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ABSTRACT 
 

An inverse relationship between the raised Serum creatinine (Crn) and High density lipoprotein 
cholesterol (HDL-C) is well known. A raised S. Creatinine / low estimated glomerular filtration rate 
(eGFR) is a marker of chronic kidney disease (CKD). Besides, the eGFR, indicates the rate of 
progression of CKD and helps in the staging of CKD. Any relationship involving the raised creatinine 
or reduced eGFR necessitates the presence of the CKD in the background. While the CKD itself can 
cause both high S .Creatinine and low HDL-C, the mechanism of the inverse relationship between 
the two is not clear. Each of the raised creatinine and low HDL-C, have independent risk factors, but 
the only common risk factor for both, is the sedentary life style. The role of the sedentary life style in 
the inverse relationship between the raised Cr and low HDL-C, is examined. A possible molecular 
mechanism is being suggested, connecting the four variables - the raised Crn , low HDL-C, the CKD 
and the sedentary life style. To this extent the relevant metabolism of both S creatine and HDL-C, 
are briefly reviewed, as knowledge of the same is intricate to the better understanding of the 
molecular mechanism proposed. 
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1. INTRODUCTION  
 
A perusal of the literature reveals that, the 
relationship between the low HDL-C and CKD 
has been studied from several angles, as seen 
below. The criteria for CKD, as used in the 
studies are , a raised creatinine or a decline in 
the eGFR or increased micro-albuminuria.  
 
 Low HDL-C is reported as an independent 
predictor of increased renal dysfunction as 
evidenced by the MDRD study [1]. and the 
Atherosclerosis Risk in Communities (ARIC) 
cohort study [2]. Bowe et al. in a retrospective 
cohort study using the U.S. Veterans 
Administration (VA) databases, found that low 
HDL-C was significantly associated with the risk 
of incident kidney disease [3]. Low HDL-C levels 
are associated with the risk of progression of 
CKD [4]. It is shown that the individuals with 
HDL-C concentrations <30 mg/dl had a 10%–
20% higher risk for CKD and/or progression of 
CKD, compared with individuals with 
concentration of ≥40 mg/dl [5]. Association 
between low HDL-C or a high triglyceride to 
HDL-C ratio and poor kidney function or 
progression of CKD, Is noted [6-9]. studies 
showed that the level of oxidized low-density 
lipoprotein (LDL) cholesterol increases and high 
density lipoprotein (HDL) cholesterol 
d[dysfunction occurs as kidney function declines 
and inflammation becomes more pronounced 
[10]. Low HDl in particular were significantly 
associated with an increased risk of developing 
renal dysfunction in men with an initial creatinine 
level less than 1.5 mg/dl [11]. CKD is associated 
with increased plasma triglycerides and very low 
density lipoprotein (VLDL) cholesterol, as well as 
decreased HDL cholesterol [12,13].The 
proteome and lipidome of HDL particles is 
heavily disturbed not only in the uremic state, but 
also in very early stages of kidney impairmen 
[14].  
 

1.1 Brief Review of Creatine Synthesis, 
Transport into the Cell, Resynthesis 
and Degradation to Creatinine 

 
Some facts about creatine: Creatine (Cr) in the 
form of Creatine phosphate (CrP), is a quickly 
replenishable able source of energy (ATP), 
needed for muscle contraction. 95% of the total 
creatine and phosphocreatine stores are found 
in skeletal muscle, while the remaining is 
distributed in the blood, brain, testes, and other 
tissues [15-17] . The average amount of total 
creatine stored in the body is approximately 

120 mmol/kg of dry muscle mass [18]. Average 
70 kg young male has a creatine pool of around 
120-140 g which varies between individuals 
[19,20].The creatine excreted /day is 1.7 mg 
[21]. 
 
1.1.1 Synthesis of creatine 
 
Creatine is synthesized in two steps. 
 
The first step is the reaction catalysed by 
adenine guainine amido transferase (AGAT) is 
the synthesizes guanidinoacetate from arginine 
and glycine, This is the rate limiting step. . AGAT 
activity in tissues is regulated by  
 

1. Induction by growth hormone [22]. and 
thyroxine [23]. 

2. Inhibition of the enzyme by ornithine. 
3. Repression of synthesis of the enzyme by 

creatine, present in the cell, both, intra and 
extracellularly. [24,25]. 

 
The guanidinoacetate produced is then 
combined with S-Adenosyl-L-methionine, a 
reaction catalyzed by (Guanine alanine methyl 
transferase (GAMT,) to produce creatine and S-
Adenosyl-L-homocysteine. in exchange for a 
proton to become guanidinoacetate and renew 
the catalyst, as shown by reaction 1 , below. 
 
S-adenosyl-L-methionine + guanidinoacetate  S-
adenosyl-L-homocysteine + creatine. ----        (1)  
 

1.2 The intracellular Transport of 
Creatine 

 
The creatine, thus synthesized, is transported to 
the cell through blood. In the cell, the creatine is 
compartmentalized into 3 compartments, - the 
mitochondria, the cytosol and blood. There are 
two types of mitochondria, the ubiquitous 
(uMtCK) and the M line of the sarcomere.(sm 
Mtck) Creatine Kinase (CK), the enzyme that 
catalyzes the reverse reaction of creatine to 
creatine phosphate, is present in both the types 
of mitochondria, but plays different roles. In the 
ubiquitous mitochondria, it phosphorylates to 
form creatine phosphate, which is an endergonic 
reaction and hence depends on the supply of 
ATP energy. It is transported through cytosol, 
into Sarcolemmal M line mitochondria, where the 
reverse reaction occurs ie dephosphorylation, 
leading to breakdown of CrP into creatine and 
Pi. The high energy pi bond is added to ADP, 
resulting in ATP formation. The ATP, thus 
formed, is used by the myosin and contractile 
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actin resulting in muscle contraction. The 
reversible conversion between creatine and 
phosphocreatine, which is coupled to the 
equilibrium between ATP and ADP, CK helps 
maintain energy homeostasis in tissues. The 
ATP from the CrP is the immediate source of 
energy for sustaining the Intermittent excercise 
like walking, etc.  
 
The ATP is replenished by resynthesis during 
the resting phase of the exercise, by a 
resynthesis mechanism of CrP described below. 
 

1.3 The Creatine Shuttle Mechanism of 
Resynthesis of Creatine  

 
While the ATP is used up by the contracting 
muscle, the creatine released into the M line 
mitochondria of the Sarcolemma, is recycled to 
creatine phosphate, in the uMtc. This CrP, so 
formed , is readily transported into the M line 
Sarcolemmal Mtck for furnishing ATP, for the 
next contraction. This resynthesis mechanism of 
CrP is known as “ “Creatine shuttle“. Thus, a 
continuous and uninterrupted supply of energy 
for carrying out light, and Intermittent type of 
muscular exercise, is ensued. During moderately 
severe and sustained excercise, the energy 
supplied by the hydrolysis of CrP is not sufficient 
and hence, the energy dependence is on 
substrate and oxidative phosphorylation(OX 
Phos), generating the ATP. 
 
 The intracellular creatine transporters: The 
creatine that is synthesized, is transported 
through the blood stream and taken up through 
sodium-dependent creatine transporters by cells 
that require creatine [26].  
 

Two types of creatine transporters (CrT) are 
known. 
 

1. Mitochondrial CrT (Mtc CrT) 
2. Plasma membrane CrT. ( Pm CrT) 

 

Intracellular compartmentalization of 
creatine: This is a crucial factor in the 
formulation of the proposed mechanism, as 
could be seen in the discussion part. The three 
compartments in which the creatine is 
sequestered are – the blood, the cytosol and 
mitochondria. 
 

A huge gradient of Cr, between the blood and 
cytosol exists. Against this gradient and with the 
help of Na cl transporter, cr enters the cytosol. 
About 2/3 of Cr thus entered is converted into 
phosphocreatine. Pm CrT allows Cr but not Cr P 

and hence Cr is trapped inside the cell. Since it 
is not in equilibrium with creatine in the blood, 
the quantities of creatine and CrP/Cr ratios differ. 
The mitochondrial CrT allows creatine to be 
transported into the mitochondria. Since the 
biological membranes of cell and its organelles 
are impervious to both Cr and CrP, 
Compartmentation of the 3 pools is complete. 
 
Regulation of the CrT: Intracellular Cr regulates 
either the number or intrinsic activity of the CrT 
(Loike et a. [27], the data from both the cell-
culture studies [28] and in vivo human 
experiments [29]. Support the regulation of CRT 
by the intracellular creatine. Basing on urinary Cr 
excretion, it was shown, that the short-term 
exposure to high extracellular Cr levels, inhibited 
cellular Cr uptake. High extracellular Cr causes 
an initial increase in Cr uptake as well as an 
elevation in intracellular Cr concentration, which 
inturn, subsequently inhibits Cr uptake by the 
feeds back inhibition of CrT. Wang et al. [30]. 
showed that this feedback inhibition occurs by 
reducing the activity of a non receptor protein 
tyrosine kinase, known as c-Src kinase. 
 
Degradation of creatine into creatinine: While 
creatine is a source of energy, creatinine, it’s 
metabolite, is, a waste product, which is 
completely eliminated, by the healthy kidneys. 
The degree of the creatinine clearance from the 
blood is dependent on the degree of the kidney 
damage. As soon as creatine enters the blood, it 
is non-enzymatically degraded into creatinine, 
which is flushed out of the body by the kidneys. 
 
A brief review of HDL-C metabolism: The HDL 
is synthesized in the liver as a lipoprotein and 
phospholipid complex. The cholesterol in excess 
of the need of the cells, and the macrophages 
limning the blood vessels, is collected and 
returned to the liver by HDL, to be degraded and 
excreted in the bile. The efflux of the cholesterol 
from the cells is assisted by two transporter 
proteins, ABC 1 and ABG 1, the former 
transporting, the cholesterol, to Apo lipoprotein 
A1) (apo A1) [31,32] and the later to HDL 
[33,34]., respectively. ABC A1 and ABG1 both, 
thus have anti-atherogenic activity. [35,36] The 
free cholesterol in HDL is esterified by an 
enzyme, lecithin acetyl transferase (LACT) to 
cholesteryl ester and is sequestered into the 
hydrophobic core of the HDL particles. The 
enzyme cholesterol esters transferase enzyme 
exchanges, the cholesteryl ester of HDL, with 
the triglycerides of the Apo B containing 
lipoproteins (VLDL, iDL and LDL).The HDL 
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particles is either transported by a direct 
pathway to steroidogenic tissues like Testis, 
ovary, and adrenals etc., and is removed by the 
Scavenger cell receptors of HDL (SR-B1), which 
mediates the selective uptake of cholesterol from 
HDL or by indirect pathway to liver, where it is 
degraded by the hepatic lipase enzyme and 
excreted into the bile.  
 

2. DISCUSSION  
 
Some of the mechanisms suggested in the 
literature causing low levels of HDL-C are 
summed up below. 
 
 Gene deletion of Apo a1/APOA 1 results in 

extremely low levels of HDL-C in mice [37] 
and in humans [38]. 

 Gene deletion of apo A-II in the mice 
markedly reduces HDL-C levels [39] 
suggesting that apo A-II is also required 
for normal HDL. 

 LCAT deficiency in humans [40]. and in 
mice [41] causes markedly reduced levels 
of HDL-C and rapid catabolism of apoA-I 
and apo A-II [42 ]. 

 Endothelial lipase (EL) in mice causes a 
reduction in HDL-C levels [43]. and also 
reduces apoA-I levels because of 
increased catabolism primarily by the 
kidneys [44]. 

 The activity of lipoprotein lipase is 
inversely associated with HDL-C levels 
[45]. 

 Mice lacking PLTP have a significant 
reduction in HDL-C levels [46]. 

 Hepatic over expression of SR-BI in mice 
markedly increases hepatic HDL 
cholesterol uptake and reduces plasma 
HDL-C levels [47]. 

 Rodents naturally lack CETP, and when 
engineered to express it, they experience 
substantial reduction in HDL-C levels [48]. 

 The proof that CETP is important for 
human HDL metabolism came from the 
discovery of humans genetically deficient 
in CETP [49-51]. 

 Enhanced activity of cholesteryl ester 
transfer protein (CETP) Reduced the HDL-
C levels [52]. 

 LCAT deficiency Causes the reduction of 
LCAT-mediated cholesterolesterification 
results in accelerated Apo A-I catabolism 
[53].  

 Mice that lack ABC A1, specifically in the 
liver have HDL-C levels that are reduced 
by 80% [54]. and mice that lack ABCA1 in 

the intestine have a 30% reduction in 
HDL-C [55]. 

 The level of oxidized low-density 
lipoprotein (LDL) cholesterol increases 
and high density lipoprotein (HDL) 
cholesterol dysfunction occurs as kidney 
function declines and inflammation 
becomes more pronounced [56 ,57]. 

 

2.1 Role of Sedentary Life Style 
 
 Several previous studies have reported 

the associations of sedentary behaviour 
and physical activity with renal function 
[58-61]. Insufficient moderate- to vigorous-
intensity physical activity (MVPA) are 
known to be associated with the onset of 
renal dysfunction [62]. 

 Evidence suggests that sedentary 
behaviour, defined as any waking 
behaviour characterised by an energy 
expenditure ≤1.5 metabolic equivalents, 
such as television viewing time [63]. may 
be another risk factor for renal dysfunction 
[64,65]. 

 Patients with CKD should undertake 
moderate physical activity for at least 
30 min five times per week, in line with 
recommendations for the general 
population [66]. 

 Sedentary behaviour (detrimentally) and 
physical activity (beneficially) may affect 
renal function and that replacing sedentary 
behaviour with MVPA may benefit renal 
health in older adults [67]. 

 

2.2 The proposed Mechanism 
 
 The proposed mechanism of inverse 

relationship between raised Crn and low 
HDL-C envisages, a competition for ATP, 
between the ABC 1/ABG 1 transporters 
involved in the efflux of cholesterol into the 
HDL, and synthesis of CrP by Creatine 
kinase enzyme, both of which are ATP 
dependent and ATP driven. 

 There is no competition for ATP, when 
CrP in the Sarcolemmal mitochondria is 
hydrolysed, as the reaction does not need 
ATP, and the reaction itself is exergonic.  

 In the resting physiological state of the 
skeletal muscles, the source of energy is 
the stored ATP in the cells of myofibrils. 
When Intermittent light exercises like 
walking and sprinting etc are indulged in, 
the stored energy (ATP), is supplemented 
by the ATP produced by the hydrolysis of 
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CrP, (which is the immediate source of 
energy for the muscles to work). The 
combined sources of energy, from the 
stored and that from CrP,                         
together is called “ phosphagen system”. 
which lasts for less than ten seconds, but 
it is quickly replenished by means                   
of the “creatine shuttle”, (described            
above) which creates a buffer stock of 
CrP/ATP. 

 The hydrolysis of CrP occurs, when 
muscles are under exercise, and need 
extra energy, as in the case of Intermittent 
exercise with periods of rest. But during 
moderate to severe sustained exercise, 
the supplementation of ATP from 
glycolysis along with the energy released 
by OX Phos, is utilised. 

 Accordingly, the stored ATP is freely 
available for the ABC transporter’s use, 
when CrP is not synthesized,(ie. During 
the rest period of the Intermittent 
exercise), which helps maintain normal 
blood level of HDL-C. 

 This is expected when Cr metabolism is 
occurring under physiological conditions. 
But suppose, the mechanism of the CrP 
synthesis from Cr, in the mitochondria, is 
deranged pathologically, the continuous 
synthesis of CrP would curtail the 
availability and supply of ATP for the ABC 
1/ ABG 1 transporters, necessary to 
perform their function. Obviously the HDL-
C level, then, is bound to fall, as the 
efficiency of the enzymes concerned, 
which in turn depends on the supply of 
ATP, diminishes. 

 This situation is possible when the 
sedentary lifestyle, with little excercise 
carried out, co – exists. (as explained here 
under).  

 The rate limiting step catalysing the first 
step in the creatine synthesis, involving 
the AGAT enzyme, controls the amount of 
creatine present in the cell (uMtck) (see 
above) Conversely, absence of creatine in 
uMtc (due to disturbed resynthesis of 
creatine by the creatine shuttle, stimulates 
the synthesis of creatine by AGAT, again. 

 There is evidence indicating that the Cr in 
the mitochondria exerts a repressive effect 
on the step catalyzed by AGAT. (see 
ref.24 & 25 above). 

 Likewise the CrTs are also under feedback 
inhibition from the concentration level of 
the Cr in the cll (both intracellular and 
extra cellular) (see ref 27 to 30 above). 

This reciprocal arrangement between the 
intracellular creatineconcentration and its 
synthesis as well as its transporters, help 
to regulate the creatine concentration 
commensurate with the capacity of the 
enzyme, CK in the uMtck which 
phosphorylate Cr to CrP. Subsequent 
renuel of creatin for resynthesis                   
of CrP is supplied through the “creative 
shuttle". 

 It follows that the creatine from the 
resynthesis by creatine shuttle, in the 
uMtck inhibits the AGAT, as long as the 
creatine shuttle is operating. In other 
words, if the creatine from the creatine 
shuttle is not available, the absence of 
creatine, repressive effect in the uMtck is 
no longer operating, and accordingly the 
AGAT starts synthesizing creatine,                
which is transported into the uMtck, by the 
CrT.  

 How the disturbed creatine shuttle, as 
envisaged above, occurs needs to be 
explained. Here comes the role played by 
the lack of exercise due to the sedentary 
life style, with little physical exercise, 
precludes the hydrolysis of the CrP, as the 
same is coupled to .the muscle contraction 
process.  

 This has two effects. Firstly the creatine is 
not available to be shuttled back to the 
uMtck, unlike what happens normally and 
the absence of creatine in UMtc removes 
the repressor effect of intracellular creatine 
on the synthesis of creatine by AGAT, as 
already seen above. Secondly, when the 
CrP is not hydrolyzed by the CK enzyme 
in the Sarcolemmal mitochondria, 
consequently, the spontaneous 
dissociation of the CrP results. (for 
reasons explained below. )  

 The spontaneous dissociation of CrP iin 
turn has rwo consequences. 
 

1. The ratio between the CrP and creatinine 
in the muscle cell is disturbed. 

2. The total creatine content of the cytosol of 
the cell is increased. 

 
This consequently, leads to the increased 

degradation of the creatine into creatinine, 
with consequent increase in the S. 
Creatinine. 

 
The mechanism of spontaneous dissociation of 
CrP and its aftermath is explained below: 
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2.3 Spontaneous Dissociation of CrP and 
its aftermath 

 

This requires a bit of recapitulation of the laws of 
thermodynamics, and also the concept of Gibbs 
Free energy and how it is related to the changes 
in enthalpy and entropy. For the detailed 
understanding of the same, the readers might 
consult a standard text book of Chemistry. 
However, a brief explanation is given, consistent 
with the scope of this article. 
 

Under the sedentary life style conditions, with 
little scope for exercise, the hydrolysis of CrP, in 
the Sarcolemmal M line mitochondria (smMtck) 
does not take place, as the release of the 
product of the hydrolysis, the ATP, is coupled to 
the contraction of myofibrils. 
 

 The high energy phosphate in the 
compound CrP, is responsible for the 
spontaneous dissociation of CrP, as its 
entropy is high. The high energy 
compounds (like CrP) spontaneously 
dissociate into low energy molecules, 
which are thermodynamically, more stable. 

 The best indicator of spontaneity in a 
reaction is the change in Entropy (S orΔS) 

 The Second Law of Thermodynamics 
states that for a reaction to be 
spontaneous, there must be an increase in 
entropy.  

 It is known fact that, if the free energy of 
the reactants is greater than that of the 
products, the entropy will increase and 
hence, the reaction takes place in the 
forward direction, as is the case of 
dissociation of CrP.  

 While entropy decides the spontaneity of 
the reaction, Gibbs free energy decides 
the direction of the reversible chemical 
reaction subject to the fulfilment of the 
following criteria. 
 

A. ΔG<0 The reaction will occur 
spontaneously to the right. 

B. ΔG>0: The reaction will occur 
spontaneously to the left. 

C. ΔG=0: The reaction is at equilibrium and 
will not proceed in either direction 

 

 The Gibbs free energy, (∆G°) of hydrolysis 
of creatine phosphate reaction is –43.1 
KJ/mol. The negative sign indicates, that 
the reaction is exergonic, (gives out 
energy) and that it spontaneously 

decomposes and proceeds in the forward 
direction only.  

 The negative sign of Gibbs free energy is 
because the change in entropy is greater 
than the changes in enthalpy as per the 
following reaction (2) 
 

 ΔG = ΔH − TΔS, ------------                        (2)  
 
where ΔG indicates change in free energy ΔH, Is 
change in the enthalpy and TΔS, indicates the 
product of absolute temperature and the change 
in the entropy. 
 
Hence the decomposition reaction (3) of CrP 
might be written as follows  
 
 CrP Cr    + Pi [free energy ]                     (3)  

 

 The spontaneous decomposition of the (as 
against the enzymatic hydrolysis of CrP by 
CK.) has two effects. 

 
A. The Cr released is not available to be 

recycled for creatine shuttle, due to the 
Compartmentation of creatine, between 
the cytosol, Mitochondria and blood, as 
already seen above. As a result, the 
creatine released by the spontaneous 
decomposition of CrP is not available for 
creatine shuttle for resynthesis of CrP in 
uMtck, as against what happens during 
the enzymatic hydrolysis of CrP. 

B. The creatine, thus formed, increases the 
creatine present in the  

C. Un-phosphorylated form in the cytosol. 
 

 Consequently, the total creatine content of 
the cytosol is increased. The normal 
average amount of total creatine (creatine 
and phosphocreatine, together) stored in 
the body is approximately 120 mmol/kg of 
dry muscle mass.  

 With increased creatine in the cytosol, the 
normal ratio of CrP to Cr is disturbed. 

 As a result, the Cr degradation rate, also is 
increased, the normal in humans being 
about 1.6% (2 g) per day to keep the Cr: 
CrP ratio in the cell. 

 This increases the percentage of creatine 
degraded Per day, the normal being 1 % 
of creatine present in the Cell.  

 Thus the total creatinine, the degradation 
product of creatine, is increased in the 
blood. 



 
 
 
 

Prasad; AJRN, 5(2): 30-39, 2022; Article no.AJRN.88270 
 

 

 
36 

 

 Thus the proposed mechanism offers an 
answer to the observed inverse 
relationship between the Low HDL-C and 
raised S. Creatinine. 

 

3. CONCLUSION 
 
A possible molecular mechanism, underlying the 
inverse relationship between the raised 
Creatinine and Low HDL-C, in the backdrop of 
CKD and the sedentary life style, has bee 
proposed. This foresees, a competition between 
ABC1/ ABG1 transporters, that facilitate the 
efflux of excess/ unused cholesterol from the 
cells into the HDL-C and the synthesis by CK, of 
CrP in the uMtck, respectively and the role of the 
sedentary life-style behind the mechanism, is 
established. That, exercise increases the HDL-C 
levels and reduces the raised S creatinine levels, 
supports the contentions expressed in the 
proposed mechanism.The suggested 
mechanism has therapeutic implications also, as 
it shows the way to reduce the risk from the two 
individual risk factors (the low HDL-C and raised 
S. Creatinine ), for the cardiovascular and renal 
morbidly and mortality. The take home message 
of this article is, that the low HDL-C could be a 
predictor, marker or indicator of disease 
progression, especially when associated with 
increased s. Creatinine. Also, this article 
focusses on the contributory effect of sedentary 
life style on CKD and at the same time stressing 
the benefit of exercise in improving the HDL-C 
as well as S. creatinine levels. 
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