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Abstract 
 

The nonlinear Schrödinger equation in one-dimensional coordinate is investigated numerically by employing 

explicit and implicit finite difference methods. It is shown that the explicit method is conditionally stable, and 

the condition for stability, which is a function of the time step and spatial step size, or several grid points are 

obtained. It is also shown that the implicit scheme is unconditionally stable and results in a tridiagonal matrix 

at each time level as a function of the nonlinear term. The effects of dispersion and nonlinearity concerning 

the time and space steps are also investigated. The validity of our scheme is established by reproducing some 

existing results on the constant-coefficient nonlinear Schrödinger equation. The schemes are then extended to 

study the variable coefficient equation, which has a growing interest and applications in many areas of 

nonlinear science. 
 

 

Keywords: Nonlinear; schrodinger equations; variable coefficients; numerical integration; stability; 

convergence. 
 

1 Introduction 
 

Several authors have been greatly interested in the nonlinear Schrödinger (NLS) equation with constant 

coefficients and its variants in one-dimensional space. Many numerical methods such as finite difference, finite 
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elements, and time-splitting spectral methods have been used to analyse the NLS equation in a finite domain 

subject to different boundary conditions. NLS has number of applications [1-7]]. Ivanauskas and Radziunas [8] 

investigated the NLS equation utilising finite difference methods with some grid analogues of the conservation 

law. They used a Dirichlet type of boundary condition on both grid boundaries. They proved that the difference 

scheme is stable and converges in the   -norm and established a grid conservation law for the difference scheme 

of DuFort-Frankel type. Ramos [9] employed three linearly implicit finite difference methods to study the NLS 

equation in the presence of damping and pumping. They analysed soliton propagation through a medium whose 

refractive index undergoes a smooth, finite change over a distance as a function of the jump in the refractive 

index and the distance over which the jump occurs. Fei, Pérez-García [10] constructed a linearly implicit Crank-

Nicholson scheme for the NLS type equations and showed that their scheme conserves energy and charge of the 

system. They validated these through numerical experiments that confirm their scheme's stability, accuracy, and 

efficiency. 

 

The variable coefficients evolution type equations have great applications due to many physical phenomena that 

capture this behaviour. But due to the complications involved in deriving the conservation for variable 

coefficients, previous authors have focused on the case where dispersion and nonlinearity coefficients are 

treated as constants. In this study, we explore numerical integration by extending these coefficients so that they 

depend on space and time. The NLS equation with cubic nonlinearity, whose coefficients depend on the 

evolution variable, was first predicted to exist in optical applications. It was later discovered that the same 

equations apply in the model of Bose-Einstein condensate [11]. The case where the coefficients are functions of 

the spatial coordinate has also found applications. The nonlinear Schrödinger (NLS) equation describes a broad 

class of physical phenomena; modulational instability of water waves, propagation of heat pulses in anharmonic 

crystals, the helical motion of a very thin vortex filament, nonlinear modulation of collision-less plasma waves, 

self-trapping of a light beam in a dispersive colour system [12]. In optics, the NLS equation occurs in the 

Manakov system, a wave propagation model in fibre optics. Indeed, the nonlinear Schrödinger equation is one 

of the most fundamental nonlinear lattice dynamical models. It has a wide range of applications; it is the 

relevant dispersive envelope wave model for describing the electric field in optical fibres, for the self-focusing 

and collapse of Langmuir waves in plasma physics, or for the description of freak waves (the so-called rogue 

waves) in the ocean [13]. The growing interest in wave propagation in nonlinear photonic band-gap materials 

and periodic nonlinear dielectric superlattices has also contributed a great deal to understanding the NSL 

equations [13].  

 

The well-known solutions of the NLS equation are those for solitary waves or solitons. The theory of the NLS 

equation was first developed in 1971 [14]. They first applied the inverse scattering transform method to this 

equation and derived a more general form for bright and dark solitons. These efforts have gained a lot of 

popularity over the years. NLS equation solitons have been verified experimentally, and various intriguing 

properties of solitons derivable from the result of inverse scattering transform theory were identified. It was 

theoretically shown that an optical pulse in a dielectric fibre forms a solitary wave because the wave envelope 

satisfies the NLS equation [15]. Optical solitons were experimentally observed in 1980 [16]. 

 

Many other evolution equations such as time-fractional Benjamin-Bona Mahony equation (TFBBM) [17], (3 + 

1)-dimensional extended date–Jimbo–Kashiwara–Miwa equation [18], Bruta-Gelfand equation [19], and similar 

boundary value problems arising from an adiabatic tubular chemical reactor theory [20], nuclear physics [21], 

and magneto-hydrodynamics incompressible nanofluid flow past over an infinite rotating disk [22] have been 

solved using different analytical and numerical approaches [17] applied the integrating factor property to obtain 

analytical solution of TFBBM equation after reducing the equation to nonlinear fractional ordinary differential 

equation using its Lie symmetry. In [18], a new exact Lump-soliton solution that localized in all spatio-temporal 

directions was derived using Hirota method. Other methods of solution include operational matrix 

differentiation with Newton Raphson technique [19], Hermite wavelets technique via Newton Raphson method 

[20], Taylor wavelets via Newton iterative technique, and method of lines via Runge-Kutta technique [22].  

 

There have been various investigations on the numerical solutions of variants of the nonlinear Schrödinger 

equation based on either the finite difference [10,9,23,24]] and the finite element, the spectral methods. Most of 

these studies have been devoted to the NLS equation solutions that have a special solution with the form of a 

pulse, that is, solitons, keeping their shapes and velocities after an interaction. Such solutions are further 

investigated here. Moreover, in most applications of the NLS equation that model various physical phenomena, 

constant-coefficient type equations have been used. These involve some assumptions and approximations of the 
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natural system. A more realistic model could be achieved by considering variable coefficients type evolution 

equations. The introduction of variable coefficients makes the equation analytical intractable hence numerical 

approach has to be considered. What is of great interest to be simulated is how the variations of dispersion 

coefficient and nonlinear term affect the solitary wave solutions and how to maintain a balance of these 

variables. 

 

In this study, explicit and implicit finite difference methods are investigated for the study of focusing, nonlinear 

Schrödinger equation with extension to variable coefficients in one-dimensional coordinate and finite domains 

subject to zero boundary conditions on both boundaries. Many authors have devoted efforts to applying these 

methods with tremendous success, but only considering the special case, where the coefficients are treated as 

constants. For instance, Leble and Reichel [23] have successfully used similar numerical schemes to investigate 

coupled nonlinear Schrödinger equations. In this work, the convergence and stability of these numerical 

methods are assessed as a function of the time step and spatial step size. The numerical calculations helped us 

verify the clear distinction between the two schemes. T  

 

Furthermore, the effects of varying dispersion coefficients and nonlinear terms as the pulse propagates through a 

medium will be significant in studying nonlinear waves. This notion has a growing interest and numerous 

applications in many areas of nonlinear science. For instance, in a fibre-optic communication system [25,26]], 

information is transmitted over fibre using a coded sequence of optical pulses whose width is determined by the 

bit rate of the system. When the fibre introduces dispersion, it interferes with the transmission process by 

broadening the pulse, leading to error if it spreads beyond its bit rate. A technique used to cope with the 

dispersion-induced is called dispersion management. It is implemented by either changing the dispersion 

characteristics of the fibre or by introducing dispersion compensating fibre to cancel the dispersion built up as 

signal travel through the network. 

 

2 The Governing Model 
 

The NSL equation is given by 

 

  
  

  
 

 

 

   

   

 

                                 (1) 

 

where        is the slowly varying dispersive wave envelope propagating in a nonlinear medium,   is the 

dispersion constant,   is nonlinearity strength, the variable t is time, and   is the spatial coordinate [26]. The 

term        can be extended to the general form              . 
 

The function           characterises the nonlinear medium, for example, the nonlinear correction of the 

photonic band-gap materials' refractive index or the quasi-particles self-interaction in the superlattices [27]. 

Equation (1) can be solved exactly by using the inverse scattering transform reference [28]. However, the 

resulting solutions are not very explicit except for the exceptional cases of soliton solutions. Furthermore, in real 

applications, the presence of forces or dissipations may introduce some perturbation to the actual model (1) and 

thereby make it analytically unsolvable. A good way of exploring the complicated perturbed soliton model is to 

employ numerical simulations. However, not all schemes that can give reliable numerical results must be taken 

in selecting numerical techniques. An inappropriate discretisation of the system may result in a ``blow-up'' [10]. 

We investigate numerical methods for solving the NSL equations based on the finite difference schemes. Such 

methods have been applied to model vector spatial solitons behaviour in nonlinear waveguide arrays. To start 

with, let us derive the conservation law for equation (1). 
 

3 Conservation law 
 

3.1 Constant coefficients:     are constants 
 

There are an infinite number of conserved quantities for equation (1). We establish the conservation of energy 

   , also known as the   -norm. The momentum     and the Hamiltonian     among other quantities are 

conserved. 
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We write the conjugate of equation (1) as follows: 

 

   
   

  
 

 

 

    

   
                                 (2) 

 

Multiplying equation (1) by    and equation (2) by   , we obtain 

 

 
   

  

  
 

   

 

   

   
             

  
   

  
 

  

 

    

   
             

                     (3) 

 

Adding the equations in (3) and noting that  

 

              
 

we obtain the following 

 

  
      

  
 

   

 

   

   
 

  

 

    

   
    

 

                     (4) 

and integrating the result, we arrive at 
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                     (5) 

 

Suppose the function   vanishes on the boundary. We obtain 

 

   
    

     

 

Then  

  
 

  
      

 

  

                         (6) 

 

Therefore, we obtain the conservation law in the form 

 

 
     
 

  
        . 

 
                    (7) 

3.2 Variable coefficients:     are functions of     
 
These conservation laws hold for any function          and       . But for  , we have some restrictions 

on the conservation laws to hold. Once   depends on space, we have difficulty integrating the last term of 

equation (5). Thus, the NLS equation with variable coefficients is given by 

 

 
  

  
 

    

 

   

                                                                                                                               (8) 

 

where      represents the dispersion coefficient, which in communication is significant (and is used to model 

strong dispersion management) [29], and      is the loss-gain coefficient. The NLS equation with variable 

coefficients is used in the optical fibre to study the physical features and stability of optical solitons propagation 

in long-distance communication fibres. Equation (8) is commonly known as the dispersion-managed nonlinear 

Schrödinger equation (DMNLSE), and it governs the propagation of a dispersion-managed soliton through a 

polarization preserving optical fibre with damping and periodic amplification [30]. The interaction between 

linear dispersion and the nonlinear self-pulse modulation effect results from the different velocities at which 
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different parts of the spectrally modified pulse travel. The dispersion wants to broaden the pulse width, while the 

nonlinearity intends to sharpen the pulse peak. Suppose the dispersion coefficient   is less than zero. In that 

case, the pulse continually broadens, while for  >0, there may be a balance between dispersion and self-pulse 

modulation such that the pulse width stays constant. To quantify the interaction between dispersion and self-

pulse modulation, we define normalised parameters for the time and the distance. The same procedure as 

outlined in 3.1 above hold for the conservation of law in the case of variable coefficients. 

 

4 Finite Difference Method 

 
To apply the finite difference method, we divide the domain into    sections, each of length 

 

             along the   axis. The time domain is also divided into 

 

  segments each of duration        . By expanding function values at grid points in a Taylor series, 

approximations to the differential equation involving algebraic relations between grid point values can be 

obtained [12]. For the explicit Euler scheme, we have 

 

  
  

      
 

 
  

    
     

      
 

  
      

     
     

 

                     (9) 
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For the Crank-Nicholson scheme, we have 
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which simplifies to  
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with    
   

        
   

 
. 

 

With the Dirichlet type of boundary condition on    and    this can be cast into the following tridiagonal system 

of equations. 

 

 
 
 
 
 
 
          
            
          
      
          
           

 
 
 
 
 

 
 
 
 
 
 
 
  

   

  
   

 
 

     
   

   

   
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
         

          
         
      
         
          

 
 
 
 
 

 
 
 
 
 
 
 

  
 

  
 

 
 

     
 

   

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
     

      
  

 
 
 
 

      

       

   
 
 
 
 
 

  

 

where            
     

 

The system of equations can be solved very efficiently, and its unconditional stability can be obtained. 
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5 Stability of Finite Difference Method 

 
We shall analyse the stability of the explicit Euler, implicit Euler and the Crank-Nicholson schemes. 

 

The idea here is to check what happens to our solution obtained through this scheme when a small perturbation 

is introduced to the system. Does it remain a reasonable solution, or there is a ``blow-up``? Indeed, the explicit 

method is sensitive to small perturbations. Thus, a condition relating to the time step and spatial step size 

guarantees a solution has to be established. 

 

5.1 Explicit Scheme 

 
We use the explicit scheme with a first-order discretisation concerning time and a second order 

discretisation with respect to space is as follows: 

 

  
  

      
 

 
  

    
     

      
 

  
     

     
     

 

                   (13) 

We write the wave function as the sum of real and imaginary parts. This provides a convenient approach to 

establishing the stability of the explicit scheme in equation (13): 

 

                                                                                                                                              (14) 

 

Substituting equation (14) into (1), we obtain 
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or 

 

 
  

  
 

  

  
  

   

      
   

                                                                                   (16) 

 

Separating the real and imaginary parts, we obtain the following system of equations: 

 

  

  
  

   

   
              

 (17) 

 
  

  
  

   

   
              

 

If we apply the explicit scheme (13), we can build an evolution matrix as follows: 
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which can be written as 
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where,  
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                   (20) 

 

This evolution matrix acts in the vector space      of the columns: 

 

    
 
 
 

 
 
    

                                
 

     

    

  

                   (21) 

Now we will prove stability with respect to small perturbation (because we are considering nonlinear equations) 

of initial conditions [23,31]]. In other words, we are exploring the boundedness of the discrete solutions in terms 

of small perturbation of the initial data. It is worth noting that matrix    is nonlinear and depends on the initial 

condition. Introducing a small perturbation of the initial condition, we obtain a new matrix     by the evolution 

of the differential from the matrix    for    and   , 

 

           

 

                       (22) 

 

To obtain the stability conditions, we require the boundedness of the operator       in the sense of the 

spectral norm. That is, the norm       
      bounded by a constant  . Therefore, the sufficient condition 

for stability is in the form 
 

                                    (23) 

 

for some constant  , independent of    Moreover, the above condition is also sufficient for stability in case 

                 with dependence between   and   such that        and       . It is clear from 

the aforementioned stability condition that the explicit scheme is conditionally stable, and this is further 

explored as follows. 

 

To calculate the matrix    we should upper estimate the function        via upper estimation of all matrices 

using the matrix spectral norm [23]. Thus, we have 
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Let us divide the matrix           for the symmetric    and antisymmetric    parts. We use Schwartz 

and triangle inequalities to estimate mixed terms  
 
 
 

 
  and the commutator        . It is perceptible that the 

sub-matrices      are divided into three matrices. The identity matrix    the symmetric one (but without the 

identity part        ) and the antisymmetric one      (with nonzero elements for       and        ) 

yields 
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And using the discrete form of the conservation law obtained 
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where, 

          

         
  

  
   

   

  
  

 

Hence, we have obtained a necessary condition for the stability of the scheme in equation (13). The scheme is 

stable if              with the condition that       . This is the conditional stability of the scheme. It 

means that it is required     faster than      or                .This means that as we decrease the 

spatial interval h for better accuracy, we must also decrease the time step   at the cost of more computations in 

order not to lose the stability. 

 

5.2 Stability in the case of the variable coefficient case 

 
We shall follow the same approach presented in 5.1 to prove the stability of variable coefficients NLS equation 

(8). First, we note that the conservation law of energy ceases to hold for the case where the dispersion 

coefficient is a variable. Here, we take k to be constant and present an estimate for the case where the nonlinear 

coefficient is a function of the spatial coordinate. In this case, our evolution matrix can be built as was done in 

equations (18) to (20). We shall present an upper estimation of the evolution matrix here. 

 

      
   

 
    

      
   

 
 

   

  
     

 
     

 
   

 
  

 
   

 
  

 
       

 
    

 
 
 

 
    

      
   

 
 

   

  
     

 
     

 
   

 
  

 
   

 
  

 
       

 
    

 
 
 

 
    

      
   

 
    

 

                   (27) 

         
 

                                                

                     
 

                           
 
 

         
 

     
 

   
 
  

 
   

 
  

 
   

 
   

  
       

 
     

 
   

 
  

 
   

 
  

 
  

 

 

       
 

     
 

   
 
  

 
   

 
  

 
   

  
   

  
      

 
     

 
   

 
  

 
   

 
  

 
   

       
 

     
 

   
 
  

 
   

 
  

 
 
 

  

 

Hence, we obtain a similar stability condition as 
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where, 

 

           

        
  

  
   

   

  
            

 

  
   

 

6 Convergence of Finite Difference Schemes Used 

 
6.1 Convergence of the explicit Euler scheme 

 
In this section, we prove that a solution of equation (13) converges to a solution of equation (1) which are 

differentiable with respect to time and (twice) to  . We substitute a solution of the form 
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where    is an exact solution and $\eta$ is the error between a numerical solution and the exact solution of the 

NLS equation. We obtain the equation for  , 

 

   
       

 

 
  

     
      

      
 

  
 

   
       

 

 
 

  
     

      
      

 

  
       

     
     

      
     

        
     

      
 

We employ the conservation law previously derived 
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The right-hand side of the equation for the differential solution is of the order        
    

 

while to represent the left-hand side, we use the matrix  . Hence we obtain 

 

  
 
      

     
        

 
  

 
    

 
  

 
    

 
    

 
         

 
    

 
  

 
  

     
 
    

 
  

 
    

 
    

 
          

    

 

Let us define the norm of the numerical solution as 
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                                                                                                                           (31) 

 

Now we upper estimate one element of the vector    
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Next, we write the convergence condition for all      matrix components up to the choice of the initial error 
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where   is defined as 
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6.2 Crank-Nicholson scheme 

 

Convergence for Crank-Nicholson Scheme. We start from the discretized form as given below: 
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Now we let    
  

     we have the above equation as 
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where   and   are the time and space steps, respectively and   
            The scheme is consistent with the 

NLS equation, and the local truncation error is       
    At each discrete time level, only a set of linear 

algebraic equations has to be solved to obtain the value of the wave function   
   at the following time    . 

Similar to the explicit scheme discussed earlier, the Crank-Nicholson scheme also has constant 

energy and charge, which are analogues of conservation law 
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We now briefly establish the proof of the convergence of the Crank-Nicholson scheme as follows. 

Assume that                          where       is the exact solution,    is the numerical 

solution and    is the error. From the conservation law, we have 

 

      
 

       
 

       
 
  (38) 

 

With 

 

                    
       

 

 

  

 

Therefore, the error can be estimated as follows 
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where   
  is the truncation error which is of order          and 
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Then we obtain 
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where    and    are two constants only depend on the initial data   
  and   

   
 

Multiplying equation (39) by                       
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summing over   and taking the imaginary part, we get 
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From equations (39), (44), we arrive at 
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where   is a constant depending on the initial condition. We assume that   is small such that 

          ; then we obtain the result 

 

        
 

 
 

 
       

 
       

 
         

 
 

   

     
       

 
   (46) 

 

This means that the error is bounded by the initial and truncation errors, so the scheme is convergent. 
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7 Conclusions 

 
In this paper, we first started by introducing solitary waves and showed their variety of applications in many 

areas of nonlinear science. Then we introduced the CNSE, which is our model for this work. First, we proved 

conservation laws on this system and stability. We then reduced the CNSE to the Manakov system, which has 

the known analytical solution; we could compare the finite difference schemes and observe how good this 

method can approximate solutions. Here, we found the implicit scheme to converge to the analytical solution 

faster than expected. As an improved Manakov system, we considered the case of CNSE with constant 

coefficients, in which interactions of waves were also observed [32] in Bose-Einstein condensate. It is here 

where we see the interactions of the two waves. Finally, we considered the case of variable coefficients, which 

resulted in the dispersion management of solitary waves [33].  

 

We draw from this conclusion that solitons or solitary waves can be constructed depending on the parameters 

for both dispersion and nonlinear terms in CNSE. It remains a significant challenge to find the best parameters 

to result with solitons, especially in the case of variable coefficient, where there is a balance between the 

dispersion and nonlinear coefficients. In [29], they are working on solitons. They are finding N-soliton 

solutions. Also, they investigate different parameters suitable to produce solitons. More complicated                   

nonlinear equations were subsequently dispatched when Ablowitz, Kaup, Newell, and Segur showed how to 

make the method of solving them more systematic with a procedure now known as the AKNS method                   

[34]. They can find parameters that can give reasonable soliton solutions depending on equations and 

parameters.  

 

The main present and future problem is finding a balance between the dispersive coefficient and nonlinearity to 

maintain a soliton solution. This is because the propagation speed of a wave is frequency-dependent, the 

transmitted pulses tend to spread (an effect called dispersive spreading), and the signal, in turn, tends to break 

up. Since the inception of optical fibres, researchers have been looking for ways to combat dispersive spreading 

because of the severe limits it imposes on the capacity of optical communication systems [34]. Pulses that 

spread to a large extent will overlap, making it increasingly difficult to separate them from one another; the 

result is the degradation of the signal. The mathematical theory of nonlinear wave equations with rapidly 

varying coefficients is still not fully resolved and is a subject of ongoing research worldwide. A primary goal is 

to understand the pulse behaviour when the variations are substantial; this would provide a foundation for 

explaining several dispersion-management experiments that have been performed. 

 

Competing Interests 
 

Authors have declared that no competing interests exist. 
 

References 
 

[1] Yang J. Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Physical 

Review E. 2018;98(4):042202. 

 

[2] Ablowitz MJ, Musslimani ZH. Integrable nonlocal nonlinear Schrödinger equation. Physical review 

letters. 2013;110(6):064105. 

 

[3] Aktosun T. Solitons and inverse scattering transform. Contemporary Mathematics. 2005;379:47. 

 

[4] Fibich G. The nonlinear Schrödinger equation, Springer; 2015. 

 

[5] Soffer A, Weinstein M. Selection of the ground state for nonlinear Schrödinger equations. Reviews in 

Mathematical Physics. 2004;16(08):977-1071. 

 

[6] Sulem C, Sulem PL. The nonlinear Schrödinger equation: self-focusing and wave collapse: Springer 

Science & Business Media. 2007;139. 

 



 

 
 

 

Nchejane and Gbenro; JAMCS, 37(3): 56-69, 2022; Article no.JAMCS.86938 
 

 

 
68 

 

[7] Eliasson LH, Kuksin SB, KAM for the nonlinear Schrödinger equation. Annals of mathematics. 

2010;371-435. 

 

[8] Ivanauskas F, Radziunas M. On convergence and stability of the explicit difference method for solution 

of nonlinear Schrödinger equations. SIAM journal on numerical analysis, 1999;36(5):1466-1481. 

 

[9] Ramos JI. Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media. 

Applied mathematics and computation. 2002;133(1):1-28. 

 

[10] Fei Z, Pérez-García VM, Vázquez L. Numerical simulation of nonlinear Schrödinger systems: a new 

conservative scheme. Applied Mathematics and Computation. 1995;71(2-3):165-177. 

 

[11] Aliabadi S, et al. New finite element technique for simulation of wave-object interaction. in 40th AIAA 

Aerospace Sciences Meeting & Exhibit; 2002. 

 

[12] Taha TR, Ablowitz MI. Analytical and numerical aspects of certain nonlinear evolution equations. II. 

Numerical, nonlinear Schrödinger equation. Journal of computational physics. 1984;55(2):203-230. 

 

[13] Pelinovsky E, Kharif C. Extreme ocean waves. 2008;1495. Springer. 

 

[14] Shabat A, Zakharov V. Exact theory of two-dimensional self-focusing and one-dimensional self-

modulation of waves in nonlinear media. Sov. Phys. JETP, 1972;34(1):62. 

 

[15] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric 

fibers. I. Anomalous dispersion. Applied Physics Letters. 1973;23(3):142-144. 

 

[16] Mollenauer LF, Stolen RH, Gordon JP. Experimental observation of picosecond pulse narrowing and 

solitons in optical fibers. Physical Review Letters. 1980;45(13):1095. 

 

[17] Wen-Xiu Ma, Mohamed R. Ali, R. Sadat, "Analytical Solutions for Nonlinear Dispersive Physical 

Model", Complexity; 2020, Article ID 3714832,  

Available: https://doi.org/10.1155/2020/3714832 

 

[18] Ali MR, Sadat R. C    ru  i    f Lump   d  p i  l   li       lu i    f r (3 + 1) m del f r  he 

propagation of nonlinear dispersive waves in inhomogeneous media. Opt Quant Electron. 2021;53:279.  

Available: https://doi.org/10.1007/s11082-021-02916-w 

 

[19] Mohamed R Ali, Adel R. Hadhoud, Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet 

scheme for solving the 2D Bratu problem. Results in Physics. 2019;12:525- 530. 

 

[20] Mohamed R. Ali , Dumitru Baleanu, New wavelet method for solving boundary value problems arising 

from an adiabatic tubular chemical reactor theory, International Journal of Biomathematics. 2020;l(13): 

07, 2050059 (2020). 

 

[21] Ali, Mohamed R, Hadhoud, Adel R, Ma Wen-Xiu. Evolutionary Numerical Approach for Solving 

Nonlinear Singular Periodic Boundary Value Problems. Journal of Intelligent & Fuzzy Systems. 1 Jan. 

2020;7723 – 7731. 

 

[22] Baleanu D, Sadat R, Ali MR. The method of lines for solution of the carbon nanotubes engine oil 

nanofluid over an unsteady rotating disk. Eur. Phys. J. Plus. 2020;135:788.  

Available: https://doi.org/10.1140/epjp/s13360-020-00763-4 

 

[23] Leble S, Reichel B. Mode interaction in few-mode optical fibres with Kerr effect. Journal of Modern 

Optics. 2008;55(1):1-11. 

 

[24] Gbenro SO, Nchejane NJ. Numerical simulation of dispersion of pollutant in a canal. Asian Research 

Journal of Mathematics. 2022;18(4):25-40 

https://doi.org/10.1155/2020/3714832
https://doi.org/10.1007/s11082-021-02916-w
https://doi.org/10.1140/epjp/s13360-020-00763-4


 

 
 

 

Nchejane and Gbenro; JAMCS, 37(3): 56-69, 2022; Article no.JAMCS.86938 
 

 

 
69 

 

[25] Agrawal G. Applications of nonlinear fiber optics. Elsevier; 2001. 

 

[26] Agrawal GP. Fiber-optic communication systems. 2012;222. John Wiley & Sons. 

 

[27] Gaididei YB, et al. Effects of nonlocal dispersive interactions on self-trapping excitations. Physical 

Review E, 1997;55(5):6141. 

 

[28] Mandel P, Tlidi M. Introduction to soliton theory: Lecture notes prepared for the Spring school Solitons 

in Optical Cavities, May 8-13, 2006 held in Cargèse/Corsica-France; 2006. 

 

[29] Porsezian K, Kuriakose VC. Optical Solitons: Theoretical and Experimental Challenges. 2003;613: 

Springer Science & Business Media. 

 

[30] Biswas A. Dispersion-managed solitons in optical fibres. Journal of Optics A: Pure and Applied Optics. 

2001;4(1):84. 

 

[31] Halim A, Kshevetskii S, Leble S. Numerical integration of a coupled Korteweg-de Vries system. 

Computers & Mathematics with Applications. 2003;45:581-591. 

 

[32] Cheng Y, Effective potential of two coupled binary matter wave bright solitons with spatially modulated 

nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics. 2009;42(20):205005. 

 

[33] Turitsyn S, Mezentsev V. Dynamics of self-similar dispersion-managed soliton presented in the basis of 

chirped Gauss-Hermite functions. Journal of Experimental and Theoretical Physics Letters. 

1998;67(9):640-646. 

 

[34] Newell AC. Solitons in mathematics and physics; 1985: SIAM.  
__________________________________________________________________________________________ 
© 2022 Nchejane and Gbenro; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 
 

 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/86938 

 

http://creativecommons.org/licenses/by/3.0

