the electromagnetic 4-potential Aµ (see [7],
p. 701; [13], p. 307). Hence, the dimension of
the quantum functions of the KG and the W±

particles is [L−1]. Moreover, these particles have
a second task, because they carry an electric
charge which interacts with electromagnetic
fields. Therefore, theories of these particles must
provide an expression for the 4-current of (2.3),
whose dimension is [L−3]. This is the reason for
the use of derivatives in expressions for density
in theories of electrically charged KG and W±

particles. It is proved in the previous section
that this derivative is inconsistent with the well
known rule where the minimal interaction (4.3)
represents electrodynamics.

The failure of the KG theory and the electroweak
W± theory to provide a consistent expression
for charge density means that these theories
also cannot provide a consistent expression for
particle’s density. Hence, there is no consistent
Hilbert space for these particles. This is yet
another contradiction because the Weinberg
correspondence principle says that a quantum
theory should have a Hilbert space (see [3], p.
49).

Let us examine properties of a well established
physical theory. In this case, the scientific
literature presents it in consistent and equivalent
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forms where the differences between various
presentations belong to the pedagogical domain.
Furthermore, as a rule, textbooks discuss all
key element of the given theory. This situation
holds in the Dirac equation. In contrast,
the scientific literature contains inconsistent
treatments of the electromagnetic interaction of
second order quantum equations, namely, the
cases of an electrically charged KG particle and
the electroweak W± bosons. Another attribute of
an established QFT equation is that it provides
an adequate description of physical properties of
an experimentally confirmed elementary particle.
Here are few examples that illustrate these
issues.

1. Pauli and Weisskopf revived the KG
equation in 1934 [11]. Their Lagrangian
density of a charged KG particle uses the
minimal interaction (4.3) (see [11], p. 198).
For this reason their Lagrangian density
contains terms that depend quadratically
on the electromagnetic 4-potential Aµ

(see [11], p. 198). It is explained
above that this property is incompatible
with Maxwellian electrodynamics (see the
discussion near the end of section 4).

2. By contrast, the following textbook points
out problems that exist with the derivatives
included in the interaction term of the
KG equation and states that ”they appear
with a vengeance, since the coupling
prescription (15.1) introduces interaction
terms containing derivatives” (see [6], p.
87). (Note that (15.1) of this textbook is
the above mentioned minimal interaction
(4.3).)

3. The primary contradiction of an electrically
charged KG particle is the impossibility to
write down a consistent interaction term of
a 4-current of this field with a Maxwellian
4-potential. This term must take the form
of (2.3), where jµ is a conserved 4-current
that depends on the KG function ϕ and
Aµ is the electromagnetic 4-potential. It is
explained in item 1 above why the minimal
interaction (4.3) fails to reach this goal.
Furthermore, it has already been proved
that a violation of the minimal interaction
(4.3) leads to inconsistent results (see the
text after eq. (4.8)).

4. There is no experimental support for a
KG particle [14]. In particular, pions are
known to be composite particles and each
of which is a quark-antiquark bound state.

5. The following textbook presents a form of
the W± electromagnetic interaction term
of the electroweak Lagrangian density
(see [15], p. 530). The first line of eq.
(87.27) of this textbook contains two terms
where each of which has a product of two
Dµ operators

Dµ = ∂µ − ie(Aµ + ...). (5.1)

A product of two such operators (like
D†µDν ) contains a term which is
proportional to the square of the electric
charge e2 and to a quadratic expression
of the electromagnetic 4-potential AµAν .
Either of these results is inconsistent with
Maxwellian electrodynamics where the
interaction term (2.3) is proportional to
the electric charge e and depends linearly
on the 4-potential Aµ.
Furthermore, this textbook introduces
another electromagnetic interaction term
whose form is

ieFµνW+
µ W

−
ν . (5.2)

Here the charge carrier function W
provides a dimension of [L−2] which
contradicts the [L−3] requirement
of charge density of Maxwellian
electrodynamics.

6. A similar Lagrangian density can be found
in another textbook (see [8], p. 522).
Hence, the same contradictions persist.

7. A quite different approach is taken by
the authors of [16], and their approach
is adopted by the ATLAS group at CERN
[17]. Eq. (3) of [17] depends linearly
on the electromagnetic quantities Aµ and
Fµν . It means that they do not use
the minimal interaction (4.3). Their
equation can be reduced to the ordinary
electroweak expression of the Standard
Model (SM). Here one uses specific
values of their coefficients gV1 = kV =
1 and λV = 0 and finds that the
electromagnetic interaction part of theW±

Lagrangian density is
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(5.3)

Here the commutativity of Maxwellian
factors Aµ is used. The definition of Wµν

is analogous to that of the electromagnetic
field Fµν , where Wµν = Wν,µ − Wµ,ν .
The discussion presented in the Appendix
proves that this expression yields an
inherent contradiction.
On top of that, it turns out that like the
case of the W± Lagrangian density (5.2),
the last term of (5.3) contains a product
of two W functions and the dimension of
this product is [L−2]. Hence, the same
contradiction exists.

8. Some textbooks simply avoid the dilemma
and do not mention explicitly the
electromagnetic interaction of the W±.
For example, it can be found in the
literature a statement emphasizing the
fact that electromagnetic interactions
of the W± ”are critical for the internal
consistency of the theory” (see [18],
p. 79). Another statement of this
textbook points out the importance of
the Lagrangian, which is ”the foundation
on which virtually all modern theories
are predicated” and that the Lagrangian
”concerns the fundamental quantum field
theories from which the Feynman rules
derive” (see [18], p. 353). In spite of these
quite strong statements, this textbook
does not show an explicit form of the
electromagnetic interactions term of the
W± which is included in the Lagrangian
density.

The following words summarize the above
mentioned arguments. In the case of an
electrically charged Dirac particle, all relevant
scientific textbooks use equivalent expressions
for the charge’s 4-current (4.2) (and for its
density) and for the associated electromagnetic
interaction term (2.3). In contrast, the scientific
literature contains contradictory expressions
for the electromagnetic interactions of the
electroweak W± bosons. All expressions for the
W± electromagnetic interactions are inconsistent
with Maxwellian electrodynamics. Moreover,
some textbooks simply do not discuss this

interaction. An analogous situation holds for an
electrically charged KG particle.

6 CONCLUSIONS

This work examines density expressions of two
sets of quantum equations – linear equations
of the Dirac theory and second-order quantum
equations. The discussion is restricted to
quantum equations of an electrically charged
particle. The conserved 4-current

jµ,µ = 0, (6.1)

which is obtained from the well known Noether
theorem (3.4) is examined. It is proved above
that the required consistency of electromagnetic
interactions adds further constraints on the
acceptability of a quantum expression for
density. For this reason, in the case of
an electrically charged quantum particle, the
Noether expression (3.4) is not a sufficient
condition for a consistent density expression.
It is proved above that the Dirac equation
meets all requirements, whereas contradictions
are obtained from the second order quantum
equation of an electrically charged KG particle
as well as from the W± electroweak equation.
These negative conclusions are compatible
with Dirac’s lifelong objection to second order
quantum equations (see [19], pp. 1-8).

COMPETING INTERESTS
Author has declared that no competing interests
exist.

References
[1] Landau LD, Lifshitz EM. The classical theory

of fields. Elsevier, Amsterdam; 2005.

[2] Schiff LI. Quantum mechanics. McGraw-
Hill, New York; 1955.

[3] Weinberg S. The quantum theory of fields.
Cambridge University Press, Cambridge.
1995;I.

[4] Rohrlich F. Classical charged particle. World
Scientific, New Jersey; 2007.

[5] Landau LD, Lifshitz EM. Quantum
mechanics. Pergamon, London; 1959.

8



Comay; PSIJ, 17(1): 1-10, 2018; Article no.PSIJ.38853

[6] Bjorken JD, Drell SD. Relativistic quantum
Fields. McGraw-Hill, New York; 1965.

[7] Peskin ME, Schroeder DV. An introduction
to quantum field theory. Addison-Wesley,
Reading Mass.; 1995.

[8] Sterman G. An introduction to quantum
field theory. Cambridge University Press,
Cambridge; 1993.

[9] Messiah A. Quantum mechanics. North
holland, Amsterdam; 1967;1.

[10] Halzen F, Martin AD. Quarks and leptons.
An introductory course in modern particle
physics. John Wiley, New York; 1984.

[11] Pauli W, Weisskopf V. The quantization of
the scalar relativistic wave equation. Helv.
Phys. Acta. 1934;7(2):709-731.
English translation: Miller A. I. Early
Quantum Electrodynamics. Cambridge
University Press, Cambridge; 1994;188-
205. (Page numbers refer to the English
translation.)

[12] Comay E. Difficulties with the Klein-Gordon
Equation. Apeiron. 2004;11(3)1-18.
Available:http://redshift.vif.com/JournalFiles
/V11NO3PDF/V11N3COM.pdf

[13] Weinberg S. The quantum theory of
fields. Vol. II. Cambridge University Press,
Cambridge; 1996.

[14] Patrignani C, et al. (Particle Data Group).
The review of particle physics. Chin. Phys.
C. 2016;40(10)100001.
Available:http://pdg.lbl.gov/
DOI:https://doi.org/10.1088/1674-1137/40
/10/100001

[15] Srednicki M. Quantum field theory.
Cambridge University Press, Cambridge;
2007.

[16] Hagiwara K, Peccei RD, Zeppenfeld D,
Hikasa K. Probing the weak boson sector
in e+e− → W+W−. Nucl. Phys. B.
1987;282(1)253-307.

[17] Aad G, et al. Measurement of the WW
cross section in

√
s = 7 TeV pp collisions

with the atlas detector and limits on
anomalous gauge couplings. Phys. Lett. B.
2012;712(4)289-308.
Available:https://doi.org/10.1016/j.physletb.
2012.05.003

[18] Griffiths D. Introduction to elementary
particles. 2nd edition. Wiley-VCH,
Weinheim; 2008.

[19] Dirac PAM. Mathematical foundations of
quantum theory. In: Marlow A. R. editor.
Mathematical foundations of quantum
theory. Academic Press, New York; 1978.

9



Comay; PSIJ, 17(1): 1-10, 2018; Article no.PSIJ.38853

APPENDIX

It is proved here that the electromagnetic part of the effective Lagrangian (5.3) of [16, 17] contains
inherent contradictions. The proof is analogous to that of the corresponding linear interaction of the
electrically charged KG theory (4.8) (see [12], pp. 6-8).

Let us examine a motionless W+ particle located at an inner point of a quite large spherical shell.
This shell is covered uniformly with electric charge and the same electrostatic potential V holds at all
points inside the shell. The uncertainty principle means that due to the macroscopic size of the shell,
effects of the W+ linear momentum can be ignored. Therefore, the phase of this motionless W+ is

W+ = e−i(m+U)tΨ, (A.1)

where m denotes the mass of the W+, U = eV is the electrostatic interaction energy and Ψ denotes
other elements of the W+ quantum function.

The second order electroweak equation of the W+ proves that the contribution of the phase to energy
terms of the W+ equation is

EPHASE = (m+ U)2. (A.2)

It follows that the phase energy terms that depend on the electrostatic interaction U are

EPHASE U = 2mU + U2. (A.3)

Let us tern to the electromagnetic interaction of the effective Lagrangian density (5.3) of [16, 17]. Here
one finds two terms containing a product of the electromagnetic 4-potential with a first derivative of
the W+. Hence, the energy obtained from these terms is

EINT U = 2mU + 2U2. (A.4)

A comparison of (A.3) with (A.4) proves that there is an additional U2 term that cannot be compensated.
It means that an imbalance holds and the W+ equation of motion of [16, 17] contains an inherent
contradiction.
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