
________________________________________ 
 
*Corresponding author: Email: ajileye@fuwukari.edu.ng; 
 

J. Adv. Math. Com. Sci., vol. 37, no. 12, pp. 156-169, 2022 

 
 

 

Journal of Advances in Mathematics and Computer Science 

 
Volume 37, Issue 12, Page 156-169, 2022; Article no.JAMCS.94828 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

Hybrid-Block Method for the Solution of 

Second Order Non-linear Differential 

Equations 
 

A. A. James 
a
, G. Ajileye 

b*
, A. M.

 
Ayinde 

c
 and W. Dunama 

c
 
 

a 
Department of Mathematics, American University of Nigeria, Yola, Adamawa State, Nigeria. 

b 
Department of Mathematics and Statistics, Federal University Wukari, Taraba State, Nigeria.  

c 
Department of Mathematics, Moddibo-Adama University, Yola, Nigeria. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 

 
DOI: 10.9734/JAMCS/2022/v37i121736 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 
comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/94828 

 

 

Received: 09/10/2022 

Accepted: 16/12/2022 

Published: 28/12/2022 

__________________________________________________________________________________ 
 

Abstract 

 
The Duffing equation is one of the most unique and special non-linear differential equations in light of its 

many real-world applications in areas ranging from physics to economics. This paper sets out to investigate 

and study some existing numerical methods proposed by different authors over the years and subsequently 

develop an alternative computational method that can be used to solve duffing oscillator equations. This new 

method was developed by adopting the power series as the basis function and integrating it within quarter-step 

intervals using the interpolation and collocation approach. The analysis of the new method was carried out 

and found to be zero-stable, consistent, and convergent. Four duffing problems were used to test the 

efficiency of the new method, and the results were found to be computationally reliable. 
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Significance Statement: The duffing equation is a dynamical system that displays chaotic behaviour such as the 

wave function. A good example is the wave function. In this paper, we present a new method for solving duffing 

second order differential equations based on numerical computational principles. 

 

1 Introduction 
 

Over recent years, nonlinear ordinary differential equations (NLODEs) have been used in modeling physical 

systems using different approaches. Various researchers have expressed interest in the efforts made to find the 

exact and/or nearest exact solutions. 

 

Statistical methods in artificial intelligence have become prominent with the use of artificial neural networks 

(ANN) [1-3] and genetic algorithms to find solutions to nonlinear problems in engineering and the sciences. 

Examples of ANN-approaches in literature are [4,5]. Other evolutionary computing approaches use algorithms 

like the differential transformed method [6], the improved Taylor matrix method [7]. [8] solved the van derpol 

oscillator by using a hybrid genetic algorithm, just to mention a few. 

 

Other analytical and numerical techniques reported in the literature are the variation iteration method for solving 

the Duffy-Van der Pol equation [9], the linearization method for the solution of the Van der Pol and Duffing 

equations [10], and the decomposition method [11-13], with variations in DMs like the natural decomposition 

for solving the Duffy-Van der Pol equation and the restarted adomian decomposition method. [14] introduced a 

one-step sixth-order computational method for free damped and free undamped systems for second-order 

differential equations. The Homotopy Analysis Method (HAM) was also used for approximations of the Duffing 

oscillator with dual frequency excitations [15] and the coupling of the homotopy perturbation method and the 

variational approach for the solution of the nonlinear cubic-quintic duffing oscillator [16]. The hybrid method 

was used by [17], the modified differential transform method [18], and the trigonometrically fitted two-step 

Obrechkoff method [19]. The Duffing Oscillator phenomenon is remarkably used in classical applications in 

engineering, biology, and the sciences. It is named after Georg Duffing, a German who characterized oscillation 

and its chaotic properties in the early 1980s, which have since gained prominence due to the equation's 

exceptional ability to replicate its dynamics in the real world [20].The phenomenon is observed in the motion of 

a body subjected to nonlinear spring power, linear sticky damping, and periodic power. The Duffing oscillator is 

revealed in mechanical systems under the action of a periodic external force. Furthermore, Duffing oscillators 

have grown in relevance in magneto-elastic mechanical systems, fluid flow-induced vibration [21], large-

amplitude oscillation of centrifugal governing systems [22], weak signal detection [23], etc. 

 

All of the methods for solving second-order linear and nonlinear ODEs mentioned above are powerful and 

efficient in that they provide and are capable of higher-accuracy approximations and closed-form solutions if 

they exist; however, the rate of convergence can be slow; for example, the variational iteration method requires 

the evaluation of the Lagrangian multiplier, which frequently requires tedious algebraic calculations. Our new 

hybrid block method converges faster, needs less computing, and can be used to evaluate points that aren't on 

the grid. 

 

In this paper, we will demonstrate a computational method for simulating Duffing oscillators of the form; 

 

                                (1) 

 

with initial conditions,                

 

where               are real constants and      is a real-valued function. We shall assume that equation (1) 

satisfy the existence and uniqueness theorem stated below. 

 

1.1 Theorem 1 [24] 
 

Let                                       (2) 
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Where                                                            Suppose the 

function f(x,s_0,s_1,…,s_(n-1) ): is defined in R and in addition. 

 

 

(i)   is non-negative and non-decreasing in each of                     

(ii)                                    and  

(iii)                 . 

 

Then, the initial value problem (2) has a unique solution in    Consequently, this paper presents a new hybrid 

numerical method of ¼ step size for the solutions of duffing oscillators. 

 

2 Mathematical Formulation 
 

We considered a power series approximate solution within the interval         
 

 

  of the form  

 

,=)(
1

0=

i

i

ed

i

xbx 



 

(3) 

 

where d  and e  are the numbers of interpolation and collocation points respectively. The first and second 

derivatives of (3) give 
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Substituting )(x'' of (4) into (1) gives 
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and  
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We applied Gaussian elimination with the backward method to Solve (6) for 
sbi . We then substituted our 

sbi

into equation (2) to get the continuous hybrid linear multistep method of the form 
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We then solved (7) for the independent solution at the hybrid points to get our continuous block scheme 
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3 Analysis of the New Methods 
 

3.1 Order of the block [24] 
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Expanding (10) in the Taylor series and comparing the coefficients of h  gives 
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3.2 Zero stability of the method 
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    10,0,0,0,0,=0,=1= 5 RRRR   
 

Hence the derived method is zero stable. 

 

3.3 Stability interval [25] 
 

Definition: The derived block method is said to be absolutely stable within a given interval if for a given   all 

roots      of the characteristic polynomial                       Satisfying                 , 

where        and   
  

  
. 

 

We adopted the boundary locus method to determine the stability interval of our block.  

Substituting            into the block (8) and substituting               , gives  

 

       
 

 
 

    

                                       
 

   

                                           
   

 

 
 
 . 

 

Hence, the method is absolutely stable as shown in Fig. 1 below.  

 

 
 

Fig. 1. Showing the stability region of the derived block method 

 

3.4 Consistency of the method  
 

Consistency ensures that the magnitude of the local truncated error at each stage of computation is regulated. 

According to [15], [26], for a linear multistep method to be consistent, the order of the method      . Hence 

the derived method is consistent since it has uniform order      . 

 

3.5 Convergence of the derived method  
 

According to [26], a linear multistep method is convergent if it is stable and consistent. Therefore, the derived 

method is convergent.  

 

4 Implementation of the New Methods 
 

In this section, we present the implementation of the new method. We shall use “EDM” to mean error in our 

new derived method.  
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Example 1: Consider the damped duffing equation, 

 

                                       

 

whose initial conditions are: 

 

               

 

The exact solution is given by  

 

             
 

Source [6], [27] 

 

Table 1. Showing the comparison of the absolute errors in [6], [27] and the derived method 

 

t Error in [6] Error in [27] EDM Time/s 

0.2                               0.3349 

0.4                               0.4397 

0.6                                        

0.8                                  0.6535 

1.0                                  0.7487 

 

 
 

Example 2:  

 

Consider the damped Duffing equation,  

 

                               
 

With the initial conditions,  

 

     
 

 
        

 

 
 

 

The exact solution is given by 
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Source [27] 

 

Table 2. Showing the comparison of the absolute errors in [27] and the derived method 

 

  Exact Solution Approximate Solution EDM Error in [27] Time/s 

0.1 0.4524187090179798     0.4524187090179803     4.996004e-16     1.4872-08 0.1124    

0.2 0.4093653765389910     0.4093653765389926     1.609823e-15     1.286e-07 0.1701    

0.3 0.3704091103408589     0.3704091103408619     2.997602e-15     1.464e-07 0.1871    

0.4 0.3351600230178196     0.3351600230178241     4.440892e-15     1.393e-07 0.1927    

0.5 0.3032653298563167     0.3032653298563224     5.717649e-15     1.845e-07 0.1984    

0.6 0.2744058180470131     0.2744058180470199     6.772360e-15     2.422e.07 0.2035    

0.7 0.2482926518957047     0.2482926518957123     7.577272e-15     2.468e-07 0.2113    

0.8 0.2246644820586107     0.2246644820586189     8.132384e-15     2.127e-07 0.2172    

0.9 0.2032848298702995     0.2032848298703079     8.437695e-15     1.987e-07 0.2231    

1.0 0.1839397205857211     0.1839397205857296     8.493206e-15     2.071e-07 0.2300 

 

 
 

Example 3:  

 

Consider the undamped Duffing Equation,  

 

                                            

 

With initial conditions, 

 

                 

 

where          
 

The exact solution is given by, 

 

                 . 

 

This equation describes a periodic motion of low frequency with a small perturbation of high frequency.  

Source [27]  
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Table 3. Showing the comparison of the absolute errors in [27] and the derived method for Example 3 

 

  Exact Solution Approximate Solution EDM Error in [27] Time/s 

0.0025 0.9999968750041274     0.9999968750041274     0.000000e+00     0.000000e+00     0.0265    

0.0050 0.9999875000310395     0.9999875000310395     0.000000e+00     1.110223e-016 0.0287    

0.0075 0.9999718751393287     0.9999718751393286     1.110223e-16     8.881784e-016 0.0297    

0.0100 0.9999500004266486     0.9999500004266486     0.000000e+00     7.771561e-016 0.0305    

0.0125 0.9999218760297148     0.9999218760297148     0.000000e+00     4.440892e-016 0.0315    

0.0150 0.9998875021243030     0.9998875021243031     1.110223e-16     9.992007e-016 0.0323    

0.0175 0.9998468789252486     0.9998468789252487     1.110223e-16     1.665335e-015 0.0332    

0.0200 0.9998000066864446     0.9998000066864449     2.220446e-16     2.775558e-015 0.0340    

0.0225 0.9997468857008414     0.9997468857008415     1.110223e-16     5.440093e-015 0.0349    

0.0250 0.9996875163004431     0.9996875163004431     0.000000e+00     7.216450e-015 0.0363    

0.0275 0.9996218988563066     0.9996218988563066     0.000000e+00     9.436896e-015 0.0373    

 

 
 

Example 4:  

 

Consider the undamped Duffing oscillator, 

 

                                 

 

with the initial condition, 

 

               

 

The exact solution is given by, 

 

            

 

Source: [7, 27] 

 

Table 4. Showing the comparison of the absolute errors in [27, 24] and the derived method for Example 4 

 

  Exact Solution Approximate Solution EDM Error in [7] Error in [27] Time/s 

0.1 0.0998334166468282     0.0998334166468282     0.000000e+00     3.603424e-07 3.024248e-13 0.0325    

0.2 0.1986693307950612     0.1986693307950611     1.110223e-16     1.020596e-05 4.584944e-13 0.0410    

0.3 0.2955202066613396     0.2955202066613391     4.440892e-16     2.357701e-05 7.316370e-14 0.0479    
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  Exact Solution Approximate Solution EDM Error in [7] Error in [27] Time/s 

0.4 0.3894183423086506     0.3894183423086494     1.165734e-15     9.788940e-07 1.692257e-12 0.0541    

0.5 0.4794255386042031     0.4794255386042009     2.220446e-15     1.601644e-05 4.596878e-12 0.0579    

0.6 0.5646424733950355     0.5646424733950319     3.552714e-15     3.106965e-05 8.754997e-12 0.0613    

0.7 0.6442176872376912     0.6442176872376860     5.218048e-15     8.505959e-06 1.390665e-11 0.0645    

0.8 0.7173560908995230     0.7173560908995161     6.883383e-15     2.193132e-05 1.959244e-11 0.0698    

0.9 0.7833269096274836     0.7833269096274751     8.548717e-15     3.183986e-05 2.519718e-11 0.0731    

1.0 0.8414709848078967     0.8414709848078867     9.992007e-15     3.225774e-05 2.999911e-11 0.0766 

 

 
 

5 Results and Discussion 
 

For the intent of application of the novel hybrid block technique, we have analyzed and studied four numerical 

examples. The findings shown in Tables 1 through 4 made it abundantly evident that the newly developed 

hybrid block approach functioned brilliantly in contrast to the methods described in [6,7] and [27]. The 

comparison was established since both authors handled the same problems, and the order of the method in [27] 

is equal to the order in our new method. The difference in error between our new method and the methods 

proposed by [6,7] and [27,28] is also less according to the implementation of our new method. The convergence 

of our numerical method may be seen graphically in each of the four examples' graphs. 

  

6 Conclusion 
 

For the purpose of finding a solution to duffing oscillator equations, we have presented a brand new hybrid 

block method of order 6 in this article. The section 2 explanation will walk you through how to derive the 

approximate solution. The investigation of the novel method is described in Section 3, and the application of it 

can be found in Section 4. Finally, in sections 5 and 6, respectively, we give our explanation of the findings and 

our conclusion to the reader. The findings of the newly developed method demonstrated that it is superior in 

terms of accuracy, consistency, and effectiveness. 
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