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ABSTRACT 
 
The perturbing effects of the Poynting-Robertson drag on motion of an infinitesimal mass around 
triangular Lagrangian points of the circular restricted three-body problem under small perturbations 
in the Coriolis and centrifugal forces when the three bodies are oblate spheroids and the primaries 
are emitters of radiation pressure, is the focus of this paper. The equations governing the dynamical 
system have been derived and locations of triangular Lagrangian points are determined. It is seen 
that the locations are influenced by the perturbing forces of centrifugal perturbation and the 
oblateness, radiation pressure and, P-R drag of the primaries. Using the software Mathematica, 
numerical analysis are carried out to demonstrate how the dynamical elements: mass ratio, 
oblateness, radiation pressure, P-R drag and centrifugal perturbation influence the positions of 
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triangular equilibrium points, zero velocity surfaces and the stability. Our investigation reveals that, 
though the radiation pressure, oblateness and centrifugal perturbation decrease region of stability 
when motion is stable, however, they are not the influential forces of instability but the P-R drag. In 
the region when motion around the triangular points are stable an inclusion of the P-R drag of the 
bigger primary even by an almost negligible value of 1.04548*10

-9 
overrides other effect and 

changes stability to instability. Hence, we conclude that the P-R drag is a strong perturbing force 
which changes stability to instability and motion around triangular Lagrangian points remain 
unstable in the presence of the P-R drag. 

 
 
Keywords:  Restricted three-body problem; triangular lagrangian points; radiation pressure; 

oblateness; P-R drag. 
 

1. INTRODUCTION 
 
The restricted three-body problem (R3BP) 
constitutes one of the most important problems in 
dynamical astronomy. The study of this problem 
is of great theoretical, practical and educational 
relevance. The investigation of this problem in its 
several versions has been the focus of 
continuous and intense research activity for 
centuries The R3BP is a modify model of the 
three-body problem [1] which illustrate motion of 
an infinitesimal mass under gravitational 
attraction of two bodies called primaries. This 
problem under different formulations has had 
important implications in some scientific fields 
such as, galactic dynamics, chaos theory, 
molecular physics and celestial mechanics, 
among others. 
 
The classical problem of Szebehely [2] did not 
consider the primaries as sources of radiation 
pressure or as non-spherical bodies. In view of 
this, several studies when one or both primaries 
have radiation pressure and are oblate spheroids 
have been formulated and examined. Notable 
among these are Sharma and Subba Rao [3], 
Singh and Ishwar [4], Khanna and Bhatnagar [5], 
Abdul Raheem and Singh [6], Singh and Leke 
[7,8,9], Singh and Haruna [10], Singh and Amuda 
[11]. Another characterization of the                      
primaries which has to do with radiation force is 
the perturbing effect of Poynting–Robertson (P–
R) drag. This force is a component                                      
of the radiation force and sweep small particles 
of the solar system into the Sun at a cosmically 
rapid rate, thereby justifying its inclusion                             
in the modify model of the R3BP by authors                   
such as Schuerman [12], Murray [13],                                    
Ragos and Zafiropoulos [14], Kushvah [15],                    
Das et al. [16], and recently Singh and Amuda 
[17].  
 
Finally, in the classical R3BP the infinitesimal 
mass is assumed to move only under the mutual 

gravitational force of the primaries, but in 
practice, Coriolis and centrifugal forces are 
effective and small perturbations affect these 
forces. Examples include; small deviation of disc 
stars in circular orbits and motion of a close 
artificial satellite of the Earth perturbed by the 
atmospheric friction and the oblateness of the 
Earth. Studies of this type of problem include, 
Bhatnagar and Hallan [18], Abdul Raheem and 
Singh [6], Singh et al. [7,8], among other. Singh 
and Leke [19] studied the periodic motion and 
stability of spherical dust grain particle around 
triangular Lagrangian points, in the neighborhood 
of a post-AGB binary, enclosed by circumbinary 
disc under the effect of the Coriolis and 
centrifugal perturbations. Singh and Haruna [20] 
examined motion of an oblate-shaped 
infinitesimal mass under effects of small 
perturbations in the Coriolis and centrifugal 
forces when the primaries are radiating oblate 
spheroid. Hence, it is reasonable in this study, to 
consider when Coriolis and centrifugal forces are 
slightly perturbed.  
 
In this paper, we aim to locate and examine the 
stability of triangular Lagrangian points of the 
restricted problem of three bodies under the 
combined effect of oblateness, perturbations, 
radiation and P-R drag. This study extends 
earlier work of Singh and Haruna [10] by 
including the P-R drag into the radiation forces of 
both primaries. The equations of motion, 
locations of the triangular Lagrangian points and 
their linear stability are discussed. The zero 
velocity curves have also been examined under 
the combined actions of the perturbing forces. 
The paper is organized as follows: Section 2 
describes the equations of motion of the model 
while section 3 focuses on the position of the 
triangular points. The zero velocity surfaces and 
stability of the triangular Lagrangian points are 
discussed in section 4 and 5, respectively while 
section 6discuss and concludes the paper. 
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2. THE MODEL EQUATIONS 
 
The equations of motion of an oblate-shaped 
infinitesimal mass in the gravitational forces of 

two radiating oblate spheroidal primaries under 
effects of small perturbations in the Coriolis and 
centrifugal forces have the following form Singh 
and Haruna [10]: 

 

5
2

3

5
1

3

5
2

22

3
2

2

5
1

11

3
1

12

2

)1(3

2

))(1(3

2

)1(3)1(

2

)()1(3))(1(
2

r

Ax

r

Ax

r

qAx

r

xq

r

qxA

r

qx
xnynx






















 

  
2

3
                  

2

)1(3

2

3

2

)1(3)1(
2

5
2

3

5
1

3

5
2

22

3
2

2

5
1

11

3
1

12

r

yA

r

yA

r

qAy

r

yq

r

qAy

r

qy
ynxny















 

           

(1)

 

 
Where 
 

,)( 222
1 yxr   ,)1( 222

2 yxr  
         (2) 

 

,
2

3

2

3
1 21

2 AAn 
            (3) 

 

The distances between the infinitesimal mass from the primaries are 1r  and 2r , respectively, while  

 3,2,1iAi  are the oblateness coefficients of the bigger primary, smaller primary and the 

infinitesimal mass, respectively and n  is the mean motion defined by the oblateness of the primaries. 
 is the mass parameter of the configuration and is expressed as the ratio of the mass of the smaller 

primary to the sum of the masses of the both primaries and is such that
2

1
0   . The radiation 

pressure factors of the bigger and smaller primaries are represented by 
 

 2,1iqi  
, respectively 

while the parameters  and  are the small perturbations in the Coriolis and centrifugal forces, 

respectively and are such that  1 ,  1 : 1  1  

 
The formulation by Singh and Haruna [10] given in equations (1) took into account the radiation force 
owning to the gravitational force and radiation pressure. They did not consider the other component of 
the radiation force: (i) forces arising from the Doppler shift and, (ii) the absorption and subsequent re-
emission of the incident radiation. These forces are what make up what is referred to, as the 
Poynting-Robertson (P-R) drag Schuerman [12]. 
 
Hence, we include P-R drag and follow the methodology in Singh and Amuda (2017) to get the 
modified equations of motion: 
 

,2 xUynx      ,2 yUxny                       (4) 
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 2,1iWi are the P-R drag of the bigger and smaller primaries, respectively; and dc  is the 

dimensionless velocity of light.  
 
These equations of motion of the setup are affected by the combined effects of oblateness of the 
three bodies, small perturbations in the Coriolis and centrifugal forces, radiation pressure and P-R 
drag, of the primaries. Next, we discuss the locations of triangular Lagrangian points of the 
infinitesimal mass. 
 
3. LOCATIONS OF TRIANGULAR LAGRANGIAN POINTS 
 
The Lagrangian points or equilibrium points of the R3BP are widely used in many branches of 
astronomy, both for constant and variable masses (e.g., in the Roche model for binary star systems); 
Luk’yanov [21]. Another importance of these points in astronomy is that they indentify locations where 

particles either can be held ( 4L and 5L ) or will move through with a minimum expenditure of energy. 

In the theory of binary star evolution, the more massive component will expand as it ages until 
material meets one of the Lagrangian points Collins [22]. To get the locations of triangular Lagrangian 

points of our problem, we solve equations (4) when ,0xU 0yU , 0 yxyx  and 0y  

such that 
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and, 
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Equations (5) and (6) contain nine (9) parameters, therefore to solve these equations for x and y , we 

shall use the small perturbation method. Observe that when the P-R drag and oblateness of the 
bodies are ignored, equations (5) and (6) reduce to 
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Now, )1(   does not vanish and so solving the above pair of equation, we get 
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Therefore with the help of equation (7), the solutions of equations (5) and (6), are 
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To get the exact x -coordinate of the triangular point, we subtract the second equation of (2) from the 
first, to get 
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Substituting equations (8) in (9), we get 
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Now from the first equation of (2), we get 
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Looking at equations (10) and (12) the perturbing forces owing to the oblateness and P-R drag are not 

visible because they are embedded in i . Therefore, to determine i , we first substitute equations (3), 

(8), (10) and (12) into equations (5) and (6), respectively; we simplify by neglecting higher order terms 
of small quantities, to get the respective equations: 
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Equations (14) and (15) is a system of two equations in two variables 1 and 2 . These variables can 

be determined using the Cramer’s Rule given by
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Substituting the coefficients
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(16) 

 

Finally, substituting equations (16) in equations (10) and (12), we get the locations of the triangular 
Lagrangian points: 
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and                                     (17) 
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The solutions are defined by the radiation pressure and P-R drag of the primaries, the centrifugal 

force perturbation and oblateness of the three bodies, and the points are denoted by ),(5,4 yxL  . 

 

To do our numerical exploration, we consider the binary system Kruger 60having masses 0271.0 M  

and 0176.0 M  with luminosity 0.01 and 0.0034, respectively. This system has a binary separation of 

9.5 AU and the radiation pressure is taken as 0.99992 and 0.99996, respectively. This is shown in 
Table 1 below 
 

Table 1. Numerical data for Kruger 60 
 

Binary Luminosity 
(L0) 

1L     2L  

Mass (M0) 

1M     2M  

Radiation pressure 
(qi) 

1q                2q  

Binary 
distance 
(AU) 
a  

Velocity of 
light 

dc  

Kruger 60 0.01  
0.0034 

0.271  
0.176 

0.99992      0.99996    9.5 46393.84 

 

Using the software Mathematica [23], we compute numerically in Tables 2-5 the positions of triangular 
equilibrium points given by equation (17) with the data presented in Table 1. The three-dimensional 
plots of the triangular Lagrangian points under the perturbing effects of the mass parameter, 
oblateness, radiation, small perturbation in the centrifugal force and the P-R drag are presented in 
Figs. 1-5. 
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Table 2. Effect of oblateness 1A on 5,4L  

 


 1q  2q  1A  2A  

3A  1W  
   2W  

    4x         4y  

0.001 0.99992 0.99996 0 0.2 0.1 0 0 0.0062867 0.865617 
’’ ’’ ’’ 0.01  ”  ” 1.04548*10

-9
 3.39442*10

-10
 0.0112867 0.862731 

’’ ’’ ’’ 0.05  ”  ” ’’ ’’ 0.0312867 0.851184 
’’ ’’ ’’ 0.1  ”  ” ’’ ’’ 0.0562867 0.836750 
’’ ’’ ’’ 0.15  ”  ” ’’ ’’ 0.0812867 0.822316 
’’ ’’ ’’ 0.2  ”  ” ’’ ’’ 0.1062870 0.807882 

 

Table 3. Effect of oblateness 2A on 5,4L  

 

  1q  2q  1A  
  2A  

3A        1W  2W  
4x      4y  

0.001 0.99992 0.99996 0.15 0 0.1 0 0 0.181287 0.880051 
’’ ’’ ’’ ” 0.01 ” 1.04548*10

-9
 3.39442*10

-10
 0.176287 0.877164 

’’ ’’ ’’ ” 0.05 ” ’’ ’’ 0.156287 0.865617 
’’ ’’ ’’ ” 0.1 ” ’’ ’’ 0.131287 0.851184 
’’ ’’ ’’ ” 0.15 ” ’’ ’’ 0.106287 0.836750 
’’ ’’ ’’ ” 0.2 ” ’’ ’’ 0.081287 0.822316 

 

Table 4. Effect of oblateness 3A on 5,4L  
 

  1q  2q  1A  2A  
3A  1W  2W  

4x  4y  

0.001 0.99992 0.99996 0.15 0.2 0 0 0 0.0812867 0.764581 
’’ 0.99992 0.99996 ” ” 0.01 1.04548*10-9 3.39442*10-10 0.0812867 0.770355 
’’ ’’ ’’ ” ” 0.05 ’’ ’’ 0.0812867 0.793449 
’’ ’’ ’’ ” ” 0.1 ’’ ’’ 0.0812867 0.822316 
’’ ’’ ’’ ” ” 0.15 ’’ ’’ 0.0812867 0.851184 
’’ ’’ ’’ ” ” 0.2 ’’ ’’ 0.0812867 0.880051 
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Table 5. Effect of small perturbation  in the centrifugal force on 5,4L  

 


 1q  2q  1A  2A  

3A  1W  2W  4x  
4y  

0  0.99992 0.99996 0.15 0.2 0.1 0 0 0.0812867 0.822701 
0.0001 0.99992 0.99996 ” ” ” 1.04548*10

-9
 3.39442*10

-10
 0.0812867 0.822663 

0.001 ’’ ’’ ” ” ” ’’ ’’ 0.0812867 0.822316 
0.01 ’’ ’’ ” ” ” ’’ ’’ 0.0812867 0.818852 
0.05 ’’ ’’ ” ” ” ’’ ’’ 0.0812867 0.803456 
0.1 ’’ ’’ ” ” ” ’’ ’’ 0.0812867 0.784211 
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Fig. 1. 3D plots of 5,4L as a function of 1A when ,99992.01 q ,99996.02 q ,2.02 A

,1.03 A  and 001.0  
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Fig. 2. 3D plots of 5,4L as a function of 2A when  ,99992.01 q ,99996.02 q ,15.01 A

,1.03 A  and 001.0  
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Fig. 3. 3D plots of 5,4L as a function of 3A when ,99992.01 q ,99996.02 q .
,15.01 A

,2.02 A  and 001.0  
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Fig. 4. 3D plots of 5,4L as a function of   when ,99992.01 q ,99996.02 q ,15.01 A

,2.02 A  and 1.03 A  
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Fig. 5. 3D plots of 5,4L as a function of when  ,99992.01 q ,99996.02 q ,15.01 A

,2.02 A 1.03 A  and 001.0  
 

4. ZERO VELOCITY SURFACES 
 
Hills surfaces in the restricted three-body problem give the possibilities to find out some general 
properties of the relative motion of the third body having infinitesimal mass in the gravitational field of 
two main bodies with finite masses. The equations of motion (4), admits the Jacobi integral 
 

UyxC 222  
 

 

where C  is the Jacobi constant. 
 
Hence, the zero velocity surfaces are: 
 

02 CU                                                                            (18) 
 
The expression (18) and the knowledge of the Lagrangian points allows for us to make a qualitative 
analysis of the zero velocity surfaces for the binary system Kruger 60, under the effects of 
perturbation in the centrifugal force, radiation pressures, oblateness of the involved bodies and the P-
R drag. Plots of the zero velocity surfaces using equation (17) and (18) for different values of the 
parameters are presented in Fig.s 6-10, and the contour plot in Fig. 11.  
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Fig. 6. Zero velocity curve when ,99992.01 q ,99996.02 q
3

1 106.2 W and 

4
2 108.1 W
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Fig. 7. Zero velocity curve when  ,99992.01 q ,99996.02 q ,106.2 3
1

W 4
2 108.1 W  

and 15.01 A  
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Fig. 8. Zero velocity curve when ,99992.01 q ,99996.02 q ,106.2 3
1

W ,108.1 4
2

W

,15.01 A 2.02 A  and 1.02 A  
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Fig. 9. Variations in the Zero velocity curves when 3937.0 , 121  qq , 021 WW , 

0321  AAA and when 3937.0 , 99992.01 q , 99996.02 q , 
3

1 106.2 W , 

4
2 108.1 W , 15.01 A  
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Fig. 10. Variations in the Zero velocity curves when 3937.0 , 121  qq , 021 WW , 

0321  AAA and when 3937.0 , 99992.01 q , 99996.02 q , 
3

1 106.2 W , 

4
2 108.1 W , 15.01 A , 2.02 A and 1.03 A
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Fig. 11. Contour plot of the region of motion when ,99992.01 q ,99996.02 q

,106.2 3
1

W ,108.1 4
2

W ,15.01 A 2.02 A  and 1.02 A  
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5. STABILITY OF TRIANGULAR LAGRANGIAN POINTS 
 
In the work of Singh and Haruna [10], the triangular points are linearly stable under effect of 
perturbations in the Coriolis and centrifugal forces, radiation pressure of the primaries and oblateness 
of the three bodies. Hence, it is worthwhile to discuss the stability of triangular equilibrium points 
under additional influence of the P-R drag of the primaries. 
 

Now, to examine the stability of the triangular Lagrangian points, we denote the location by ),( 00 ba

and let ),(  be a small displacement from the location, such that  0ax and y .0 b

Substituting these values in (4), we obtain the variational equations 
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where, only linear terms in and  have been retained. The second order partial derivatives ofU are 

denoted by subscripts 0and indicates that the derivatives are to evaluated at the Lagrangian point 

).,( 00 ba
 

 
The corresponding characteristic equation of equations (19) is 
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Substituting equations (11), (13) and (16) in the partial derivatives, we get 
 

0234  dcba   
 
Where 
 

21 33 WWa   

  
33

321
2

3
381 21

321

WW
AAAb    

    21 37
4

3
34

4

3
WWc    

   
 

 
 

 















2

2
2

2

1
2

32121

213

143
                          

213

253

3

4

3

13
)1(

9

2
)1(

9

2

9

22
11

4

27










W

W
AAAqqd

 

 
We note that the coefficient of Lambda in the characteristic equation is negative and the equation has 
at least a change in sign. However, in order to ascertain the kinds of roots of (20), we compute the 

roots  4,3,2,1ii numerically for the binary system Kruger 60 in Table 6 for different values of the 

system parameters. 
 
We see from Table 6 that the four roots of the characteristic equation computed for the binary Kruger 
60 are complex roots in the presence and absence of P-R drag, and even for the classical case. In 
this case the triangular Lagrangian points are unstable. However, we know from the classical R3BP of 
Szebehely [2] that in the absence of the P-R drag, conditional stability of the triangular points is 
possible. Therefore, we cannot say that the instability is as a result of the P-R drag. So we explore 
further. 
 
Now, in the absence of P-R drag of the primaries, the characteristic equation (20) becomes 
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Table 6. Roots of equation (20) for ,3937.0 under radiation pressure, oblateness, perturbations and P-R drag. 

 

1q  2q  1A  2A  
3A       1W  2W  

                i  

1 1 0 0 0 0 0 0 0         0.620218  0.94056i 
0.99992 1 0 0 0 0 0 0 0  0.620223  0.94057i 
0.99992 0.99996 0 0 0 0 0 0 0  0.620225  940574i 
0.99992 0.99996 0.02 0 0 0 0  0 0  0.64281  0.95395i 
0.99992 0.99996 0.02 0.01 0 0 0 0 0  0.65350  0.96035i 
0.99992 0.99996 0.02 0.01 0.015 0 0 0 0  0.66653  0.95758i 
0.99992 0.99996 0.024 0.02 0.015 0.001 0 0 0  0.66503  0.95863i 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003 0 0  0.66834  0.95858i 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003   1.04548*10

-9
 0  0.66834  0.95858i 

0.99992 0.99996 0.024 0.02 0.015 0.001 0.003 1.04548*10-9 .39442*10-10  0.66834  0.95858i 
 

Table 7. Roots of (20) for 03512.0  and critical mass parameter in the absence of P-R drag 

 

1q  2q  1A  2A  
3A             1W                 2W                                          i                                C  

1 1 0 0 0 0 0          0  0                       0.595124i &  0.803634i 0.0385209 
0.99992 1 0 0 0 0 0         0 0                        0.595136i&  0.803625i 0.0385202 
0.99992 0.99996 0 0 0 0 0         0 0                        0.595142i &  0.803621i    0.0385198 

0.99992 0.99996 0.02 0 0 0 0          0  0                        0.0790839  0.701647i     0.0328198 
0.99992 0.99996 0.02 0.01 0 0 0         0 0                        0.121089  0.702668i       0.032192 
0.99992 0.99996 0.02 0.01 0.015 0 0         0 0                        0.167786  0.696227i        0.0277778 
0.99992 0.99996 0.024 0.02 0.015 0.001 0         0 0                        0.161716  0.697662i       0.0284199 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003         0 0                        0.170934  0.696634i       0.0274033 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003       1.04548*10-9 0                         0.170934  0.696634i         -------                   
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003 1.04548*10

-9
 3.39442*10

-10     
  0.170934  0.696634i        -------- 
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Table 8. Roots of (20) for 01.0  and critical mass parameter 

 

1q  2q  1A  2A  
3A         1W           2W  

    i                                          C  

1 1 0 0 0 0 0          0           0                            0.701823i&   0.712352i 0.0385209 
0.99992 1 0 0 0 0 0         0          0                             0.26835i&  0.963321i 0.0385202 
0.99992 0.99996 0 0 0 0 0        0               0  0.268352i&  0.963321i               0.0385198 
0.99992 0.99996 0.02 0 0 0 0         0               0  0.285822i&  0.942818i               0.0328198 
0.99992 0.99996 0.02 0.01 0 0 0        0               0  0.294784i&  0.932203i               0.032192 
0.99992 0.99996 0.02 0.01 0.015 0 0        0               0  0.306734i&  0.903778i               0.0277778 
0.99992 0.99996 0.024 0.02 0.015 0.001 0        0               0  0.305053i&  0.908759i               0.0284199 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003        0               0  0.308052i&  0.902776i               0.0274033 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003       1.04548*10

-9      
0  5.95422*10

-8
+0.308051i                     ---- 

-9.84364*10-8  0.902776i 
0.99992 0.99996 0.024 0.02 0.015 0.001 0.003 1.04548*10

-9 
3.39442*10

-10
 

  
-1.07762*10

-7  0.902776i                    ---- 

  6.62422*10-8  0.308051 
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Where 
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In this  case, the critical mass is Singh and Haruna [10] 
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The existence of distinct pure imaginary roots of 
(20) will depend on the relation between the 
mass ratio and equation (21). Consequently, 

when C   all four roots  4,3,2,1ii are 

purely imaginary numbers and the triangular 
Lagrangian points are stable, otherwise they are 
unstable. To illustrate this, we compute the roots 
and equation (21) numerically under the 
perturbing forces in Table 7. 
 
It can be seen from Table 7 that, when both, one 
or none of the primaries emit radiation pressure, 
the roots are distinct and imaginary. In these 

cases, C 03512.0  and the triangular 

points are stable, otherwise when

  03512.0C , the roots are complex and 

induces in instability at these points. From this 
analysis, we still cannot establish that the PR-
drag is responsible for the instability. Since 
indeed instability is taking place in the absence 
of the P-R drag.  

 
Next, we consider the Earth-Moon system which 
has a mass ratio of approximately 0.01. Our 
reason for considering this mass parameter is 
that it will always be less that the critical masses  
computed in Table 7 and all four roots 0f (20) are 
expected to be imaginary and distinct. Hence, in 
Table 8, we compute these roots for 01.0  

alongside the critical masses as shown below 
 
From Table 8, we see that from row 1 to 7, all 
four roots are imaginary and distinct under the 
perturbing forces of radiation pressure, 
oblateness and small perturbations in the Coriolis 

and 
centrifugal forces, a result we may attribute 

to the fact that C 01.0 throughout in 

Table 8. Now, what happens next at this point is 
convincing enough to make us reach the 
conclusion regarding effects of the P-R drag. On 
row 8 where P-R drag of the first primary is 
included in the computation of the roots by a very 
or almost negligible value of 1.04548*10

-9
, we 

see that the four roots which all along have been 
imaginary suddenly turned complex roots and 
induces instability at the triangular equilibrium 
points. Hence, we can conclude that the P-R 
drag is a strong perturbing force which changes 
stability to instability. 
 

6. DISCUSSION AND CONCLUSION 
 
The R3BP is one of the most important and 
practical problems in dynamical astronomy and is 
of great historical and educational relevance. In 
this paper, we have studied motion and stability 
of an infinitesimal mass around the triangular 
Lagrangian points when the three bodies in the 
configuration are oblate spheroids and both 
primaries are radiation sources under the 
Poynting-Robertson drag and small perturbations 
in the Coriolis and centrifugal forces. The study is 
an extension of the investigation by Singh and 
Haruna [10] by including the P-R drag of both 
primaries into the dynamical system.  
 
The equations governing the dynamical set up of 
our problem have been derived and presented in 
equations (4) and are defined by the combined 
effect of oblateness, perturbations, radiation 
pressure, P-R drag and the mass parameter. 
These equations are different from those 
presented in earlier works by Szebehely [2], 
Subba Rao and Sharma [24], Schuerman [12], 
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Singh and Ishwar [4], Abdul Raheem and Singh 
[6], Singh and Leke [9], Singh and Abdulkarim 
[20], Singh and Haruna [10] and Zotos [25], 
Singh and Amuda [17]. 
 
The Lagrangian solutions of the R3BP are widely 
used in many branches of astronomy and are 
important as they mark places where particles 
either can be trapped (L4 and L5) or will pass 
through with a minimum expenditure of energy. 
Equation (17) gives the location of the triangular 
points under the combined effects of 
perturbation, oblateness, radiation and the P-R 
drag. These points differ from those of Szebehely 
[2], SubbaRao and Sharma [24], Schuerman 
[12], Singh and Ishwar [3], AbdulRaheem and 
Singh [6], Singh and Leke (2014), Singh and 
Abdulkarim [20] and Singh and Haruna [10]. 
Using the software Mathematica, we conduct a 
numerical investigation demonstrating how the 
dynamical quantities: mass ratio, oblateness of 
the bodies, radiation factors, P-R drag and small 
perturbation in the centrifugal force influence the 
positions of the triangular Lagrangian points, 
zero velocity surfaces and stability. Our results 
suggest that though the radiation pressure, 
oblateness and centrifugal perturbation decrease 
region of stability, they are not the influential 
forces of instability but the P-R drag. The P-R 
drag of one or both primary overrides other effect 
and changes stability to instability. Hence, the 
introduction of P-R drag into the formulations of 
Singh and Haruna [10] initiated a twist in 
rendering the triangular points unstable. 
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