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ABSTRACT

Due to the complexity of plasma dynamics and kinetics, it is often used in research model plasma
through computer simulations. A new approach to the electrostatic simulation of dilute plasma,
based on the Particle-in-Cell (PIC) simulation method, is explored. We discuss the distribution
functions and simulation for three-component dilute plasma e-p-i (electrons, positrons, and ions)
model which is homogeneous and in equilibrium. Finally, our code is successfully against with
three-component dilute plasma distribution function.
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1 INTRODUCTION

A dusty plasma is an ionized gas containing
dust particles. The dust particles have sizes
ranging from tens of nanometers to hundreds
of microns. Ferdousi et al. (2015) proposed
three-component unmagnetized plasma system
consisting of electrons, positrons, and ions
[1]. The history of dusty plasmas is quite old
(Mendis 1997 [2]) and the importance of e-
p-i or three component plasma study is due
to develop an understanding of the behavior
of both astrophysical and laboratory plasma.
Because of the long lifetime of the positrons,
most of the astrophysical and laboratory plasmas
become an admixture of electrons, positrons, and
ions. Therefore, the study of electron–positron–
ion (e-p-i) plasmas is important to understand
the behavior of both astrophysical [3], [4] and
laboratory plasmas [5].

The three component dusty plasma which is
contain non-inertial nonextensive electrons,
nonextensive positrons, and inertial ions have
been studied by several authors during the
past many years [6], [7], [8] and [9]. The
study of plasma thermodynamics is one of the
attractive problems in the theoretical physics
and the thermodynamics in curved spacetime
is very important especially in the context
of astrophysics and cosmology. Relativistic
plasmas are objects encountered in many
astrophysical situations. For instance, they occur
in the magnetosphere of pulsars where they
are strongly magnetized, or in the quasar jets
[10]. Such plasmas may be created either by
heating a gas to very high temperatures. In the
relativistic plasma the relativistic corrections to a
particle’s mass and velocity are important. Such
corrections typically become important when a
significant number of electrons reach speeds
greater than 0.86c.

Modeling of plasmas is complicated by
the presence of external and self-induced
electromagnetic fields, inter-particle interactions,
the presence of solid objects, and the different
characteristic time scales at which ions and
electrons propagate.

The particle in cell technique refers to a technique
used to simulate the motion of charged particles,

or plasma [11]. As the name implies, the particle-
in-cell (PIC) technique represents matter as
discrete particles (or “macroparticle” ensembles)
occupying positions within a lattice of “cells.” Time
advances stepwise, and during each timestep,
the electromagnetic field is interpolated from the
cell vertices to the particles’ positions, the force
on the particles is calculated, their velocity is
updated accordingly, and the current produced
by moving charges are distributed to the cell
vertices in a self-consistent manner.

There are various PIC implementations available,
with one of the primary variable elements being
the explicit inclusion or omission of binary
interactions (particle collisions, such as those
mediated by the Coulomb force between point
charges). Astrophysical plasmas are typical of
such a low density that collisions are exceedingly
unlikely, so PIC solutions for these collisionless
plasmas can safely assume that only collective
effects play a significant role in the equations
of motion for individual particles. This paper

presents an overview of the PIC technique and
discuss the distribution functions and simulations
of three-component e-p-i plasma.

2 PHASE SPACE DISTRIBUTION:

MAXWELLIAN DISTRIBUTIONS

The basic technique of the PIC model is to
represent the phase space distribution as a
collection of macroparticles, each representing
a given number of physical plasma particles.
The distribution function FN of a macroscopic
system of N particles is in a complete though
in an intractably complex in 6Ndimensional
phase space, must be spanned by the
coordinates and velocities of all individual
particles FN (t, xA, uA), A = 1, 2, . . . , N, xA

being the position of particle A, and uA =

vA/
√

1− (vA/c)
2 the spatial components of its

four-velocity.

At equilibrium, the charge-neutrality condition
demands ne0 = Zini0 + np0, where ns0 is
the number density of sth species (s = e for
electrons, p for positrons, and i for ions) and Zi

is the charge state of ions.
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The electrostatic oscillations of the electrons,
ions or dust particles, which are due to the
internal space charge field are described by the
continuity equation

∂ns

∂t
+∇.(nsvs) = 0 (2.1)

the momentum equation

∂vs
∂t

+ (vs.∇)vs = − qs
ms

∇ϕ (2.2)

and Poisson’s equation

∇2ϕ = −4π
∑
s

qsns (2.3)

where vs is the velocity and (E = −∇ϕ) is the
electrostatic field with the induced electrostatic
potential ϕ.

We can define the s−particle reduced distribution
as:

F (s)(t, xA, uA) =

∫
FN

N∏
R=s+1

d3xRd
3uR (2.4)

Of the important equations in statistical
mechanics describing time evolution of the
distribution function of plasma consisting of
charged particles with long-range (for example,
Coulomb) interaction is the Vlasov equation[12]:

∂F (s)

∂t
+ uA

∂F (s)

∂xA
+

qsE

ms

∂F (s)

∂uA
= 0, (2.5)

where qs is the charge and ms is the mass of the
species, respectively. The Poisson’s equation for
the scalar potential is given by:

ϵ0
∂2ϕ

∂x2
= −ρ (2.6)

where we can compute the net charge density
from the distribution functions as:

ρ(x, t) =
∑
s

qs

∫
F (s)(t, xA, uA)duA (2.7)

The basis of the statistical description of
collective processes in a plasma is the BBGKY
hierarchy. Now for N electrons, ions or dust
particles moving in the Hamiltonian:

H =

N∑
i=1

p2i
2m

+

N∑
i=1

Ui +

N∑
i<j

vij (2.8)

Swithing back to varibles (r,p)), Then Liouville’s
equation is given by:

∂g

∂t
=

N∑
i=1

(−
−→
Fi −

N∑
i=1,i̸=j

−−→
Kij).∇pig −

−→pi
m

.∇rig

(2.9)

where F = −∇U, Kij = ∇rivij and g is refer
to the distribution function for N particle phase
space.

And the BBGKY equation can be define as

∫
(
∂

∂t
+ hn(z1, z2, ..., zn))fn(z1, z2, ..., zn)dzn

= −
∫ N∑

i=1

−−−−→
Ki,n+1.∇pifn+1(z1, z2, ..., zn)dzn+1 (2.10)

where z = (r, p) and the differential operator hN is defind as
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hN (r1, p1, r2, p2, ..., rN , pN ) =

N∑
i=1

[
−→pi
m

.∇ri +
−→
Fi.∇pi ]

+
1

2

N∑
i,j=1

−−→
Kij . (∇pi −∇pj) (2.11)

The equations (2.10) are known as Bogoliubov, Born, Green, Kirkwood and Yvon ( BBGKY) hierarchy
[10]. For n=1 the first equation of BBGKY is

(
∂

∂t
+

−→p1
m

.∇r1 +
−→
F1.∇p1)f1(z1, t)

= −
∫ −−→

K12.∇p1f2(z1, z2, t)dz2 (2.12)

The second equation for n=2 has a different structure

(
∂

∂t
+

−→p1
m

.∇r1 +
−→
F1.∇p1 +

−→p2
m

.∇r2 +
−→
F2.∇p2 +

1

2

−−→
K12.(∇p1 −∇p2))f2(z1, z2t)

= −
∫

(
−−→
K13.∇p1 +

−−→
K23.∇p2)f3(z1, z2, z3, t)dz3 (2.13)

For equilibrium plasma in homogeneous case the one-particle distribution function f1 must set for the
relativistic Maxwellian distribution [13] as

f1(vA) =
µA

4π(mc3)K2(µA)
exp(

−µA√
1− (vA/c)

2
− qAϕ(xA)) (2.14)

Where K2(µ) denotes the modified Bessel
function.

3 FUNDAMENTAL EQUATIONS OF

PARTICLE-IN-CELL TECHNIQUE

Particle-In-Cell (PIC) is a technique used to
simulate motion of charged particles, or plasma
in this paper we use PIC technique for plasma in
dilute relativistic case.

In a system in which the collective effects
of long-range Coulomb interactions between
plasma particles dominate the binary collision
process, the evolution of the phase space

distribution function F (s)(t, xA, uA).The PIC
method is obtained by assuming that the
distribution function of each species is given
by the superposition of several elements (called
computational particles or superparticles):

F (s)(t, xA, uA) =
∑
p

F (p)(t, xA, uA) (3.1)

Each element represents a large number of
physical particles that are near each other in
the phase space. For simplicity, we’ll make the
following assignments; ∆x = ∆t =1, qe/me = −1
for electrons, qp/mp = 1 for positrons and
qi/mi = 1/25 for ions. (The ions are actually
much heavier). Also we will take ωp << 1,
qe/ϵ0 < 1 and vthe = 1. The particle mover
can be describe by
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xk+1 − xk

∆t
= vk+1/2 (3.2)

and
vk+1/2 − vk−1/2

∆t
=

q

m
Ek (3.3)

The leap-frog scheme is an explicit solver, i.e.
it depends on old forces from the previous time
step k. Contrary to implicit schemes, when for
calculation of particle velocity a new filed (at time
step k + 1) is used, explicit solvers are simpler
and faster, but their stability requires a smaller
time step ∆t. where the subscript k refers to
”old” quantities from the previous time step, k+1
to updated quantities from the next time step (i.e.
tk+1 = tk +∆t), and velocities are calculated in-
between the usual time steps tk.

The particle-in-cell simulation was implemented
using the Mathematica 7 Program.

While there are numerous models for solving the
Vlasov-Maxwell equations (see for example Refs.
[4-6]), the most common approach is known as
the Particle-in-Cell (PIC) method.

4 RESULTS

In our study, we used a dusty plasma e-p-i model
which is homogeneous and in equilibrium.The
simulation results obtained are illustrated in Figs
(1-5). The results from the simulation show that
the behaviors of ion density and plasma potential
are in close correlation throughout the simulation
process.

Fig. 1. The electrons density we use moving average to map the electrons’s position to the
charge density at each point for ne = 2000 electrons

Fig. 2. The positrons density we use moving average to map the positrons’s position
(in-between the grid points) to the charge density at each point for np = 2000 positrons
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Fig. 3. The ions density we use moving average to map the ions’s position to the charge
density at each point for ni = 500 ions

Fig. 4. The three-component dilute plasma density for ne = np = 2000 and ni = 500 ions, we
chose the silver color of the electrons, the violet color of the positrons and the orange color

of the ions

Fig. 5. The phase space distribution of three-component dilute relativistic plasma, we chose
the silver color of the electrons, the violet color of the positrons and the orange color of the

ions
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5 DISCUSSION

We note form Fig. 3 and Fig. 5 that the ions are
heavier and slower in motion than the electrons
and positrons. In our simulation model, we chose
the silver color of the electrons, the violet color of
the positrons and the orange color of the ions. It
is clear to us from Fig. 5 that the velocities of ions
express very slowly compared to the velocities of
electrons and positrons.

6 CONCLUSIONS

This study aims to simulate three-component
dilute plasma by using PIC Code. There are
several techniques in research to the model
plasma through computer simulations, but one
popular one is Particle-in-cell (PIC) simulations.
In this work, we worked to develop the code to
allow studying the dusty plasma containing the
ions in addition to electrons and positrons. The
forces acting on the particles in a classical PIC
scheme correspond to macro fields, so that the
simulated plasma is assumed to be collisionless.

A computer program has been written to simulate
plasmas in the electrostatic limit using a particle
in cell (PIC) method. The validity of the program
has been tested through the study of three-
component dilute plasma. This research work
gives an overview of the particle in cell as used
for the simulation of electrostatic plasma.
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