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ABSTRACT 
 

Information on Land Use Land Cover (LULC) pattern is very important for developing management 
strategies for land use planning. Remotely sensed satellite data has proved to be an unmatched 
source of information that can deliver LULC information with good accuracy especially in regions 
where acquiring LULC information through intensive ground surveys seems to be impractical. The 
present study aims at performing LULC classification of Burhner river watershed situated in Mandla, 
Balaghat and Dindori districts of Madhya Pradesh, India by adopting unsupervised classification. It 
also discusses merits and demerits of using unsupervised classification for a high resolution 
satellite image along with key factors responsible for using it. Sentinel-2B satellite imagery with 
spatial resolution of 10 m was used in the present investigation. A total number of 6 LULC classes 
were identified in the study area namely agricultural land, fallow/open land, forest, habitation, 
wasteland and waterbodies using ERDAS IMAGINE® 2011. Accuracy assessment of the LULC 
classified image from reference (ground truth) data using error matrix revealed an overall accuracy 
of 95.72% with kappa coefficient of 0.94. Furthermore, the error matrix also aided in computing 
classified image producer’s and user’s accuracy which were under acceptable limits. The LULC 
statistics of study area indicated that highest area is covered by forest (53.01%), followed by 

Original Research Article 



 
 
 
 

Rao et al.; IJECC, 12(7): 119-132, 2022; Article no.IJECC.85237 
 
 

 
120 

 

fallow/open land (24%), agricultural land (19.44%) and least area is covered by waterbodies 
(1.38%) and habitation (0.19%). A major portion of study area under fallow/open land category 
pointed that underutilized land resource potential exist in watershed. Such land can be further 
utilized for crop production and plantation purposes in order to maximize output from the available 
natural resources in a sustainable manner.  
 

 
Keywords: Land use land cover classification; digital image processing; accuracy assessment; remote 

sensing, geographic information system. 
 

1. INTRODUCTION 
 
The land surface is used for a variety of 
purposes. It possesses various characteristics 
over its spatial extent with a period [1,2]. Land 
provides vital socioeconomic resources to 
society, such as food, fuel, fibres and many other 
ecosystem services that support production 
functions, regulate risks of natural hazards, or 
provide cultural and spiritual services [3]. Land 
surface undergo dynamic changes resulting from 
natural and human induced activities [4,5]. The 
human induced activities are attributed to 
increase in human population, agricultural 
expansion, and changes in socio-economic well-
being of the people which have triggered 
unsustainable extraction of natural resources [6-
8].  Land is becoming a limited resource because 
of the enormous agricultural and demographic 
pressure [9]. The ever growing population and 
limited availability of land necessities proper 
utilization of available land through scientific land 
use planning [10-12]. 
 
Land Use Land Cover (LULC) is an important 
component in understanding the interactions of 
human activities with the environment [13]. 
Accurate and timely monitoring of land through 
LULC mapping plays a critical role in a variety of 
sectors in the developing world including food 
security, land use planning, hydrological 
modeling and natural resources management 
[14]. LULC information is very important for 
several planning and management activities 
concerned with the surface of earth because it 
constitutes key environmental information for 
many scientific resource management and policy 
purposes [15]. LULC classification is a hybrid 
type of classification [2,16]. The terms land use 
and land cover have some fundamental 
differences [17, 18] and thus it becomes 
essential to define them clearly. Land cover 
represents the observed biophysical cover of the 
Earth’s surface whereas land use describe the 
arrangements, activities and inputs people 
undertake within a particular land type to 
produce, modify and maintain it [19]. Land use is 

an expression of human activity developed for 
social, economic, cultural and political purposes 
[20]. Land cover represents the terrestrial 
component of the Earth’s system whereas land 
use encompass all processes and activities 
related to the human use of land, including 
socioeconomic, technological and organizational 
investments and arrangements, as well as the 
benefits gained from land and unintended social 
and ecological outcomes of societal activities [3]. 
Timely information of LULC and their possibilities 
for optimal use is vital for the selection, planning 
and implementation of land use schemes to meet 
the increasing demands for basic human needs 
and welfare [9]. 
 
LULC monitoring at watershed scale holds a 
significant role in scientific investigations as it 
aims to identify the risk associated from land 
resources degradation, watershed deterioration 
and ecosystem instability [21]. A watershed is an 
area from which runoff resulting from 
precipitation flows past a single point into large 
stream, river, lake or ocean [22, 23]. Watersheds 
play a crucial role in natural functioning of Earth 
thus considered as a core planning unit for 
sustainable management of natural resources 
(i.e., land and water) [24].  
 
Advances in remote sensing science and 
associated technologies have made it possible to 
obtain the valuable spatiotemporal information on 
LULC [25]. Remotely sensed satellite imagery 
and image classification methods provide cost 
effective and accurate means to derive LULC 
information [26].  The availability of remote 
sensing data at very fine spatial resolutions 
coupled with socio-economic data have revealed 
multiple patterns of interactions between land 
managers and terrestrial ecosystems, 
illuminating important debates on, for example, 
reconciling food security with nature 
conservation, whether through land sparing, land 
sharing, or sustainable intensification strategies 
[27]. Remote sensing has become a vital source 
of information for natural resources management 
including LULC mapping. LULC mapping 
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involves two types of remote sensing techniques 
– visual interpretation and digital image analysis 
[28]. With the advent of remote sensing and 
Geographical Information System (GIS) 
technologies, the monitoring of LULC pattern and 
change detection are now made possible at low 
cost and with better accuracy [29-31]. 
 
Several studies have been successfully 
conducted in past delivering accurate LULC 
information  using remotely sensed satellite data 
[18, 25, 32]. Sharma et al., [33] performed LULC 
classification of Gusuru river watershed situated 
in Satna and Panna districts of Madhya Pradesh 
with an overall accuracy of 88.03%. Patle et al., 
[34] executed LULC classification of Nahra nala 
watershed situated in Balaghat district of Madhya 
Pradesh, India with an overall classification 
accuracy of 95.52% and kappa coefficient of 
0.92. 
 
The integrated use of remote sensing and GIS 
techniques can provide accurate information of 
LULC pattern with much ease as compared to 
the traditional ground based surveys [35]. 
Keeping all such perspectives in mind, the 
present study aims to perform LULC 
classification of Burhner river watershed situated 

in Mandla, Balaghat and Dindori districts of 
Madhya Pradesh using unsupervised 
classification. It also discusses merits, demerits 
as well as key factors responsible for employing 
such technique with accuracy assessment of the 
said classification technique.  
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 
The Burhner river rises from the Maikala range, 
south-east of Gwara village in Mandla district of 
Madhya Pradesh, India. The  Burhner river 
watershed is geographically located between 
80°34’40”E to 81°23’20”E longitudes and 
22°49’45”N to 22°31’00”N latitudes coinciding 
with Mandla, Balaghat and Dindori districts of 
Madhya Pradesh. The elevation in watershed 
varies from 393 to 954 m above M.S.L. (Mean 
Sea Level) with total watershed area of 3959.813 
km². The study area receives majority of its 
rainfall from southwest monsoon from June to 
September. The normal annual rainfall in 
watershed is 1647.8 mm/year [36, 37]. The 
location map of the study area is illustrated in 
Fig. 1. 

 

 
 

Fig. 1. Location map of study area 
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2.2 Data Source and Methodology 
 

The digital topographic data used in the present 
study aided in correct delineation of watershed 
boundary. The delineation was executed by 
utilizing CARTOSAT DEM (Digital Elevation 
Model) of 30 m spatial resolution. The 
CARTOSAT DEM was acquired from Bhuvan 
ISRO’s Geoportal with its URL as https://bhuvan-
app3.nrsc.gov.in/data/download/index.php. The 
delineation was done by using snap pour point 
methodology in ArcGIS® 9.3 environment. The 
DEM tiles were initially pre-processed by 
mosaicking the tiles and were re-projected to a 
common and widely used UTM (Universal 
Transverse Mercator) projected coordinate 
system (Zone 44N) with WGS (World Geodetic 
System) 1984 as geographic coordinate system. 
A series of GIS operations such as fill sinks, flow 
direction, flow accumulation available under 
spatial analyst tool of Arc toolbox were followed 
with subsequent designation of watershed outlet 
so as to obtain the watershed boundary. The 
resultant watershed boundary was further 
verified with its base map. 
 

For preparing the base map of the study area, a 
total number of 14 toposheets coinciding with the 

study area were used. Survey of India (SOI) 
toposheets with toposheets number as 64B/9, 
64B/10, 64B/11, 64B/12, 64B/13, 64B/14, 
64B/15, 64B/16, 64F/2, 64F/3, 64F/4, 64F/6, 
64F/7 and G4G/1 with a scale of 1:50,000 
procured from SOI Nakshe Portal (URL: 
https://soinakshe.uk.gov.in) were used. 

 
To prepare the LULC thematic map of the study 
area, cloud free remote sensing based satellite 
imagery of Sentinel-2B Level 1C MSI (Multi 
Spectral Instrument) with spatial resolution of 10 
m freely downloaded from United States 
Geological Survey (USGS) Earth Explorer 
website (URL: https://earthexplorer.usgs.gov) 
was used. The date of acquisition of the imagery 
was 18 January 2021 and a total number of 4 
tiles with tile name as T44QMK, T44QML, 
T44QNK, T44QNL together coinciding with 
watershed boundary were used. The procured 
tiles were having projected coordinate system as 
UTM Zone 44N and geographic coordinate 
system as WGS 1984. The bands of acquired 
image came with JPEG2000 file extension. Table 
1 shows brief information of spatial and spectral 
characteristics of bands used in Sentinel-2B MSI 
[34]. 

 
Table 1. Brief details of spatial and spectral characteristics of bands used in Sentinel-2B MSI 

 

Band Spatial 
resolution (m) 

Wavelength 
(µm) 

Description 

Band 1 60 0.443 Ultra-Blue-Coastal and Aerosol 

Band 2 10 0.490 Blue 

Band 3 10 0.560 Green 

Band 4 10 0.665 Red 

Band 5 20 0.705 Visible and Near Infrared (VNIR) – Vegetation Red 
Edge 1 

Band 6 20 0.740 Visible and Near Infrared (VNIR) – Vegetation Red 
Edge 2 

Band 7 20 0.783 Visible and Near Infrared (VNIR) – Vegetation Red 
Edge 3 

Band 8 10 0.842 Near Infrared (NIR) 

Band 8A 20 0.865 Narrow Near Infrared (NNIR) 

Band 9 60 0.945 Short Wave Infrared (SWIR) – Water vapour 

Band 10 60 1.375 Short Wave Infrared (SWIR) – Cirrus 

Band 11 20 1.610 Short Wave Infrared (SWIR) 

Band 12 20 2.190 Short Wave Infrared (SWIR) 
Source:  Gatti and Galoppo [38] 
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2.3 LULC Classification Approach 
 
At the initial stage, pre-processing technique 
(i.e., atmospheric correction) was applied to the 
tiles in order to generate reflectance files using 
ERDAS IMAGINE® 2011. The band 2 (blue), 
band 3 (green), band 4 (red) and band 8 (NIR) as 
obtained after atmospheric correction were 
further used to prepare the RGB composite 
image for each tile. The RGB composite image 
was prepared by using the layer stack tool 
available in ERDAS (Earth Resources Data 
Analysis System) IMAGINE® 2011 which is a 
most preferred and widely used digital image 
processing software. The RGB composite tiles 
were mosaicked and further made subset by 
using vector file of watershed boundary. The 
change in band combination of RGB composite 
image successfully yielded FCC (False Colour 
Composite) image. A false colour composite 
image is one in which the red, blue and green 
values do not correspond to the true colours of 
red, green and blue. The most commonly used 
FCC image displays the near infrared as red, red 
as green and green as blue. Thus, FCC can be 
defined as an artificially generated colour image 
in which the red, green and blue colours are 
assigned to the wavelength in which they do not 
belong in nature. The False Colour Composite 
(FCC) image of the study area is shown in Fig. 2 
 
The FCC image of the study area aided in 
preparing the AOI (Area of Interest) files of 
different LULC classes using on-screen visual 
interpretation principles (Fig. 3), available 
ancillary data, prior knowledge-based logic rules, 
sufficient ground truth (reference) data (Fig. 4) 
and satellite data of Google Earth Pro. After 
preparation of AOIs, unsupervised classification 
was performed using FCC image that yielded 
broad classes of LULC in the classified image. 
The unsupervised method of classification 
typically requires little or no input from the image 
analyst in developing the output LULC 
classification [39]. In this method, the 
classification system, or classifier, uses statistical 
means and covariance matrices to iteratively 
assign each pixel to a designated output class 
based on how spectrally separate each group of 
clustered pixels are. The k-means clustering 
approach of unsupervised classification as used 
in this study, also work in an iterative process. 
The initial stage includes the build-up of several 
similar pixel clusters within a range determined 

by the analyst. Each resulting cluster is 
composed of pixel groups consisting of similar 
spectral values, which likewise occupies a 
common spectral space [40, 41] that consists of 
a well-defined mean vector for each class. This 
operation is followed by a minimum-distance-to-
means classification algorithm that determines 
the final pixel cluster groups. In the k-means 
operation, pixels are iteratively classified into a 
predetermined number of clusters with no 
deletion, splitting, or merging of the clusters 
between each iteration. 
 
The resultant image obtained after applying 
unsupervised classification was recoded to 
prominent LULC classes. These classes were 
characterized by variations in tone, texture, 
shape, association, and the pattern of various 
objects within the satellite data. A total of six 
prominent LULC classes viz., agricultural                
land, fallow/open land, forest, habitation, waste 
land and waterbodies were identified                  
during the classification process. Subsequently, 
the AOI files were further overlaid on 
unsupervised classified image to get thematically 
recoded raster image. At last, area covered                
by each LULC class covered was                  
calculated.        The methodological framework 
used in the classification approach is shown in 
Fig. 5. 
 

2.4 Accuracy Assessment 
 
Accuracy assessment or validation is a 
significant step in the processing of remote 
sensing data [42]. The most common way to 
express the accuracy of classified image is by a 
percentage of the map area that has been 
correctly classified when compared with 
reference data or “ground truth” [43]. This 
statement can be justified by comparing the 
correctness of the classification generated by 
sampling the classified data expressed in the 
form of an error matrix (sometimes also referred 
as a confusion matrix or contingency table). An 
error matrix is a square array of numbers set out 
in rows and columns, which express the number 
of sample units assigned to a particular class in 
one classification relative to the number of 
sample units assigned to a particular class in 
another classification [44]. The row total in error 
matrix represents classified data whereas the 
column total represents reference or ground truth 
data. 
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Fig. 2. False Colour Composite (FCC) image of the study area 
 

 
 

Fig. 3. Details of on-screen visual interpretation principles adopted for different LULC classes 
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Fig. 4. Collection of reference (ground truth) data for different Land Use Land Cover (LULC) 
classes covered in Burhner River Watershed: (a) agricultural land, (b) fallow/open land, (c) 

forest, (d) habitation, (e) wasteland, (f) waterbodies 
 

 
 

Fig. 5. Methodological framework used in LULC classification approach 
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An error matrix is a very effective way to 
represent the accuracy of produced thematic 
map, because it provides a clear way of deriving 
the individual accuracies of each class along with 
both the errors of inclusion (commission errors) 
and errors of exclusion (omission errors) present 
in the classification [45]. Commission error is 
simply defined as including an area into a class 
when it doesn’t belong to that class whereas 
omission error occurs when an area is excluded 
from the class in which it truly does belong [44].  
 
Apart from error of commission and error of 
omission, the error matrix is also used to 
compute other measures of accuracies such as 
overall accuracy, producer’s accuracy and user’s 
accuracy [43]. The overall accuracy for the image 
classification can be obtained by dividing the 
sum of the entries in the “from-to” agreement of 
the error matrix with the total number of the 
examined pixels (or sample units) in the 
classification [46]. Producer’s and user’s 
accuracies can be computed to determine the 
individual class accuracies in addition to 
computing the overall classification accuracy for 
the entire matrix. As the name suggests, the 
producer’s accuracy signifies the interest of 
producer of classification that how well a certain 
area can be classified [47]. The user’s accuracy 
is indicative of the probability that a pixel 
classified on the map/image actually represents 
that category on the ground [43].  The error 
matrix also aids in generating kappa coefficient 
values which can be used as another measure of 
agreement or accuracy [48]. The generation of 

kappa coefficient (  ) has become a standard 
component of almost every accuracy 
assessment [47, 49, 50] and is a prime tool of 
most image analysis software packages that 
include accuracy assessment procedures [44].  
 
For assessing the accuracy of classified map, a 
total number of 538 randomly distributed points 
were generated over the entire classified map in 
ArcGIS® 9.3 environment. The classified data 
was further compared for agreement with ground 
truth or reference data obtained from Google 
Earth Pro satellite data and field visit data (Fig. 
4). The ground truth data was obtained from field 
visits (Fig. 4) by a series of Ground Control 
Points (GCPs) collected for different LULC 
classes, using a portable handheld GPS receiver 
(i.e., Garmin GPSmap76CSx) with positional 
accuracy of <10 m. For even assessment of 
accuracy, the GCPs collected were uniformly 
scattered throughout the classified image. An 
inventory of collected GCPs were prepared using 

MS Excel and were further imported in ArcGIS® 
9.3 environment so as to identify agreement 
between classified image and ground truth 
(reference) data. 
 

3. RESULTS AND DISCUSSION 
 

3.1 LULC Classification 
 
The land use land cover classification at large 
watershed scales is a heavy computational task 
yet is critical to landowners, researchers, 
decision makers and watershed planners 
enabling them to make informal decisions for 
varying objectives [15]. A total of six major LULC 
classes such as agricultural land (i.e., crop land, 
agricultural plantation), fallow/open land, forest 
(i.e., dense/closed and open category of 
evergreen forest), habitation (i.e., built-up, rural), 
wasteland (i.e., barren rocky, scrub land) and 
waterbodies (i.e., streams, ponds, and 
reservoirs) were identified in Burhner river 
watershed. 
 
Fig. 6 shows the classified LULC map of the 
study area. The LULC statistic of Burhner river 
watershed is shown in Table 2. It indicates that 
major portion of watershed area is covered by 
forest (i.e., 53.01%) followed by fallow/open land 
(i.e., 24%) and agricultural land (i.e., 19.44 %) 
whereas very small area is covered by waste 
land (i.e., 1.98%) and waterbodies (i.e., 1.38%) 
and least area is covered by habitation (i.e., 
0.19%).  
 
The percent area covered by different Land Use 
Land Cover (LULC) classes is represented by a 
bar chart in Fig. 7. The chart clearly indicates 
that a large percent of watershed area (i.e., 24% 
or 950.256 km

2
) falls under fallow/open land 

category showing underutilized potential of 
watershed land resources. Such available land 
resources can be further utilized for crop 
production, agricultural plantation, horticultural 
plantation and forest plantation purposes by 
watershed managers and local habitats of 
watershed. However, utilization of such land 
resources is subjected to a number of 
constraining factors such as soil depth, 
topography, accessibility to the area and 
availability of water and human resources.                
But by using a proper planned scientific 
approach use of such land resources can play a 
key role in uplifting the socio economic 
conditions of local landowners, small and 
marginal farmers and local habitats of the study 
area. 
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The task of performing LULC classification using 
a remotely sensed satellite image through 
unsupervised classification is a complex task. 
But it also supports in developing better decision 
making capabilities required in identifying 
different LULC features while performing 
classification. Apart from unsupervised 
classification, supervised classification is also a 
widely used image classification technique. The 
LULC classification using these techniques for 
large terrain is easy when compared with 
classification performed using exhaustive ground 
surveys. The choice of training sample data or 
reference pixels, skills and expertise of the 
analyst performing classification are the key 
dominating factors in supervised classification 
influencing its overall accuracy. Whereas in 
unsupervised classification, the scheme 

automatically recognizes similarity between 
pixels based on their spectral values and prior 
expertise of analyst is not required for performing 
classification. As reference pixels are not chosen 
in unsupervised classification, thematic recoding 
of the LULC image further supports in getting 
more accurate results. It is because each and 
every terrain feature of the image under 
investigation is examined by the analyst for 
further corrections. Such corrections in the 
classified image are somehow complex and time 
consuming as LULC classes are rarely internally 
homogenous and mutually exclusive. But it 
mitigates the effect of arbitrary or mixed pixels 
denoting transition zones in geographic              
space when unsupervised classification is 
performed using a fine spatial resolution satellite 
image. 

 

 
 

Fig. 6. LULC map of the study area 
 

Table 2. Land Use Land Cover (LULC) statistic of Burhner river watershed 
 

S.No. Land Use Land Cover (LULC) 
Class 

Area  Percent of total 
watershed area 

  (km
2
) (%) 

1 Agricultural land 769.787 19.44 
2 Fallow/Open land 950.256 24.00 
3 Forest 2099.118 53.01 
4 Habitation 7.720 0.19 
5 Waste land 78.219 1.98 
6 Water bodies 54.713 1.38 
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Fig. 7. Percent area covered by different Land Use Land Cover (LULC) classes 
 

3.2 Accuracy Assessment 
 
To obtain the reliability of classified image, error 
matrix was generated (Table 3). The column 
section of error matrix represents classified data 
whereas the row section represents ground truth 
or reference data as collected from field visits. 
Out of 538 randomly distributed sample points, 
122 points were collected from field visits which 
assisted in comparing the obtained classified 
results with the existing land use land cover 
pattern in the study area. The error matrix aided 
in assessing the overall accuracy, producer’s 
accuracy, user’s accuracy and kappa coefficient 
of the classified map using reference or ground 
truth data. The overall accuracy of the classified 
image was found as 95.72%. The producer’s 
accuracy was calculated by dividing the principal 
diagonal (the agreement) by total number of 
sample points in that map class as specified by 
sum of the reference (ground truth) data (or 
column total) for that class. Table 3 clearly 
illustrates the process adopted for calculation of 
producer’s accuracy of each class. The 
computation of producer’s accuracy for different 
classes of classified image showed that 
agricultural land producer’s accuracy was highest 
among all the classified classes (i.e., 98.18%). It 
was further followed by forest (97.82%), 
habitation (96.42%), waterbodies (95.45%) and 
wasteland (94.11%). The least value of 
producer’s accuracy was obtained for fallow land 
(90.07%) indicating a shift in large number of 
reference data sample points into other classified 
classes (disagreement) leading to high error of 
omission. By observing the error of omission 
(EO) for all the classes, it was evident that EO 

was highest for fallow/open land (9.93%), 
followed by wasteland (5.89%), waterbodies 
(4.55%), habitation (3.58%), forest (2.18%) and 
agricultural land (1.82%).   
 
Apart from producer’s accuracy, user’s accuracy 
was also calculated for all the produced classes 
of the classified image (Table 3). The user’s 
accuracy was highest for forest (98.25%), 
followed by fallow/open land (95.93%), 
agricultural land (94.73%), habitation (93.10%), 
waterbodies (87.5%) and wasteland (84.21%). 
The lower values of user’s accuracy in case of 
waste land and waterbodies was due to the shift 
of sample points of classified data into other 
classes (disagreement) leading to high error of 
commission. A close observance of error of 
commission (EC) showed highest EC for waste 
land (15.79%), followed by water bodies  
(12.5%), habitation (6.90%), agricultural land 
(5.27%), fallow/open land  (4.07%) and forest 
(1.75%). 
 

The kappa coefficient (  ) of classified image was 

found as 0.94. A kappa coefficient value of    = 1 
indicates a perfect agreement between the 

categories while a value of    = 0 indicates that 
the observed agreement equals the chance 
agreement [48]. A value greater than 0.75 
indicates a very good to excellent agreement, 
while a value between 0.40 to 0.75 indicates a 
fair to good agreement [51]. A value of less than 
or equal to 0.4 indicates a poor agreement 
between the classification categories [52].         

On the basis of such criteria, the value of   = 0.94 
in this case indicates good to excellent 
agreement.  
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Table 3. Error (Confusion) matrix 
 

 
 

4. CONCLUSION 
 
LULC information is increasingly in demand due 
to its ability to provide spatial distribution 
information at higher resolutions, which cannot 
be achieved by intensive ground surveys 
especially in regions where harsh topographic 
conditions pertain. The techniques of remote 
sensing and GIS thus find its applicability in 
continuous and precise monitoring of LULC 
patterns for different sorts of terrain units. The 
present study carried out in Burhner river 
watershed aims at performing the Land Use 
Land Cover (LULC) classification of a high 
spatial resolution satellite image using 
unsupervised classification along with its 
accuracy assessment. It also discusses the 
merits, demerits and key factors responsible for 
adopting unsupervised classification technique in 
the present case. A total number of six LULC 
classes were prepared during the classification 
process such as agricultural land, fallow/open 
land, forest, habitation, wasteland and water 
bodies. The highest percent of watershed area 
was covered by forest (i.e., 53.01%) and least 
area was covered by habitation (i.e., 0.19%). 
Accuracy assessment was executed by 
generating error matrix. The classified map 
yielded an overall accuracy of 95.72%, with 

kappa coefficient    = 0.94 denoting good to 
excellent agreement. The producer’s accuracy 
and user’s accuracy also gave acceptable 
results. The LULC statistic revealed that a 

considerable portion of study watershed is 
covered under fallow/open land category 
indicating underutilized land resource potential of 
the watershed. Such land can be used for crop 
production and plantation purposes which can 
aid in uplifting the socioeconomic conditions of 
local habitats. The obtained LULC information 
can further support in performing spatially 
distributed soil erosion and hydrological 
modelling. The results obtained from the study 
can be used for performing a comparative study 
between different algorithms of classification 
techniques such as support vector machine 
(SVM), random forest (RF), spectral angle 
mapper (SAM) under supervised classification as 
well as ISODATA (iterative self-organizing data) 
under unsupervised classification. 
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