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Abstract

Let H be a Hilbert space and M be a closed linear subspace of H. Then by projection
theorem H = M ⊕ M⊥. This theorem suggests that the result has something to do about
a notion in Hilbert spaces which is analogous to and a generalization of the familiar idea of
Orthogonal or perpendicular projection of a vector in R2 or R3 upon a linear subspace of R2

or R3 respectively. In this paper we give a complete operator characterization of orthogonal
projections.Specifically we show that P is an orthogonal projector onto RP = M if and only
if P is self-adjoint and idempotent. We also consider the algebraic formulation of invariance,
reduction, orthocomplementation and orthogonality.

Keywords: Orthogonal projector; self-adjoint; idempotent; invariance; reduction.

1 Introduction

Let H be a Hilbert space and M be a closed Linear Subspace of H. Then (by projection theorem
[1])

H = M ⊕M⊥

Then for any x ∈ H, there are unique x′ ∈M and x′′ ∈M⊥ such that

x = x′+ x′′
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Similarly if y ∈ H, we can write y = y′ + y′′ for unique y′ ∈M and y′′ ∈M⊥.

Definition 1. Let H be a Hilbert space and M be a closed linear subspace of H. For each x ∈ H;
consider the unique decomposition x = x′ + y′, where x′ ∈M and y′ ∈M⊥. This decomposition is
guaranteed by the Projection theorem [1]. The component x′ is called the orthogonal projection
of the vector x ∈M . (Likewise, y′ is the orthogonal projection of the vector x on M⊥). Note that
if x is in M , then x′ = x and y′ = 0. The mapping PM : H −→M defined by

PMx = x′

(with x, x′ as just described) is called the orthogonal projection operator onto M or the
orthoprojector onto M or the orthogonal projector onto M . (Note that the range of PM is
M).

A mapping P : H −→ H is called an orthogonal projector or orthoprojector on H if there is
a closed linear subspace M of H such that P = PM , that is, P equals the orthoprojector onto M .

Remark 1. If x ∈M , then x = x+ 0 is the unique decomposition of x in M ⊕M⊥. Thus x ∈M
implies

P1x = x, P2x = 0,

where P1, P2 denote the orthoprojectors onto the closed linear subspaces M,M⊥, respectively. Thus
P1|M is the identity map on M and P2|M⊥ is the zero map.

Remark 2. It is obvious that for each x ∈ H,P1x is the unique element of the closed linear subspace
M whose distance from x equals dist (x,M), that is

∥x− P1x∥ = dist(x,M) [2]

Remark 3. For each closed linear subspace M of H, we have P1 + P2 = I, where P1, P2 are the
orthoprojectors onto M,M⊥ respectively, I being an identity map on H. Thus P2 = I − P1. Thus
if P is the orthoprojector onto the closed linear subspace M of H, then I − P is the orthoprojector
onto the orthogonal complement M⊥ of M with respect to H.

We are naturally curious with many questions about an orthoprojector P : Is P linear? bounded?
What properties characterize an orthoprojector? Proposition 1 is decisive in even answering more.
In this paper most definitions can be found in [3], [4],[5],[6],[7], [8], [9].

2 Properties of Orthoprojectors

Proposition 1. Let H be a Hilbert space, M be a closed linear subspace of H and let P and Q be
the orthoprojectors onto M and M⊥ respectively. Then
(i) P : H → H is linear.
(ii) Both P and Q are bounded and ∥P∥ 6 1, ∥Q∥ 6 1.
(iii) RP = M
(iv) ηP = M⊥

(v) ηP ⊥ RP and ηQ ⊥ RQ

(vi) I = P +Q
(vii) P,Q are self-adjoint.
(viii) P,Q are idempotent i.e P 2 = P,Q2 = Q

Proof. (i) Let α, β ∈ K and consider the element αx+ βy ∈ H.

αx+ βy = α (x′ + x′′) + β (y′ + y′′)
= (αx′ + βy′) + (αx′′ + βy′′)
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Since M,M⊥ are linear subspaces so αx′ + βy′ ∈ M for x′, y′ ∈ M and αx′′ + βy′′ ∈ M⊥ for
x′′, y′′ ∈ M⊥.Thus αx + βy has a decomposition (αx′ + βy′) + (αx′′ + βy′′) in M ⊕ M⊥ and
since this decomposition is unique P (αx + βy) = αx′ + βy′. But Px = x′, Py = y′. Hence
P (αx + βy) = αx′ + βy′ = αPx + βPy which implies P is linear . Similarly, if we define
Q : H → H by Qz = z′′ ∀z ∈ H (where z = z′ + z′′ is the decomposition of z with respect
to the direct sum M ⊕M⊥ where z′ ∈M, z′′ ∈M⊥) then Q is also linear.
(ii) Let x ∈ H and x = x′ + x′′ be the decomposition of x with x′ ∈ M and x′′ ∈ M⊥. Then
Px = x′. So ∥Px∥ = ∥x′∥ i.e ∥Px∥2 = ∥x′∥2 Therefore;

∥Px∥2 6
∥∥x′∥∥2

+
∥∥x′′∥∥2

Since x′ ∈M and x′′ ∈M⊥, we have x′ ⊥ x′′ and thus (from x = x′+x′′ ) we have by Pythagorean
theorem [10]

∥x∥2 =
∥∥x′∥∥2

+
∥∥x′′∥∥2

Hence ∥Px∥2 ≤ ∥x∥2 i.e ∥Px∥ ≤ ∥x∥ ∀ x ∈ H i.e ∥Px∥ ≤ 1∥x∥ ∀ x ∈ H which implies P ∈ B(H)
and ∥P∥ ≤ 1.

If M ̸= {0̄}, then there exists x ∈M such that x ̸= 0̄. The decomposition for this x ∈ H is M⊕M⊥

(which is unique) is obviously; x = x+ 0 therefore Px = x. Thus Px = x for all x ∈M . Now
∥P∥ = sup {∥Pz∥ : z ∈ H and ∥z∥ = 1}

In particular put z = x
∥x∥ (x ∈M and x ̸= 0) . Then

∥P∥ ≥
∥∥∥∥P (

x

∥x∥

)∥∥∥∥ =
1

∥x∥ ∥Px∥ = 1

∥x∥∥x∥ = 1

Therefore ∥P∥ = 1 if M ̸= {0̄}.Similarly ∥Q∥ ≤ 1 and ∥Q∥ = 1 if M⊥ ̸= {0̄}.

(iii) For if z ∈ H then Pz = z′ ∈M , so Pz ∈M ∀z ∈ H, therefore P (H) ⊆M i.e

RP ⊆M. (1)

If z ∈M , then we saw that Pz = z. So; P (M) = M. Therefore

P (H) ⊇ P (M) = M i.e P (H) ⊇M i.e RP ⊇M. (2)

From (1) and (2)
RP = (P (H)) = M.

Thus P : H → H is onto M . Similarly ∥Q∥ 6 1 and ∥Q∥ = 1 if M⊥ ̸= {0} and RQ = M⊥.

(iv) For if z ∈ M⊥ then z has the unique decomposition z = 0̄ + z where 0 ∈ M and z ∈ M⊥. So
Pz = 0, i.e z ∈ ηP therefore M⊥ ⊆ ηP . On the other hand, let x ∈ ηP then Px = 0 ∈ M⊥, so
ηP ⊆M⊥. Thus ηP = M⊥. Similarly ηQ = M .

(v) for M⊥ ⊥M and M ⊥M⊥, so ηP ⊥ RP and ηQ ⊥ RQ.

H = ηP ⊕RP = ηQ +RQ

(vi) For any z ∈ H

Iz = z = z′ + z′′ = Pz +Qz = (P +Q)z.

Therefore
I = (P +Q).
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So

Q = I − P, P = I −Q

(vii) For let x, y ∈ H and x = x′ + x′′, y = y′ + y′′ be the decompositions of x, y respectively along
M ⊕M⊥. Thus Px = x′, Py = y′. Now Since P ∈ B(H) (So P ∗ exists [6])

⟨Px, y⟩ = ⟨x, P ∗y⟩ . (3)

But

⟨Px,y⟩ =
⟨
x′, y

⟩
=

⟨
x′, y′ + y′′⟩ =

⟨
x′, y′⟩+ ⟨

x′, y′′⟩ .
But

x′ ∈M and y′′ ∈M⊥ so
⟨
x′, y′′⟩ = 0.

Thus

⟨Px, y⟩ =
⟨
x′, y′⟩ =

⟨
x′, Py

⟩
=

⟨
x′, Py

⟩
+

⟨
x′′, Py

⟩
( for

⟨
x′′, Py

⟩
= 0 since x′′ ∈M⊥ and Py ∈M)

=
⟨
x′ + x′′, Py

⟩
= ⟨x, Py⟩ (4)

from (3) and (4) we obtain

⟨x, P ∗y⟩ = ⟨x, Py⟩ ∀x, y ∈ H.

i.e P ∗ = P ∀y ∈ H. (Indeed ⟨x, P ∗y⟩ − ⟨x, Py⟩ = 0 ∀x, y ∈ H i.e ⟨x, P ∗y − Py⟩ = 0 ∀x, y ∈ H .
Put x = P ∗y − Py in particular, therefore ∥P ∗y − Py∥ = 0 ∀y ∈ H i.eP ∗y − Py = 0 ∀y ∈ H i.e
P ∗ = P ). Thus P is self-adjoint. Likewise Q is self-adjoint.Indeed;

Q = I − P

therefore

Q∗ = (I − P )∗ = I∗ − P ∗ = I − P = Q.

(viii) Let x ∈ H. Then Px ∈M . We saw that if y ∈M then Py = y. Since Px ∈M so P (Px) = Px
i.e P 2x = Px ∀x ∈ H,therefore P 2 = P .Likewise Q2 = Q

In general P ∈ B(H) is an orthogonal projector if there is a closed linear subspace of H such
that Px = x′ ∀x ∈ H where x′ is the component of x in the decomposition x = x′ + x′′ along the
direct sum M ⊕M⊥.More generally, we define a linear operator P ∈ B(H) to be an orthogonal
projection if P = P ∗ that is P is self-adjoint and P is idempotent i.e P 2 = P .

Remark 4. We usually use the symbol PM in place of P if we want to exhibit the linear subspace
onto which P maps.

Remark 5. We have seen that ∥P∥ ≤ 1 and ∥P∥ = 1 if M ̸= {0}.
If M = {0} then x ∈ H ⇒ x = 0̄ + x

(
0̄ ∈M, 0̄ ∈M⊥). So Px = 0 ∀x ∈ H

∥Px∥ = ∥0∥ = 0 ∀x ∈ H

therefore

∥P∥ = 0.

Thus if P is an orthogonal projector on H either ∥P∥ = 1 or ∥P∥ = 0.
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Remark 6. Let M be a closed linear subspace of a Hilbert space H and PM represent the orthogonal
projection of H onto M . If x ∈ H, there exist a unique x0 ∈ M such that dist(x,M) = ∥x − x0∥
and x− x0 ⊥M i.e x− x0 ∈M⊥ [3].

Now x0 = PMx (for x = x0 + (x− x0) is the decomposition of x in M ⊕M⊥ therefore PMx = x0 )
Thus,

dist(x,M) = ∥x− PMx∥ ∀ x ∈ H.

The question which arises is; if P ∈ B(H), and P is idempotent and self-adjoint, what can we say
about P? Proposition 2 answers this question.

Proposition 2. Let H be a Hilbert space and P ∈ B(H). The following statements are equivalent.

(i) P is an orthogonal projector.
(ii) P is idempotent and self-adjoint i.e P 2 = P and P ∗ = P

Proof. (i) ⇒ (ii) proved in proposition 1 (vii) and (viii)
Conversely (ii)⇒ (i)
P being a linear transformation it follows that RP and ηP are both linear subspaces of H [4]. Since
P ∈ B(H), ηP is a closed linear subspace of H. We see that RP is closed. This follows essentially
from the idempotency of P . Indeed let y ∈ R̄P , hence there exists a sequence (yn) of elements of
RP such that yn

s−→ y. If x ∈ RP then Px = x. Indeed since x ∈ RP so x = Py for some y ∈ H.
Consequently

Px = P (Py) = P 2y = Py

(The last equality in the chain follows from idempotency of P ). But Py = x so we get Px = x i.e
x ∈ RP implies Px = x.

Since yn
s−→ y and P ∈ B(H) we get

Pyn
s−→ Py.

But Pyn = yn (since yn ∈ RP ). Thus yn
s→ Py. Also yn

s→ y.

By uniqueness of the strong limit, we get Py = y. In other words y ∈ RP .Thus R̄P ⊆ RP , i.e RP

is closed.

Conclusion: RP is a closed linear subspace of H.

Hence by the projection theorem [1] in Hilbert spaces H = RP ⊕ R⊥
P . Hence if x ∈ H, then x =

x′ + x′′, where x′ ∈ RP and x′′ ∈ R⊥
P .Therefore Px = Px′ + Px′′. Since x′ ∈ RP , so Px′ = x′.

We shall show that Px′′ = 0. Since x′′ ∈ R⊥
P , x

′′ ⊥ RP i.e ⟨x′′, Py⟩ = 0 ∀y ∈ H. Since P is self
adjoint, ⟨

x′′, Py
⟩
=

⟨
P ∗x′′, y

⟩
=

⟨
Px′′, y

⟩
.

Therefore ⟨
Px′′, y

⟩
= 0 ∀y ∈ H.

Thus
Px′′ ⊥ H i · e Px′′ = 0.

Therefore
Px = Px′ = x′ ∈ RP .

Hence P maps H onto the closed linear subspace M = RP and the component of x in R⊥
P belongs

to the null space of P . Hence P is the orthogonal projector on H onto the closed linear subspace
RP .
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Thus the two properties in proposition 2 (ii) are together equivalent to (i) and we obtain a complete
operator characterization of an orthogonal projector:

P ∈ B(H), P 2 = P and P is self-adjoint ⇐⇒ P is an orthogonal projector onto RP .

We establish next another equivalence.

Example 1. Let P be in B(H). Then P is an orthoprojector if and only if P is idempotent and
RP ⊥ RI−P .

SOLUTION. If P is an orthoprojector, then we have already seen in Proposition 1 that P is
idempotent and the property RP ⊥ RI−P was also seen. Hence we show that the converse holds.
Let RP = M . Since P in B(H) is idempotent, M is a closed linear subspace of H, as already seen
above. Let RI−P = N . Now P 2 = P implies (I −P )2 = I − 2P +P 2 = I −P . Since I −P ∈ B(H)
and it is idempotent, it follows that N is a closed linear subspace of H. By hypothesis, M ⊥ N .
Moreover, each x ∈ H can be written as x = Px+ (I −P )x. Note that Px is in RP = M, (I −P )x
is in RI−P = N . So H = M + N , with M ⊥ N . Now M ⊥ N implies M ∩ N = {0}. Thus
H = M ⊕N , with M ⊥ N . It is thus evident that N = M⊥. P is thus an orthoprojector.

Remark 7. We observe that there is a natural one-to-one correspondence between the set of all
closed linear subspaces of a Hilbert space H and the set of all orthoprojectors on H. In view of
this, it is possible to express all geometric notions connected with closed linear subspaces in terms of
algebraic properties of the orthoprojectors onto these linear spaces. We consider below the algebraic
formulation of invariance, reduction, orthocomplementation and orthogonality.

We now introduce the notion of invariant and reducing linear subspaces for a T ∈ B(H).

Definition 2. Let H be a Hilbert space, T ∈ B(H) and M be a closed linear subspace of H. We
say that M is invariant with respect to T or T - invariant if x ∈ M implies Tx ∈ M . If T is
defined on DT (subspace of H) then T is said to be T - invariant if Tx ∈M for all x ∈M ∩DT

Trivial cases:

If M = {0̄} or M = H, then M is always T -invariant. For x ∈ H implies Tx ∈ H and
x = 0̄ = T 0̄ = 0̄ ∈ {0̄}. These are called the improper T -invariant subspaces.

ηT is T -invariant for if x ∈ ηT , Tx = 0̄ ∈ ηT .

A question which arises is: If T ∈ B(H) has an invariant subspace M , what can we say about the
adjoint of T i.e T ∗ ?

Proposition 3. Let H be a Hilbert space, T ∈ B(H). Then a closed linear subspace M of H is
T -invariant if and only if M⊥ is T ∗-invariant.

Proof. Let M be T -invariant. To show that M⊥ is T ∗-invariant. Let x ∈ M⊥ i.e ⟨x, Ty⟩ = 0 ∀ y
∈ M .(M is T - invariant ⇐⇒ Ty ∈M for all y ∈M ) But
⟨x, Ty⟩ = ⟨T ∗x, y⟩ so ⟨T ∗x, y⟩ = 0 ∀y ∈M
i.e T ∗x ⊥M i.e T ∗x ∈M⊥.Conclusion; x ∈M⊥ implies T ∗x ∈M⊥.Thus M⊥ is T ∗-invariant.

Thus M is T -invariant implies M⊥ is T ∗-invariant.By the same result it follows that: M⊥ is T ∗-
invariant, implies (M⊥)⊥ is (T ∗)∗-invariant (since T ∗ ∈ B(H) and M⊥ is a closed linear subspace).

But
(
M⊥)⊥ = M since H is a Hilbert space and (T ∗)∗ = T for T ∈ B(H). So M⊥ is T ∗-invariant

implies M is T -invariant.Thus for T ∈ B(H), if M is a closed linear subspace of H:

M is T -invariant ⇐⇒M⊥ is T ∗-invariant.
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Remark 8. T -invariance of M is essentially a geometric concept involving a linear subspace M
and its image. This geometric concept of invariance can be translated into a purely algebraic concept
involving operators with perfect equivalence as seen in proposition 4;

Proposition 4. Let H be a Hilbert space and M be a closed linear subspace of H. Let T ∈ B(H)·M
is then T -invariant if and only if PTP = TP where P is orthogonal projector on H onto M .

Proof. Let M be T -invariant, so x ∈ M implies Tx ∈ M . Let y ∈ H. Since P is the orthogonal
projector on H onto M , so Py ∈ M . Since M is T -invariant and Py ∈ M , so TPy = T (Py) ∈ M .
But TPy ∈M implies P (TPy) = TPy. Thus PTPy = TPy ∀ y ∈ H,therefore PTP = TP .

Conversely let PTP = TP .To show that M is T -invariant. Let x ∈M we must show that Tx ∈M .
Since x ∈M . Px = x. So TPx = Tx. But TP = PTP ,therefore TPx = PTPx. Therefore

PTPx = Tx

i.e P (TPx) = Tx. But P (TPx) ∈ RP = M ,therefore Tx ∈M i.e x ∈M implies Tx ∈M , i.e M is
T -invariant.

Definition 3. Let H be a Hilbert space and T ∈ B(H). A closed linear subspace M of H is said
to reduce T , if both M and M⊥ areT -invariant. In case domain of T is DT then we say that M
reduces T if

DT = (DT ∩M) +
(
DT ∩M⊥

)
and M,M⊥ are both T-invariant i.e, T (MDT ) ⊆M and T

(
M⊥ ∩DT

)
⊆M⊥.

Clearly both {0} and H reduce T and are called improper reducing subspaces of T . All other
closed linear subspaces M of H which reduce T (i.e M ̸= {0} , H) are called proper reducing
subspaces of H. The operator T is said to be irreducible if T has no proper reducing subspaces.

Remark 9. If T ∈ B(H) has a proper reducing subspace M . Now H = M ⊕M⊥ by projection
theorem [1]. Since T maps M into M and M⊥ into M⊥ hence we can split T into two bounded
linear operators; T |M , T |M⊥ and study these instead of T . Also T = T |M + T |M⊥ .

Note: T |M ∈ B(M,M) and T |M : M −→M

T |M⊥∈ B
(
M⊥,M⊥) and T |M⊥ : M⊥ →M⊥

It is possible that even T |M , T |M⊥ have themselves reducing subspaces and so on, so that these
operators can be further split.

Proposition 5. Let T ∈ B(H) be self-adjoint and M be a closed linear subspace of H. Then M
reduces T if and only if M is T -invariant.

Proof. M reduces T ⇐⇒M,M⊥ are both T -invariant.
M⊥ is T -invariant ⇐⇒ (M⊥)⊥ is T ∗ - invariant ⇐⇒ M is T -invariant (T ∗ = T since T is self
adjoint). Thus
M reduces T ⇐⇒M is T -invariant.

Proposition 6. Let H be a Hilbert space and T ∈ B(H). Let M be a closed linear subspace of H
and P be the orthogonal projector on H onto M . Then the following statements are equivalent.
i) M reduces T
iii) M reduces T ∗

(ii) P ←→ T
iv) P ←→ T ∗

v) M⊥ reduces T
vi) M⊥ reduces T ∗
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Proof. (i)⇐⇒ (iii). SinceM reduces T , bothM andM⊥ are T -invariant. Since P is the orthogonal
projector on H onto M then I − P is the orthogonal projector on H onto M⊥.

M is T -invariant ⇐⇒ PTP = TP .
M⊥ is T -invariant ⇐⇒ (I − P )T (I − P ) = T (I − P )

⇐⇒ T − TP − PT + PTP = T − TP

⇐⇒ PT = PTP.

Thus PTP = TP and PT = PTP . Hence TP = PT i.e P ←→ T .

(iii)⇐⇒ (iv)

TP = PT ⇐⇒ (TP )∗ = (PT )∗

⇐⇒ P ∗T ∗ = T ∗P ∗ ⇐⇒ PT ∗ = T ∗P (Since P is self- adjoint).

⇐⇒ P ←→ T ∗

(i) ⇐⇒ (ii)
M reduces T ⇐⇒M,M⊥ are T - invariant.

⇐⇒M⊥,
(
M⊥

)⊥
are T ∗ − invariant.

⇐⇒M⊥,M are T ∗ invariant.

⇐⇒M reduces T ∗

(i) ⇐⇒ (v)
M reduces T ⇐⇒M,M⊥ are invariant under T.

⇐⇒M⊥,
(
M⊥

)⊥
are invariant under T

⇐⇒M⊥reducesT

(v) ⇐⇒ (vi)
This holds since (i) ⇐⇒ (ii)
Since M reduces T ⇐⇒M reduces T ∗. So M⊥ reduces T ⇐⇒M⊥ reduces T ∗.
Finally we show that (iii) ⇒ (i) ;
Let P ←→ T i.e PT = TP . To show that M reduces T , i.e M,M⊥ are both T - invariant.
Let x ∈ M therefore Px = x, since PT = TP we have, PTx = TPx, therefore, P (Tx) = Tx,
therefore Tx ∈M (Note: RP = M).

Thus x ∈ M implies Tx ∈ M , i.e M is T -invariant. Let y ∈ M⊥. Then Py = 0. Since PT = TP ,
so PTy = TPy = T (Py) = T (0) = 0.Therefore P (Ty) = 0 which implies Ty ∈ M⊥. Thus
y ∈M⊥ ⇒ Ty ∈M⊥ i.e M⊥ is T -invariant.Thus M reduces T .

Remark 10. Thus the statement;M reduces T” can be given an equivalent version (algebraic or
operator theory) as,T ←→ P”(where P is orthogonal projector on H onto M)

Definition 4. Let H be a Hilbert space and T ∈ B(H). We say that an orthogonal projector P
reduces T if P ←→ T (This is equivalent to saying that M reduces T where M = Rp).

We now give another equivalent version of an orthogonal projector;

Proposition 7. Let H be a Hilbert space and P ∈ B(H). Then P is an orthogonal projector if and
only if P 2 = P and ∥P∥ 6 1.
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Proof. If P is an orthogonal projector, we have seen from proposition 1 that P 2 = P and ∥P∥ ≤ 1.
Conversely let P 2 = P and ∥P∥ ≤ 1. Let RP = M .From the idempotency of P we have already
seen that M is a closed linear subspace of H and x ∈ M implies Px = x.(see proposition 2). Let
x ∈ H. We can write

x = Px+ (x− Px) . (5)

Consider the element x− Px. Now

P (x− Px) = Px− P (Px) =Px− P 2x =Px− Px =0 (since P 2 = P )

Hence for any x ∈ H,x−Px ∈ ηP = N (say). Since P ∈ B(H), ηP i.e N is a closed linear subspace.
So in (5) Px ∈M and (x− Px) ∈ N . In particular, if x ∈ N⊥, then using (5) we can write

x = Px+ y where y ∈ N .

Therefore Px = x− y where ⟨x, y⟩ = 0 (note x ∈ N⊥, y = (x− Px) ∈ N
)
. Now

∥x∥2 ≥ ∥Px∥2 (since ∥P∥ ≤ 1) = ||x− y
∥∥2 =

∥∥x ∥∥2+
∥∥ y∥2

Therefore ∥y∥2 = 0 i.e y = 0̄
Thus x = Px i.e x ∈M = RP .Thus

N⊥ ⊆M (6)

Conversely suppose x ∈M . Then Since H = N⊕N⊥ (Projection theorem), we can write x = x′+x′′

where x′ ∈ N and x′′ ∈ N⊥.So
Px = Px′ + Px′′.

But Px′ = 0̄ (for x′ ∈ N = ηp. Therefore Px = Px′′ = x′′ (since x′′ ∈ N⊥ ⊆ M by (6) therefore
Px′′ = x′′). Thus Px = x′′ ∈ N⊥. i.e x = x′′ ∈ N⊥. So

M ⊆ N⊥ (7)

From (6) and (7) we get M = N⊥. Therefore M⊥ =
(
N⊥)⊥ = N since N is a closed linear

subspace. Therefore

RP = M and ηP = N = M⊥

These two show that P is an Orthogonal projector.

3 Conclusion

Let M be a closed linear subspace of a Hilbert space H. By projection theorem H = M ⊕M⊥. For
a P ∈ B(H) we have shown that the following statements are equivalent:

i) P is an orthogonal projector such that RP = M and ηP = M⊥.
ii) P is self-adjoint and idempotent.
iii) P is idempotent and ∥P∥ ≤ 1.

This gives a complete operator characterization of orthorgonal projectors. If T ∈ B(H) then T -
invariance of M is essentially a geometric concept involving a linear subspace M and its image.
We have shown that this geometric concept on invariance can be translated into a purely algebraic
concept involving operators with perfect equivalence. The statement M reduces T” can be given
an equivalent version ( algebraic or operator theory) as T commutes with P .
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An additional observation is that orthoprojectors are the simplest self-adjoint elements of B(H)
(their restrictions to their range being identity mappings, that is, if P is an orthoprojector on H
with range M , then P |M = identity on M) and their importance lies in the fact that every bounded
(and even unbounded) self-adjoint operator in H can be built up in some sense from orthoprojectors.
This is indeed the central theme and result of the spectral theory of self-adjoint operators and the
very idea, in an abstract sense, of expressing an operator H (bounded or not) in some sense in
terms of orthoprojectors, is the basic philosophy in the evolution of the spectral theory of linear
operators in a Hilbert space.
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